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Abstract: In this paper the problem of numerical simulation of composite bending elements dynamic considering 
internal (material) damping. For this purpose the nonlocal in time damping model, called damping with memory, is 
proposed as an alternative to the classic local Kelvin-Voigt model. Damping with memory makes damping forces not 
only dependent on the instant value of the strain rate, but also on the previous history of the vibration process. Since 
finite element analysis is the most common method of structural analysis, the nonlocal damping model is integrated into 
FEA algorithm. The FEA dynamic equilibrium equation is solved using the explicit scheme. The damping matrix was 
developed using the stationary full energy requirement. One-dimensional nonlocal in time model was implemented in 
MATLAB software package. The results of three-dimensional numerical simulation of the composite beam vibration 
obtained in SIMULIA Abaqus were used for model calibration. The obtained results were compared to the results based 
on classic Kelvin-Voight damping model. 
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INTRODUCTION 
 
Simulation of the material damping properties is 
the complicated problem, which still does not 
have an unambiguous solution [1]. It becomes 
especially sophisticated speaking of materials 
with complicated internal structure, such as 
composite and nano-materials. In such cases 
special hypothesis of internal friction are 
required, flexible and controllable enough to 
describe damping properties of the orthotropic 
or anisotropic material, consisting of two or 
more phases. 
At the same time the damping model have to be 
not overly complex, so it can be used in applied 
engineering calculations. 
Since the finite element analysis is the most 
common numerical method used in engineering 
practice, we felt it worthwhile to develop the 
internal damping model, that can be simply built 
in the FEA algorithm.  
In this paper nonlocal in time damping model is 
used as such a flexible model [2]. 
 

 
FINITE ELEMENT EQUILIBRIUM 
EQUATION WITH INTEGRATED 
NONLOCAL IN TIME DAMPING MODEL 

 
In finite element analysis the dynamic equilibrium 
equation is presented in matrix form [3]: 
 

   ( ) + ( ) + ( ) = ( ). (1) 
 
Here  ( ) – vector of nodes displacements (dot 
indicates time derivative),   – stiffness matrix 
of the finite element model,  – damping 
matrix,  – mass matrix, ( ) – load vector. 
For nonlocal in time damping model we 
consider that damping of the structure at the 
current time moment  is assumed to be 
dependent not only on instant value of strain 
rate at this moment ( ), but also on the values 
of strain rates ( ) of the previous time history  
 = 0 ÷ t [4]. The longer is the gap between the 

two time points the lower is the influence that 
one of them has on the other.  

To simulate the nonlocal in time properties of 
material damping («damping with memory») 
equation (1) is represented as: 
 

( ) + ( ) ( ) + 

( ) = ( ). 
(2) 

 
Here ( ) is the kernel function that 
describes the decrease of the strain rate 
influence at the moment  on the damping at the 
current moment , and it satisfies the 
normalization requirement:  
 

( ) = 1.  (3) 

 
In this research the kernel function is 
constructed on the base of Gauss integral: 
 

=  , (4) 
 
that, taking into account the condition (3), can 
be written as: 
 

( ) =
2

( ) , (5)   

 
Here  is a parameter, that characterize the level 
of damping nonlocality in time. It is further 
called “influence distance”. 
Assuming that the material damping with 
memory model depends on values of strain 
rate, the material damping matrix is obtained 
according to the requirement of stationary full 
energy of the vibrating system. The 
dissipation of energy by a material during 
deformation of a finite element under the 
dynamic loads will be represented by a 
dissipative function: 
 

=
1

2
, (6) 

 
where  – strain rate,  – coefficient that 
defines material viscosity. It can be obtained as: 
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= · . (7) 

     
Here  – is Young modulus. Time delay  can 
be determined through the damping coefficient 
(critical fraction)  [5]: 
 

=
2

. (8) 
 
Here  – is the first natural frequency of the 
system. 
Energy dissipation through the material of the 
whole system can be presented as summation of 
energy dissipations through each finite element: 
 

= , (9) 

 
where i – finite element number (i = 1, 2, …, N), 
N – number of elements in the whole FE 
computational model. 
Here damping matrix is developed for the frame 
element in bending and tension. In this case 
energy dissipation through the element material 
is:  
 

=
1

2
+

1

2
, (10) 

 
where A – element cross-section area, z – 
longitudinal coordinate, l – element length,  – 
tension-induced axial strain rate,  - bending-
induced axial strain rate: 
Tension-induced axial strain, is [6]: 
 

= , (11) 
 
where u – axial displacement. 
Bending-induced axial strain, of for the Euler-
Bernoulli beam: 
 

=
1

= . (12) 

Here  – radius of curvature of the beam 
neutral layer, y – distance to the considered 
beam fiber from its neutral layer,  – 
transverse displacement,  – curvature of the 

-line in the cross-section with the 
longitudinal coordinate z. 
Then: 
 

=
1

2

+
1

2
, 

(13) 

 
where  – element cross-section moment of inertia. 
Within the FEA the axial displacements are 
approximated inside the beam element with 
linear shape function [ ] = [1 ], and 
the transverse displacements – with cubic shape 
function 
 

[ ] =

1 3 + 2

( 2 + )

3 2

( + )

 . 

 
=  – is the reduced local longitudinal 

coordinate.  
Taking this into account we can transform the 
expression (13) to: 
 

1

2
( [ ]) [ ]

+
1

2
( [ ]) [ ] . 

(14) 

 

Here =   and =  are axial and 

bending nodal displacements strain rate vectors, 
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where  and  are transverse strain rates, and 
 and  – rotation strain rates. 

In (14)  =   and  =  . 
Participation (14) in the stationarity 
requirements of the full energy change:  
 

  = 0                               (6a) 
 
gives us a  member in the equilibrium 
equation in motion.  
System damping matrix  is obtained by 
topological summation of element damping 
matrices : 
 

=

= ( [ ]) [ ]

+ ( [ ]) [ ] . 

 
In this way  matrix for the plane frame 
elements is: 

(15) 
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NUMERICAL EXAMPLE 

As a simple example we consider GFRP beam with 
the fixed ends made of orthotropic thermoset vinyl 

ester class 1 GFRP under instantly applied 
distributed load = 10 / . The beam is 12 m 
long and has a rectangular cross-section 20x30 cm. 
The characteristics of the material obtained 
experimentally in [7,8,9]. 
To solve the dynamic equilibrium equation, the 
method of the central differences is used [ ]. 
In this case, the first and second order time 
derivatives of the displacement vector ( ) 
participating in (1) and (2) are approximated by 
central finite differences. Then the equation (1), 
obviously, takes the following form: 
 

1
( 2 + ) + 

+
1

2
( ) + 

+ ( ) = . 

(16) 

 
Here i = 1, 2, 3, …   – number of the considered 
moment in time – time increment. 
In order to replace the classic damping model in 
(16) with the damping model with memory, at 
first we represent the central difference in the 
second term on the left-hand side of equation (16), 
which is responsible for damping, as average of 
the «forward» and «backward» differences:  
 

1
( 2 + ) + 

+
1

2
( ) +                 

+
1

2
( ) + 

+ ( ) = . 

(17) 

 
The term with the «backward» difference is 
replaced by nonlocal numerical operator: 
 

1

2
( )  

2
( , ) , 

(18) 

 
where i – number of the time step which is 
corresponding to the considered time moment t,  
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t = t · j,    j = 1, 2, …, i – number 
of the time step when calculating the kernel  

( , ).  
( , ) is the discrete analogue of ( ) 

kernel, which for the error function (5) is 
calculated as follows: 
 

( , ) =
2

. (19) 

 
After the described transformations equation 
(17) can be written as: 
 

1
( 2 + ) +

2
+ 

+ 
1

2
( ) + 

+ ( ) = , 

(20) 

 
Where 
 

=
2

[ ( / )]

. 

(21) 

 
The influence distance  determine the 
nonlocality level in element material. The 
higher is , the closer is the damping model to 
the classic local one (fig. 1). 
 

 
Figure 1. Error kernel functions for different 

influence distance parameters  
 
Transform (20) to the computational scheme for 
the step-by-step calculating of  using the 

vectors  and , which are calculated on the 
previous increments  and 1:  
 

=  

, (22) 

 
where: 
 

=
1

+
1

2
,      

=
2 1

2
+ ,

=
1

, 

                                =
1

2
.   

(23) 

 
For the first two steps of the simulated vibration 
process  i = 1,2  we assume = 0  and =

= 0  as the initial conditions. 
The main problem of all nonlocal models [10, 
11, 12] is obtaining the value of the influence 
distance, which characterizes the nonlocal 
damping properties of the material. The solution 
of this problem with regard to damping model 
nonlocal in space was proposed in [13]. In that 
paper   was determined using the least squares 
method based on the numerical simulation data. 
Likewise, here the calibration of the nonlocal in 
time damping model was implemented based on 
the results of the numerical simulation of three-
dimensional finite element beam vibration in 
SIMULIA Abaqus CAE.  The beam 
computational model was constructed in 
SIMULIA Abaqus taking into account the 
orthotropic properties of the material. The 
determined optimum value of   for the beam, 
that was considered in privious section,  is =

0.1 1/ . The displacements of middle section of 
the beam in time are shown in fig. 2. The solid 
line shows the displacements of the beam which 
is obtained using a calibrated nonlocal model, 
and the dashed curve - using a 3D model built in 
SIMULIA Abaqus. 
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Figure 2. Deflection of the beam obtained with 
calibrated nonlocal in time damping model in 
comparison to 3D numerical simulation data 

 
It is obvious, that calibrated nonlocal model 
allows to obtain much more accurate results, 
than the Kelvin-Voight classic model (fig. 3).  

 

 
Figure 3. Deflection of the beam obtained with 

classic local in time damping model in 
comparison to 3D numerical simulation data 

 
 
CONCLUSION 

 
Nonlocal in time damping model presented in 
this paper makes it possible to quite effectively 
use one-dimensional models of beam elements 
in the dynamic analysis of structures which are 
made of modern composite materials.  
The damping matrix, obtained from the 
stationarity requirements of the energy change, 
allows to consider internal friction which is the 
dominant type of damping for the polymer 
composites. 
The damping with memory model can be 
seamlessly integrated to the FEA algorithm, 
which makes it applicable to the real-life 
engineering problems.  
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