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Abstract. An approach to solving the urgent problem of optimizing the load-bearing structures of buildings and 
structures based on adapted genetic algorithms is presented. As a tool for finding a solution, iterative schemes are 
used, in which, in the classical approach to evolutionary modeling, a system of constraints is used that forms the 
operational requirements for reinforced concrete, steel and other structures. In this case, the value of the risk of 
material losses is used as one of the measures of the design optimality. This value is used to assess the feasibility of  
increasing the initial costs of manufacturing structures, taking into account the degree of their mechanical safety in 
case of emergency impacts. Groups of scenarios are considered as such impacts, including local damage to one or 
more load-bearing elements. A limitation is formed on the resistance to progressive collapse of the structure, which 
is interpreted as preventing large displacements and limiting deformations of certain parts or the structure as a 
whole. The magnitude of the risk is determined by a relative index determined as the ratio of the likely cost for 
damage from material loss to the initial cost of manufacturing the structure. The block diagrams that implement 
such iterative processes, information about the developed software and an example of optimization of the 
reinforced concrete supporting structure of the frame of an administrative multi-storey building are considered. 
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INTRODUCTION 
 
The problem of optimizing reinforced concrete 
and steel frames considering their safety level is 
mostly understudied. There are only a few 
studies that concern particular aspects of the 
problem to a different extent [1-4]. At the same 
time, some studies focus on both mechanical 
and technogenic safety [5]. As an example of 
optimizing, let’s consider relatively simple 
objects, while hazards shall be excluded from a 
single iterative procedure. Structures safety is 
considered according to the values loss risk 
factor calculation [6-7]. In this regard, it may be 
difficult to optimise a design solution, 
considering costs of construction site life cycle 
stages in its in normal operations and 
considering its resistance to beyond design basis 
effects. Recent search schemes based on modern 
information technologies allows for getting 
better in solving this problem. Firstly, these are 
genetic algorithms [8-10], particle swarm 
methods [11-13], ant colony [14], and firefly’s 
methods [15]. These algorithms may get 
accustomed to solving optimisation tasks both 
reinforced concrete, steel and other structures of 
various types. The article is concerned with the 
common approach to optimisation of reinforced 
concrete and steel load bearing structures 
considering the level of their mechanical safety, 
as well as evolutionary algorithms 
implementation for truss and plated and truss 
structures. It is proposed to introduce a measure 
of relative integral socio-economic losses risk as 
an estimate of safety level. The risk considers 
both normal operations of structural systems as 
part of a functional ongoing process in the 
building and emergency conditions related to 
mechanic damage of individual units or 
elements. 
 
 
1. THE PROBLEM FORMULATION 
 
As an optimal design goal, we’ll use 
minimization of value terms of materials 
consumption of a structure, the labour intensity 

involved in its manufacture, and also safety 
level at emergency. 
 

min ; 

1 2, ,..., Np , (1) 

 
where  is a notional value (conventional 
units), that considers the materials that make up 
the load bearing structure, manufacturing 
features and socio-economic losses risks;  is 
a set of design parameters that vary in search 
process, consisting of pN  disjoint subsets it , 

(1,..., )pit N ; it  – a set of parameters 
consisting of parameter values admitted for 
selection in search process, corresponding to its  
it type.     
This parameter type implies, for example, 
combinations of building element cross 
sections, position of structural joints, material 
classes of which it is made, plate width and etc.  
Expressions for calculation of the value  for 
specific cases of structure optimisation have 
various notations, for example, for reinforced 
concrete frames [16]: 
 

min( )c r fC P P P P , (2) 
 
where , ,c r fP P P prime cost of materials and 
manufacture for concrete, fittings, casing and 
associated materials, respectively, minP  – some 
small real number; 
– for steel frames [17]: 
 

1
min

n
i i

i
M A l , (3) 

 
where   is steel density, ,i iA l   are area and 
length of structure element, respectively, and n 
is their number; 
– for wood structures [18]:  
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( ) ( )
( ) mintim tim pl pl

n n

C V X C V X
f X

a b
, (4) 

 
where ( )X  is a vector of variables; ( )timV X , 

( )plV X  are wood and plywood volumes in the 
fabricated structure; ,n na b  are bay and width 
of a wood structure; timC , plC  are weight 
coefficients for wood and plywood.  
In solving the minimisation problem (1) by way 
of task (2) and (4), socio-economic losses risks 
is not considered in the goal function, that 
significantly diminishes the mechanical safety 
level of such optimized structures. The goal 
function is proposed as follows:   
 

mins s , 

, ,
1 1

N M
s i j i j

i j
, (5) 

 
s  is a value related to costs for materials, 

structure fabrication, joint connection 
arrangement and etc.; s  is the value terms of 
socio-economic losses risk defined by the 
probability ,i jp  for emergency j at stage i of 
structure life cycle. This probability can be 
determined based on the well-known Bayes' 
formula for conditional probability, N, M are a 
number of emergencies considered in 
optimisation for life cycle stages and those that 
may occur at this stage. 
In solving load bearing structures optimisation 
problems, the following main active constraints 
are used: 
– structure elements strength. This criterion can 
be expressed in strains, deformations and 
critical forces in dangerous cross section of a 
building element. These factors should not 
exceed the set design resistances, deformations, 
and forces; 
– structure stiffness along linear displacements 
or angles of rotation; 

– stability of system geometrical shape in the 
presence of its structural (topological) changes. 
Passive constraints may be presented by 
conditions for ensuring structure overall 
stability, local durability of its structural 
elements, observing the requirements for 
unification of constructive solution, 
manufacturing or assembling processes. 
It’s obvious that the growing complexity of 
design solutions creates the necessity of varying 
dozens of design parameters. In this regard, 
manual approaches to optimisation become 
unacceptable, while gradient-based optimization 
algorithms are not efficient. With that said, 
methods evolve based on a combination of 
search algorithms, linear and non-linear 
mathematical programming. The major problem 
in implementation of such an optimisation 
approach for load bearing structures lies in the 
necessity of multiple automatic calculation at 
structure strain-stress distribution. Let us 
consider one of the variant for this calculation 
arrangement. 
  
 
2. GENERAL SOLUTION SEARCH 
CIRCUIT 
 
A number of basic stages is proposed for 
evolutionary algorithm implementation in terms 
of design solution. 
2.1. Defining one or several optimisation 
criteria corresponding to problem solution goal. 
For example, cost minimum, ensuring strength, 
collapse resistance in emergency and etc. Here a 
decision is also taken about optimisation task 
decomposing, its phasing for a purpose of 
optimal topological synthesis, search for 
rational form. An example of such 
decomposition is addressed in work [19].    
2.2. Formation of data on structure 
computational model, design parameter sets, 
force, kinematical, structural and technological 
constraints of the task. 
2.3 Development or selection of a mathematical 
model for estimation of constraint satisfaction. 
A proven calculation model can be used for 
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bearing structures set forth in regulatory 
documents, and also computing model based on 
finite elements method. Moreover, for 
evolutionary approach implementation there is a 
problem for solver integration into the iterative 
search scheme. One of such methods will be 
stated in this paper. 
2.4 Verification of constraint satisfaction, 
calculation of target function values and 
implementation of preserving the best solution 
for further reproduction and improvement of 
decisions. In using several optimality criteria, the 
target function value can be calculated based on 
weight coefficients kx  per each of the criteria: 
 

1
, 1

Nc
k k k

k k
 , (6) 

 
where kC  is a goal function value upon 
criterion k, Nc  is a number of criteria. 

2.5 Verification of the condition of search 
process end. Provided that the condition for 
ending the iterations is satisfied the search is 
stopped. If it’s not, then based on existing best 
solutions, structure options are modified by way 
of changing some varied parameters and 
proceeding to stage 2.4. 
Some integral iteration number pN  is 
considered as a criterion of ending the iterations 
for genetic search during which no 
improvements occur in the iteration process: 
 

/3 !n
pN mn , (7) 

 
where n  is a number of independently varied 
parameters; m  is the arithmetic mean for values 
admitted for each parameter selection. 
Implementing the condition for ending the 
iterations is shown in Fig. 1. 
 

 
 

Figure 1. For realisation of iteration stopping criterion 
 

 
Upon completion of iteration stopping, a 
decision obtained as a result of search is 
verified for satisfaction of passive (not 
considered during the iteration process) 
constraints. 
Such constrains may include local durability of 
joint connection elements, design features 
related to ensuring structural support, local plate 
durability, ensuring necessary installation 
conditions and etc. Studies [20-23] explain in 
more detail the evolutionary algorithm in 

respect to individual types of load bearing 
building constructions. We’ll demonstrate the 
content of stage 2.2 and stage 2.4 of 
evolutionary approach using the example of 
reinforced concrete simple beam (figures 2, 3). 
In this case, 4 parameters vary independently: 
higher and lower fitting diameters, concrete and 
fitting class. Some parameters may remain 
permanent. 
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Figure 2. Presentation of reinforced concrete beam and sets of such structures in evolutionary 
approach: examples of setting varying and non-varying parameters (a), (b), vision of initial 

occasionally generated decision set (c), example of coding parameter values (d), set of permitted 
parameter values (e) 

 
The choice of structure members for further 
solution improvement is made based on 
roulette-
where the choice probability is determined by 
the value: 
 

1
, 1 , 1..4

N
I

i i j i i
j

l f f f C I , (8) 

 
Structure modification is made based on 
operators, examples of which are shown in fig. 
3, b, c. In making a decision about preservation 
of the best solution the following elitism EC 
criteria are used (fig. 3d):  
 

max

( )
( ) ( )

.

i

i i

i

C , (9) 

 
The first condition in the system means absence 
in elite set  a copy from the set , and 
second condition means that the meaning of a 
target criteria for a member from set  must 
be less than maximum from the elite set. It 
should be noted that dimensions nM  of a current 
set and neM  elite set of decisions may differ. 
Practical use of evolutionary approach showed 
that  15 50nM ,  10 25nM . 
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Figure 3.  -

 
  

 
3. INTERACTION WITH PROGRAM 
COMPEX SOLVERS  
  
Current requirements to structural designing 
assume the assessment of their strain-stress 
distribution taking into account physical, 
geometrical and constructive nonlinearity. It 
calls for using modern program complexes with 
a possibility of exchanging data with a solver 
and exterior programme developments. 
Simcenter “Femap”. Preprocessor of this 
complex can integrate with all modern solvers, 

while we’ve used NX Nastran solver. The 
scheme of organisation of evolutionary search 
program interaction [24, 25] with Simcenter 
“Femap” is shown in fig. 4. 
The operating system is used to exchange data 
between the finite element complex solver and 
the genetic search program. This is possible if 
there is an open format for the input / output 
file, as well as the ability to run the solver 
without using special pre / postprocessor 
commands. 
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 for bearing structure optimization 
 

4. EXAMPLE OF USING 
EVOLUTIONARY ALGORITHM IN 
VARIOUS APPROACHES TO DESIGNING 
 
Let us consider the designing of the frame of 
half precast multi-storey civil building. Frame 
ceilings and finishes are precast. It is believed, 
that their parameters to be non-variable. It 
means, that they are not considered within the 
search. 
There are three options of frame designing to be 
considered: 
– using solutions given in typical design 
documentation (s. B1.020) allowing for normal 
operations (I); 

– using evolutionary search with no regard for 
safety limits according to presentation (5) in 

0s (II); 
– using evolutionary algorithm in accordance 
with presentation with a possibility of 
considering emergencies 0s  while 
ensuring mechanical safety at level 

/ 0.2s s . Frame calculation scheme is 
As an emergency script, it 

is offered to have an opportunity of 
excluding their design diagram one from 

-
mechanical damage fig. 5, b.  
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As the figure 5, c, d shows, in normal operations 
regardless of possible emergency conditions, the 
approach to designing according to rules (I) 
allows for gaining the structure value comparable 
to optimisation algorithms (II), (III). Moreover, 
structure cost-cutting using (II) approach 
significantly decreases its safety. Using constrains 
in view of the risks in optimisation algorithms 
(III), a 40% safer structure option has been 
obtained with very insignificant appreciation (to 
10%) in comparison to approach (I). 
 
 
DISCUSSION  
 
Considering emergency condition scripts, 
conventional approach (I) does not allow for 
obtaining minimal design cost in reaching a 
relative level risk 0.2 . Utilising genetic 
search (II) in minimal cost may appear 
unacceptable due to a low safety level, which 
appeared to be almost 2 times lower than in 
approach (I). Approach (III) is the most cost-
saving solution in constraints to safety level.  
 
 
CONCLUSION  
 
1. An approach has been developed to bearing 
structure parameter optimisation based on 
evolutionary algorithm.  
2. Solving the problems of optimizing building 
load bearing structures of normal and advanced 
responsibility level must include a requirement 
for considering the risk of consequences from 
an accident.  
3. A scheme of interaction of evolutionary 
search iteration procedure with modern program 
complexes. 
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