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Abstract: In this paper the problem of numerical simulation of composite bending elements dynamic considering
internal (material) damping. For this purpose the nonlocal in time damping model, called damping with memory, is
proposed as an alternative to the classic local Kelvin-Voigt model. Damping with memory makes damping forces not
only dependent on the instant value of the strain rate, but also on the previous history of the vibration process. Since
finite element analysis is the most common method of structural analysis, the nonlocal damping model is integrated into
FEA algorithm. The FEA dynamic equilibrium equation is solved using the explicit scheme. The damping matrix was
developed using the stationary full energy requirement. One-dimensional nonlocal in time model was implemented in
MATLAB software package. The results of three-dimensional numerical simulation of the composite beam vibration
obtained in SIMULIA Abaqus were used for model calibration. The obtained results were compared to the results based
on classic Kelvin-Voight damping model.

Keywords: material damping, nonlocal damping, numerical simulation, finite element analysis.

HEJIOKAJIBHASI BO BPEMEHU MOJIEJIb JIEMII®UPOBAHUS
MATEPHAJIA IPU JUHAMUYECKOM PACUETE
KOMITO3UTHBIX QJIEMEHTOB CTPOUTEJIBHBIX
KOHCTPYKIUA
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AnHoTamms: B HacTosel paboTe paccMaTpuBaeTcs 3a/1a4a YHCICHHOTO IMHAMHYECKOro pacuéra n3rudaeMbIx HJIEMEHTOB
KOHCTPYKIMIT M3 KOMIIO3UTHBIX M HAaHO- MaTepHAIOB C MOJICIMPOBAHHEM HX JEeMI(HUPYIONIMX CBOICTB, BBI3BIBAEMBIX
BHYTPCHHUM TpeHHeM B Matepuanie. C 3TOH IIeNbI0 HeJOKajdbHAas BO BPEMECHH MOJCTh IEMI(UPOBAaHUS MaTephana,
Ha3bIBaeMas JeMI(pUpOBaHUEM C MAMATHIO, TIpeIaraeTcs Kak albTepHATHBA KIIACCHYIECKOH JIOKATFHON Monenn KenpBiHa-
@oiirra. [Ipr TakoM MoAXOAE CHIBI IEMI(QUPOBAHUS CUNATAIOTCS 3aBUCSAIIMMH HE TOJBKO OT MTHOBCHHOTO 3HAYCHUS
ckopocteld nmedopmarmii B paccMaTpHBAacMBIi MOMEHT BpPEMEHH, HO W OT 3HA4eHHWH CKopocTed nedopmarmii Ha
MPeNBIAYIHX CTaAnsIX KonebaTensHoro mporecca. IlockombKy mMeTon KoHedHBIX sneMeHToB (MKD) sBisercs Hambomee
MIPEANIOYTHTETIFHBIM YHCICHHBIM METOIOM aHajh3a MEXaHWYECKHX CHCTEM, HEJOKaJbHAas MO JeMIT(HPOBAHU
MHTETPHPOBAHA B JITOPUTM 3TOTO METOMa. YPaBHEHHWE PABHOBECHS KOHCTPYKIMH B ABIKeHHH MKD perraercs mo siBHOMH
cxeme. Marpuiia aemMupoBaHust MOJyueHa U3 YCIOBHUS CTAIIMOHAPHOCTH MOJHOM SHEPruu Neh)OpMHUPOBAHUS JABMIKYILCHCS
MeXaHHYeCKOH cuctemMbl. OTHOMEpHas HeJOKajabHasi BO BpEMEHH MOZENb OblIa pean30oBaHa B MPOrPaMMHOM KOMILIEKCE
MATLAB. [lns kanvOpOBKH MOICTH OBUTH HKCIIOJB30BAHBI PE3YJIbTAThl TPEXMEPHOTO YHCJICHHOTO MOJICIHPOBAHMS
KoJsicOaHuii KomIo3uTHOM Oanku, moiydcHHble B SIMULIA Abaqus. IlomydeHHbIC pe3ysibTaThl OBUIH COIOCTAaBJICHBI C
pe3yJIbTaTaMH, OCHOBAHHBIMH Ha Kllaccuueckoi Moienu iemrduposanust Kenpuna-doiirra.

KaroueBble ciioBa: BHYTPCHHEC TPCHUEC, HCJIOKAJIbHOC Z[CMH(I)I/IPOBaHI/Ie, YHUCJICHHOC MOJACIINPOBAHUC,
METOA KOHCUYHBIX 3JICMCHTOB.

14 International Journal for Computational Civil and Structural Engineering



Nonlocal in Time Model of Material Damping in Composite Structural Elements Dynamic Analysis

INTRODUCTION

Simulation of the material damping properties is
the complicated problem, which still does not
have an unambiguous solution [1]. It becomes
especially sophisticated speaking of materials
with complicated internal structure, such as
composite and nano-materials. In such cases
special hypothesis of internal friction are
required, flexible and controllable enough to
describe damping properties of the orthotropic
or anisotropic material, consisting of two or
more phases.

At the same time the damping model have to be
not overly complex, so it can be used in applied
engineering calculations.

Since the finite element analysis is the most
common numerical method used in engineering
practice, we felt it worthwhile to develop the
internal damping model, that can be simply built
in the FEA algorithm.

In this paper nonlocal in time damping model is
used as such a flexible model [2].

FINITE ELEMENT EQUILIBRIUM
EQUATION WITH INTEGRATED
NONLOCAL IN TIME DAMPING MODEL

In finite element analysis the dynamic equilibrium
equation is presented in matrix form [3]:

M-V®)+D- V) +K-V(@)=F@). (1)

Here V(t) — vector of nodes displacements (dot
indicates time derivative), K - stiffness matrix
of the finite element model, D — damping
matrix, M — mass matrix, F(t) — load vector.
For nonlocal in time damping model we
consider that damping of the structure at the
current time moment t is assumed to be
dependent not only on instant value of strain
rate at this moment &(t), but also on the values
of strain rates &(t) of the previous time history
7= 0 + t [4]. The longer is the gap between the
two time points the lower is the influence that
one of them has on the other.
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To simulate the nonlocal in time properties of
material damping («damping with memory»)
equation (1) is represented as:

t

M-I7(t)+D-f G(t—1) - V(0)dr + )
0

K-V(t) = F(t).

Here G(t—t) is the kernel function that
describes the decrease of the strain rate
influence at the moment 7 on the damping at the
current moment ¢, and it satisfies the
normalization requirement:

t
f G(t—1)dt =1. 3)
0

In this research the kernel function is
constructed on the base of Gauss integral:

f_(:o e dx =, (4)

that, taking into account the condition (3), can
be written as:

2
G(t—1) = \/_% e~ M (-1 (5)

Here u is a parameter, that characterize the level
of damping nonlocality in time. It is further
called “influence distance”.

Assuming that the material damping with
memory model depends on values of strain
rate, the material damping matrix is obtained
according to the requirement of stationary full
energy of the wvibrating system. The
dissipation of energy by a material during
deformation of a finite element under the
dynamic loads will be represented by a
dissipative function:

1
Pp =527, (6)

where & — strain rate, y — coefficient that
defines material viscosity. It can be obtained as:
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X=E-t. (7)

Here E — is Young modulus. Time delay t, can
be determined through the damping coefficient
(critical fraction) & [5]:

b = Z (8)

Here w - is the first natural frequency of the
system.

Energy dissipation through the material of the
whole system can be presented as summation of
energy dissipations through each finite element:

N
®p = Z Dpy, (9)
i—1

where i — finite element number (i =1, 2, ..., N),
N — number of elements in the whole FE
computational model.

Here damping matrix is developed for the frame
element in bending and tension. In this case
energy dissipation through the element material
is:

l\JIb—\

1
dp; = 2j)(saAdz+ ff)(égdAdz, (10)
A

where A — element cross-section area, z —
longitudinal coordinate, | — element length, &, —

tension-induced axial strain rate, &, - bending-
induced axial strain rate:
Tension-induced axial strain, is [6]:
du
£, =—, 11
¢ dz (1)

where u — axial displacement.
Bending-induced axial strain, of fer the Euler-
Bernoulli beam:

1 d?v

&p py Ky~ =3 (12)
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Here p — radius of curvature of the beam
neutral layer, y — distance to the considered
beam fiber from its neutral layer,v -
transverse displacement, k — curvature of the

v-line in the cross-section with the
longitudinal coordinate z.
Then:
oy =14 J(dﬂ)zd
bt ™59 X dz d
: (13)

ey j dzvzd
ZX dz? &
l

where I — element cross-section moment of inertia.
Within the FEA the axial displacements are
approximated inside the beam element with
linear shape function [N,]=[1—-¢& ¢£], and
the transverse displacements — with cubic shape
function

1-38%+2¢°
1§ —28*+¢%)
T
[Nv] _[ 352_253 J
(=& +¢&%)
&= %— is the reduced local longitudinal
coordinate.

Taking this into account we can transform the
expression (13) to:

Op; =
1

~ %AXJ(Au[Nu])T 'Au[Nu] U wldg

0 (14)
1 1
+ EIXJ(AU[NVDT ’ Av[Nv] "V ﬁildf-
0
Vo
Here 1; = <u°> and v; = [ ¥° | are axial and
U Uy
?

bending nodal displacements strain rate vectors,
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where v, and v; are transverse strain rates, and
¢, and ¢, — rotation strain rates.

In(14) 4, = -~ and 4, = =
n ( ) u - ldf an v ZZ.dEZ '
Participation  (14) in  the stationarity

requirements of the full energy change:

D
Y =0 (63.)
gives us a D -V member in the equilibrium
equation in motion.

System damping matrix D is obtained by
topological summation of element damping
matrices D;:

Di:

= Ay j [N D)7 - Ay [N, ]1dé

1
T
iy [ INDT- A N )
0
In this way D; matrix for the plane frame
elements is:
? 0 0 -% 0 0
0 2. 6J 0 123 6
1® 12 18 12
Di=y
,? 0 0 ? 0 0
12-J 6-J 12-J 6-J
0 T T 0 EEEE

NUMERICAL EXAMPLE

As a simple example we consider GFRP beam with
the fixed ends made of orthotropic thermoset vinyl
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ester class 1 GFRP wunder instantly applied
distributed load g = 10 kN /m. The beam is 12 m
long and has a rectangular cross-section 20x30 cm.
The characteristics of the material obtained
experimentally in [7,8,9].

To solve the dynamic equilibrium equation, the
method of the central differences is used [bare].
In this case, the first and second order time
derivatives of the displacement vector V(t)
participating in (1) and (2) are approximated by
central finite differences. Then the equation (1),
obviously, takes the following form:

1 _ _
7 M- (Vi =2V + Vi) +

At?2 .
_ _ 16
toa D '_(Vi+1 __Vi—l) + (19
+K-V(t) =F,.
Herei=1,2,3,... —number of the considered

moment in time ¢, A¢ — time increment.

In order to replace the classic damping model in
(16) with the damping model with memory, at
first we represent the central difference in the
second term on the left-hand side of equation (16),
which is responsible for damping, as average of
the «forward» and «backward» differences:

1 _ _
M- Vipy =2V + Vi) +

Ati
+@ D (Vi =Vie)) + (17)
to D Vigr — V) +

+K - V(t) = F,.

The term with the «backward» difference is
replaced by nonlocal numerical operator:

1 _
STA "D (Vi =Vieg) =
D~ - . (18)
=5 2,66N) (1= 7).
j=1
where i — number of the time step which is

corresponding to the considered time moment t,

17



t=Atri, 7 =At-j, j=1,2,...,i—-number
of the time step when calculating the kernel
G@, ).

G(i,j) is the discrete analogue of G(t— 1)
kernel, which for the error function (5) is
calculated as follows:

_ 2
GG, j) :T%'e

After the described transformations equation
(17) can be written as:

(19)

(i)

1 _ _ D _
az M Vi =2V Vi) + 52+
1 _ 20
t oA D (Vi = V) + (20)
+K-V(t) =F,
Where
7 = ZZ_” —u?[t=(z-4t/2)])* .
Lo (21)
(V}' - Vj—l)'
The influence distance u determine the
nonlocality level in element material. The

higher is u, the closer is the damping model to
the classic local one (fig. 1).

0.8 : 7
—=0.2 1/s "
0.6 - =u=21/s U
T: [
- 1
:;:OA P
o i
0.2 ]
’
’
O y 1 -
-10 -8 -6 -4 -2 0

|t-7, s
Figure 1. Error kernel functions for different
influence distance parameters u

Transform (20) to the computational scheme for
the step-by-step calculating of V;,, using the
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vectors V; and V;_,, which are calculated on the
previous increments i and i — 1:

Vier =Q - F; = Q1 V; -

Qz 'Vi—l - Q3 'Z_: (22)
where:
1 1 -1
Q:(FMJFZ AtD> ’
= 2M 1 D+K
Q1 =0 <_E oAl T )
. (23)
QZ:A_tZ "M,
Q3—2Q :

For the first two steps of the simulated vibration
process i = 1,2 we assume V; =0 and V; =
% = 0 as the initial conditions.

The main problem of all nonlocal models [10,
11, 12] is obtaining the value of the influence
distance, which characterizes the nonlocal
damping properties of the material. The solution
of this problem with regard to damping model
nonlocal in space was proposed in [13]. In that
paper u was determined using the least squares
method based on the numerical simulation data.
Likewise, here the calibration of the nonlocal in
time damping model was implemented based on
the results of the numerical simulation of three-
dimensional finite element beam vibration in
SIMULIA Abaqus CAE. The beam
computational model was constructed in
SIMULIA Abaqus taking into account the
orthotropic properties of the material. The
determined optimum value of u for the beam,
that was considered in privious section, is u =
0.1 1/s. The displacements of middle section of
the beam in time are shown in fig. 2. The solid
line shows the displacements of the beam which
is obtained using a calibrated nonlocal model,
and the dashed curve - using a 3D model built in
SIMULIA Abaqus.
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—Nonlocal in time damping model (=0.1)
= =3D numerical simulation data

Deflection, m

Time, s
Figure 2. Deflection of the beam obtained with
calibrated nonlocal in time damping model in
comparison to 3D numerical simulation data

It is obvious, that calibrated nonlocal model
allows to obtain much more accurate results,
than the Kelvin-Voight classic model (fig. 3).

0

—Kelvin-Voight damping model
— -3D numerical simulation data

g
o
@

Deflection, m
S

-0.15

Time, s
Figure 3. Deflection of the beam obtained with
classic local in time damping model in
comparison to 3D numerical simulation data

CONCLUSION

Nonlocal in time damping model presented in
this paper makes it possible to quite effectively
use one-dimensional models of beam elements
in the dynamic analysis of structures which are
made of modern composite materials.

The damping matrix, obtained from the
stationarity requirements of the energy change,
allows to consider internal friction which is the
dominant type of damping for the polymer
composites.

The damping with memory model can be
seamlessly integrated to the FEA algorithm,
which makes it applicable to the real-life
engineering problems.
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