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Abstract. The paper has proposed a mathematical model for parametric optimization problem of the steel lattice portal frame.
The design variable vector includes geometrical parameters of the structure (node coordinates), as well as cross-sectional
dimensions of the structural members. The system of constraints covers load-carrying capacities constraints formulated
for all design sections of structural members of the steel structure subjected to all ultimate load case combinations. The
displacements constraints formulated for the specified nodes of the steel structure subjected to all serviceability load case
combinations have been also included into the system of constraints. Additional requirements in the form of constraints on
lower and upper values of the design variables, constraints on permissible minimal thicknesses, constraints on permissible
maximum diameter-to-thickness ratio for the structural members with circle hollow sections, as well as the conditions for
designing gusset-less welded joints between structural members with circle hollow sections have been also considered in
the scope of the mathematical model. The method of the objective function gradient projection onto the active constraints
surface with simultaneous correction of the constraints violations has been used to solve the formulated parametric
optimization problem. New optimal layouts of the steel lattice portal frame by the criterion of the minimum weight, as
well as minimum costs on manufacturing and erection have been presented.

Keywords: optimization, steel lattice frame, nonlinear programming, strength, buckling, stiffness,
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AHHOTanus. B cratbe npeayioxkeHa MareMaruyeckast MOJeb JUlsl 3a/1a4l NapaMeTpUUECKO ONTUMU3ALUU CTAaJbHON
perIeTyaroil monepevHoi paMbl KapKaca 31aHus, HECYIIHE SIEMEHTHl KOTOPOl BRIITOIHEHBI U3 KPYTIIBIX TpyO. BexTop
MIEPEMEHHBIX MPOEKTUPOBAHMS COAEPIKUT FEOMETPHUECKUE MAapaMeTPbl KOHCTPYKIMH (KOOPIMHATHI Y3JI0B), a TaKXKe
pa3Mepsl MONEPEUHBIX CEUCHUN HECYIINX IEMEHTOB KOHCTPYKIUH. CrcTeMa OrpaHUYeHHH BKIIOYAET OrpaHUYCHUS
Hecymiel crmocoOHOCTH, C(HOPMYITUPOBAHHBIE TSI BCEX PACUETHBIX CEUEHHWH 3IEMEHTOB KOHCTPYKINH, MOJJIEKAIICH
JIEHCTBHIO BCeX KOMOMHAIINI HATPYy30K IIEPBOM TPYTIIHI MPEeTbHBIX COCTOSIHAN. B crcTeMy orpaHmdeH Takke BKITIO-
YEeHbI OTPAHUYEHUSI IEPEMEIICHUH Y3710B, c(hOopMyInpOBaHHbIE AJIS OTIPEIEIEHHBIX Y3JI0B KOHCTPYKIINH, MOJIEKAIIeH
JMEHCTBUIO BCEX KOMOMHAIMIM HAarpy30K BTOPOH TPYIIIBI MPEACTBHBIX COCTOSHAN. J[OMOTHUTENBHBIE OTPAaHIMYCHUS B
(opme orpaHnYEHUI Ha BEPXHIOIO U HIDKHIOIO I'PaHMIBI BAPbUPOBAHUS [IEPEMEHHBIX IPOSKTHUPOBAHMS, OTPAHUIECHUS
Ha IOy CTUMYI0 MUHUMAJIbHYIO TONIINHY CEYEHHsI, OTPAHNYEHH Ha JOIyCTUMOE MaKCHMAaJIbHOE OTHOIIEHHUE JHaMeTpa
K TOJIIMHE TPYOBI, a TAKIKE YCIOBHUS KOHCTPYHPOBAaHUS OeC(PACOHOUHBIX Y3TI0B PEIIETUATON KOHCTPYKIHH C JJIEMEH-
TaMU UX KPYIIBIX TPYO Takke ObLIM PACCMOTPEHBI B COCTABE CHCTEMbI OTPaHMUEHHUH MaTeMaTndeckoil mopenu. s
pemeHust copMyIHMPOBAHHON 3a/1a4u MapaMeTPUIEeCKOW ONTHMM3ALNNHN NCIIONb30BAJICS METO MPOCKIMH TPaJUCHTa
(YHKIUH 1IETTH Ha TIOBEPXHOCTh AKTHBHBIX OTPAHUYEHUH NMPH OAHOBPEMEHHOM JIMKBUIALNY HEBSI30K B HAPYIICHHBIX
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OTpaHHYEHUSX. B pe3ynprare moxydeHsl HOBbIE ONTHMAIbHBIC IPOSKTHBIEC PEIICHNS CTAIbHON PEHIeTYaTo! moneped-
HOW paMbl 110 KPUTEPHUIO MUHIMYMa MacChl KOHCTPYKIINH, a TAK)KE IO KPUTEPHIO MUHIMYMa CMETHOH CTOMMOCTH Ha

€€ U3TOTOBJICHUEC U BO3BCICHHEC.

KoroueBble cjI0Ba: ONTHMU3AINs, CTAJIbHAS PEIIeTYaTasi paMa, HeJIMHEHHOE MPOrpaMMUPOBAHHUE, TIPOYHOCTD,
YCTOWYNBOCTB, KECTKOCTh, IPAJANCHTHBIN METO, METO/I KOHEUHBIX JIEMEHTOB, YNCIICHHBIN aJTOPUTM.

INTRODUCTION

Over the past 50 years, numerical optimization
and the finite element method have individually
made significant advances and have together
been developed to make possible the emergence
of structural optimization as a potential design
tool. In recent years, great efforts have been also
devoted to integrate optimization procedures
into the CAD facilities. With these new
developments, lots of computer packages are
now able to solve relatively complicated
industrial design problems using different
structural optimization techniques.

Applied optimum design problems for bar
structures in some cases are formulated as
parametric optimization problems, namely as
searching problems for unknown structural
parameters, which provide an extreme value of
the specified purpose function in the feasible
region defined by the specified constraints [1].
In this case, structural optimization is performed
by variation of the structural parameters when
the structural topology, cross-section types and
node type connections of the bars, the support
conditions of the bar system, as well as loading
patterns and load design values are prescribed
and constants.

Kibkalo et al. in the paper [2] formulated a
parametric optimization problem for thin-walled
bar structures and considered methods to solve
them. The searching for the optimum solution
has been performed by varying the structural
parameters providing the required load-carrying
capacity of structural members and the
minimum value of manufacturing costs.
Alekseytsev has described the process of
developing a parametrical-optimization
algorithm for steel trusses in the paper [3].
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Parametric optimization has been performed
taking into account strength, stability and
stiffness constraints formulated for all truss
members.

Serpik et al. in the paper [4] developed an
algorithm for parametric optimization of steel
flat rod systems. The optimization problem has
been formulated as a structural weight
minimization problem taking into account
strength and displacement constraints, as well as
overall stability constraints. The cross-sectional
dimensions of the truss members and the
coordinates of the truss panel joints have been
considered as design variables. The structural
analysis of internal forces and displacements for
considered structures has been performed using
the finite element method. An iterative
procedure for searching for optimum solution
has been proposed in [5].

Sergeyev et al. in the paper [6] formulated a
parametric ~ optimization  problem  with
constraints on faultless operation probability of
bar structures with random defects. The weight
of the bar structures has been considered as the
objective function. Initial global imperfections
have been considered as small independent
random variables distributed according to
normal distribution law, as well as buckling
load value has been also considered as a random
variable.

The mathematical model of the parametric
optimization problem of structures includes a
set of design variables, an objective function,
as well as constraints, which reflect generally
non-linear dependences between them [7]. If
the purpose function and constraints of the
mathematical model are continuously
differentiable functions, as well as the search
space is smooth, then the parametric

133



optimization problems are successfully
solved using gradient projection non-linear
methods [8]. The gradient projection methods
operate with the first derivatives or gradients
only both of the objective function and
constraints. The methods are based on the
iterative construction of such a sequence of
the approximations of design variables that
provides convergence to the optimum
solution (optimum values of the structural
parameters) [9].

Additionally, a sensitivity analysis is a useful
optional feature that could be used in scope
of the numerical algorithms developed based
on the gradients methods [10]. Thus, in the
paper [11] Sergeyev et al. formulated a
parametric optimization problem of linearly
elastic space frame structures taking into
account the stress and multiple natural
frequency constraints. The cross-sectional
parameters of structural members as well as
node positions of the considered bar
structures has been considered as design
variables. The sensitivity analysis of multiple
frequencies has been performed using
analytic differentiation with respect to the
design variables. The optimal design of the
structure has been obtained by solving a
sequence  of  quadratic  programming
problems.

In this paper, steel lattice portal frame is
considered as research object, which
investigated for the searching for optimum
parameters of the structural form. The
following research tasks are formulated: to
develop a mathematical model for parametric
optimization of the considered steel structures
taking into account load-carrying capacities
and stiffness constraints; to propose a
numerical algorithm for parametric
optimization of the steel structures based on
the gradient projection method; to confirm the
validity of the optimum solutions obtained
using the proposed methodology based on
numerical examples.
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1. PROBLEM FORMULATION FOR
PARAMETRIC OPTIMIZATION OF
STEEL STRUCTURES

Let us consider a parametric optimization
problem of a structure consisting of bar
members. The problem statement can be
performed taking into account the following
assumptions widely used in structural mechanic
problems: the material of the structure is ideal
elastic; the bar structure is deformable linearly;
external loadings applied to the structure are
quasi-static.

Let us also formulate the following pre-
conditions for calculation: cross-section types
and dimensions of structural members are
constant along member lengths; external
loadings are applied to the structural members
without eccentricities relating to the center of
mass and shear center of its cross-sections; an
additional restraining by stiffeners are provided
in the design sections where point loads
(reactions) applied with the exception of cross-
section warping and local buckling of the cross-
section elements; load-carrying capacity of the
structural joints, splices and connections are
provided by additional structural parameters do
not covered by the considered parametric
optimization problem.

A parametric optimization problem of the
structure can be formulated as presented below:
to find optimum values for geometrical
parameters of the structure, member’s cross-
section dimensions and initial pre-stressing
forces introduced into the specified redundant
members of the bar system, which provide the
extreme value of the determined optimality
criterion and satisfy all load-carrying capacities
and stiffness requirements. We assume, that the
structural topology, cross-section types and
node type connections of the bars, the support
conditions of the bar system, as well as loading
and pre-stressing patterns are prescribed and
constants.

The formulated parametric optimization
problem can be considered integrally using the
mathematical model in the form of the non-
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linear programming task including an objective
function, a set of independent design variables
and constraints, which reflect generally non-
linear dependences between them. The validity
of the mathematical model can be estimated by
the compliance of its structure with the design
code requirements.

The parametric optimization problem of steel
structures can be stated in the following
mathematical terms: to find unknown structural

parameters X ={X,}", 1=,N, (N, is the

total number of the design variables), providing
the least value of the determined objective
function:

/(X))

in a feasible region (search space) 3 defined by
the following system of constraints:

(1.1)

W(X):{WK(X)=O|K:1’NEC};

o(X)=1{4,(X)<01n=N,c +1.N,}:

(1.2)
(1.3)

<

where X is the vector of the design variables
(unknown structural parameters); f, w,, @,
are the continuous functions of the vector

argument; X is the optimum solution or
optimum point (the vector of optimum values of

the structural parameters); f is the optimum

value of the optimum criterion (objective
function); N,. 1s the number of constraints-

equalities (f( ), which define hyperplanes of
the feasible solutions; N,. is the number of
constraints-inequalities ¢, ()? ) , which define a

feasible region in the design space 3.

The vector of the design variables comprises of

unknown geometrical parameters of the

structure )?G:{XG,Z}T, 2=LNyg, and

unknown cross-sectional dimensions of the
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— T
structural members Xeg = {X S } )

a=LNy

Xz{XG’XCS}T={{XG,;(}’{XCS,11}}T; (1.4)

where N, is the total number of unknown
node coordinates of the steel structure; N, ¢ is

the total number of unknown cross-sectional
dimensions of the structural members,
NX,G +NX,CS = NX‘

The specific technical-and-economic index
(material weight, material cost, construction
cost etc.) or another determined indicator can be
considered as the objective function Eq. (1.1)
taking into account the ability to formulate its
analytical expression as a function of design

variables X .

Load-carrying capacities constraints (strength
and stability inequalities) formulated based on
the design code requirements [12] for all design
sections of the structural members subjected to
all design load combinations at the ultimate
limit state as well as displacements constraints
(stiffness inequalities) for the specified nodes of
the bar system subjected to all design load
combinations at the serviceability limit state

should be included into the system of
constraints Egs. (1.2) — (1.3). Additional
requirements, which  describe structural,

technological and serviceability particularities
of the considered structure can be also included
into the system Egs. (1.2) — (1.3).

The design internal forces in the structural
members used in the strength and stability
inequalities of the system Egs. (1.2) — (1.3) are
considered as state variables depending on

design variables X and can be calculated from
the following linear equations system of the

finite element method [13], k=1, N, :

K(XG’XCS)XEULM :ﬁULS,k (XG); (1.5)
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where K ()? X CS) is the stiffness matrix of the

finite element model of the bar system, which
should be formed depending on the unknown
(variable) cross-sectional dimensions of the

structural members X as well as unknown

cs»

(variable) node coordinates of the structure X G
Durs. ()? G) is the column-vector of the node’s

loads for kth design load combination of the
ultimate limit state, which should be formed
depending on unknown (variable) node

coordinates of the structure X, ; Zysi 18 the

result column-vector of the node displacements
for kth design load combination of the ultimate

.. = ULS v v ULS AR
limit state, Zs, = Zggy, (XG, XCS) =Zgn s (X) ;
N[ is the number of the design ultimate load

combinations. For each ith design section of
jth structural member subjected to kth
ultimate design load combination the design
internal forces (axial force, bending moments
and shear forces) can be calculated depending
on node displacement column-vector Z , .

The node displacement of the bar system used
in stiffness inequalities of the system
Egs. (1.2) = (1.3) are also considered as state

variables depending on design variables X and
can be calculated from the following linear
equations system of the finite element method

[13], k=1, N2 -

K()?G’XCS)XZSLS,k = Psisi ()?(;)5 (1.6)

where pg, (X G) is the column-vector of the

node’s loads for kth design load combination
of the serviceability limit state, which should
be formed depending on unknown (variable)

node coordinates of the structure X.; Z,¢, 18

the result column-vector of the node
displacements for & th design load combination
of the serviceability limit state,
136
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Zosu = ZiLEfvl,k (XG’ XCS) = Z%ﬂf\/{,k (X) ’ NLSéS is
the number of the design serviceability load
combinations. For each m th node of the finite
element model subjected to & th serviceability
design load combination the design vertical
and horizontal displacements can be calculated
depending on node displacement column-
vector Zg g, .

2. IMPROVED GRADIENT PROJECTION
METHOD TO SOLVE THE
FORMULATED PARAMETRIC
OPTIMIZATION PROBLEM

The parametric optimization problem stated as
non-linear programming task by Eqgs.(1.1) —
(1.3) can be solved using a gradient projection
method. The method of objective function
gradient projection onto the active constraints
surface with simultaneous correction of the
constraints ~ violations  ensures  effective
searching for solution of the non-linear
programming tasks occurred when optimum
designing of the building structures [14, 15].

The gradient projection method operates with
the first derivatives or gradients only of both the
objective function Eq.(1.1) and constraints
Egs. (1.2) — (1.3). The method is based on the
iterative construction of such sequence Eq. (2.1)
of the approximations of the design variables

)?:{XZ}T, t=1,N,, that the

convergence to the optimum solution (optimum
values of the structural parameters):

provides

X, =X +AX,, (2.1)

)?:{XI}T, t=1,N, is the current

where X,

approximation to the optimum solution X~ that
satisfies both constraints-equalities Eq. (1.2) and
constraints-inequalities Eq. (1.3) with the
extreme value of the objective function

Eq. (1.1); AX,={AX,}, :=1,N,, is the

increment vector for the current values of the
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X : ¢ is the iteration’s index.

design variables X,

The start point of the iterative searching process
Xt:O
of the admissible design of the structure.

The active constraints only of constraints system
Egs. (1.2) — (1.3) should be considered at each

iteration. A set of active constraints numbers A

can be assigned as engineering estimation

calculated for the current approximation X ., to

the optimum solution (current design of the
structure) is determined as:

A=xuUn,
<={s] b (%)

n={NEc+77 | ¢U(5(,)2—8},

= “9}° (2.2)

where ¢ is a small positive number introduced
here in order to diminish the oscillations on
movement alongside of the active constraints
surface.

The increment vector AX, for the current values

of the design variables X . can be determined by

the following equation:

AX, = AX! + AX', (2.3)
where AX'! is the vector calculated subject to
the condition of elimination the constraint’s
violations; AX is the vector determined taking
into consideration the improvement of the
objective function value. Vectors AX' and

AX ' are directed parallel and perpendicularly

accordingly to the subspace with the vectors
basis of the linear-independent constraint’s
gradients, such that:

— T —
(AX1) AX' =0. (2.4)
The values of the constraint’s violations for the

current approximation X,

of the design

\Volume 17, Issue 3, 2021

variables are accumulated into the following
vector:

VZ(I//K(X)VK‘EK; ¢U(X)V77en).

Let us introduce a set L, Lc A, of the
constraint’s numbers, such that the gradients of

the constraints at the current approximation X ,

to the optimum solution are linear-independent.

Component AX' is calculated from the
equation presented below:
AXL=[Vo]a., (2.5)

where [Vg| is the matrix that consists of

0
% and ﬂ, here =1,N, ,
oX

l l

xkelL, nel; pa, 1is the column-vector that

components

defines the design variables increment subject to
the condition of elimination the constraint’s
violations. Vector i, can be calculated as

presented below.
In order to correct constraint’s violations V,

vector AX | to a first approximation should also

satisfy Taylor’s theorem for the continuously
differentiable multivariable function in the

vicinity of point X , for each constraint from set
L, namely:

~V =[Vp] AX". (2.6)

With substitution of Eq. (2.5) into Eq. (2.6) we
obtain the system of equations to determine
column-vector fi :

[Vo] [Vela, =-V. (2.7)

Component AX' is determined using the

following equation:
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A)?ﬂtzgxf)w:f(Vf—[Vgo][{r), (2~8)
where Vf is the vector of the objective function
the
approximation of the design variables) X .5 Py

gradient in current point (current

is the projection of the objective function
gradient vector onto the active constraints
X,
column-vector that defines the design variable’s
increment subject to the improvement of the

objective function value. Column-vector z, can

surface in the current point 4, 1is the

be calculated approximately using the least-
square method by the following equation:

[Voli ~Vf, 2.9)
or from the equation presented below:
Vol [Voli=[Ve] Vi  (2.10)

where & is the step parameter, which can be
calculated subject to the desired increment Af of

the purpose function on movement along the
direction of the purpose function anti-gradient. The
increment Af can be assign as 5...25% from the

current value of the objective function f ()? ,) :

AN
-\T =

A =E(VF) VF, &=

(2.11)

where in case of minimization Eq. (1.1) Af and
& accordingly have negative values. The
parameter & can be also calculated using the
dependency presented below:

(2.12)

that follows from the condition of attainment the
desired increment of the objective function Af
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on the movement along the direction of the
objective function anti-gradient projection onto
the active constraints surface. Step parameter &

can be also selected as a result of numerical
experiments performed for each type of the
structure individually [16, 17].
Using Egs. (2.5) and (2.8), Eq.(2.3) can be
rewritten as presented below:

AX, =[Vo] i, +&(Vf -[Vo] &),  (2.13)

Or
AX, =ENf+[Vol(i, —¢ i), (2.14)

where column-vectors g, and /i, are calculated

using Eq.(2.7) and Eq.(2.9) or Eq.(2.10),
respectively.

The linear-independent constraints of the system
Egs. (1.2) —(1.3) should be detected when
constructing the matrix of the active constraints

gradients [V¢] used by Eq. (2.7) and Eq. (2.9)

or Eq.(2.10). Selection of the linear-
independent constraints can be performed based
on the equivalent transformations of the
resolving equations of the gradient projection
method using the non-degenerate transformation
matrix H, such that the sub-diagonal elements

of the matrix H[Vg] equal to zero. An

orthogonal matrix of the elementary mapping
(Householder’s transformation) [18] has been
used to select linear-independent constraints of
the system Eqgs. (1.2) —(1.3) as well as to form
triangular structure of the nonzero elements of
matrix H[Vgo] [14].

Using Householder’s transformations described
above triangular structure of the nonzero
elements of matrix H[V¢] is formed step-by-

step. Besides, Eq.(2.7) and Eq.(2.9) can be
rewritten as follow:

([V(/)]T HT)(H[V(p])ﬁL =-V; (215
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H[Vo|zi ~HVf. (2.16)
Equivalent Householder transformations of the
resolving equations Egs. (2.15), (2.16) have
been proposed by the paper [14]. They increase
numerical efficiency of the algorithm developed
based on the considered method.

In order to calculate column-vectors z, and /i,

it is required only to perform forward and

backward substitutions in Eq.(2.15) and
Eq. (2.16).
To accelerate the convergence of the

minimization algorithm presented above, 4 th
columns should be excluded from matrix

H[Vg]. These columns correspond to those
constraints from Eq.(1.3), for which the
following inequality satisfies:

S Xy, >0 (2.17)

As presented by the papers [14, 15], when
1 —&x ey, >0, then the return onto the active

constraints surface from the feasible region J is
performed with simultaneous degradation of the
objective function value. At the same time, in
case of u,, —&xu, <0, both the improvement

of the objective function value and the return
from the inadmissible region onto the active
constraints surface are performed.

When excluding Ath columns from matrix

H[V(p] corresponded to those constraints for
which Eq.(2.17) is satisfied, the
(H[V(/)])red with a broken (non-triangular)
structure of the non-zero elements is obtained. The

set L. of the linear-independent active constraints
numbers transforms into the set L, respectively.

matrix

At the same time, the vector of the constraint’s
violations V reduced into the vector V _,

accordingly. In order to restore the triangular
structure of the matrix (H[V (p])md with zero sub-

diagonal elements, Givens transformations
(Givens rotations) [18] can be used.

\Volume 17, Issue 3, 2021

Considering Givens transformations, Eq. (2.15)

and Eq. (2.16) for column-vectors ( i, )red and
('ZZL)red can be rewritten as:
([V(D]T HT) G’ x
red (218)
X (H V(/’) 'Z‘ )red Vi
G(H[Vy]) (&) ~GHV/. (219

Equivalent transformations of the resolving
equations Egs. (2.18), (2.19) wusing Givens
rotations (transformations with matrix G)
ensure acceleration of the iterative searching
process Eq. (2.1) in those cases when Eq. (2.17)
takes into account due to decreasing the amount
of calculations [14].

The main resolving equation of the gradient
method Eq.(2.13) and Eq.(2.14) can be
rewritten as presented below:

AX, =(H[Ve]),,, (£.),, +

ce(vi-(nve)) (a), ) O

Or

AX, =& Vf+
+(H[V¢])md ((ﬁi )red _93('[47),@61)'

It should be noted that the lengths of the gradient
vectors for the objective function Eq. (1.1), as
well as for constraints Egs. (1.2) —(1.3), remain
as they were in scope of the proposed equivalent
transformations ensuring the dependability of the
optimization algorithm [14].

The determination the convergence criterion is the
final question when using the iterative searching
for the optimum point Eq. (2.1) described above.
Considering the geometrical content of the
gradient steepest descent method, we can assume

2.21)

that at the permissible point X . the component of

the increment vector AX' for the design variables
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should be vanish, AX'—0, in case of

approximation to the optimum solution of the non-
linear programming task presented by Eqgs. (1.1) —
(1.5). So, the following convergence criterion of
the iterative procedure Eq. (2.1) can be assigned:

”A;(ﬂk ” - \/m <&, (2.22)

where g, is a small positive number. In the paper

[14] the convergence criteria for the iterative
procedure Eq. (2.1) has been presented in detail.

3. MATHEMATICAL MODEL FOR
PARAMETRIC OPTIMIZATION OF THE
LATTICE PORTAL FRAME

A parametric optimization task for lattice portal
frame of the steel warehouse framework
designed as repository for the granulated sulfur
has been considered. Building object locates in
seaport Ust-Luga of Russian Federation The
general building sizes are length 247.25 m and
width 69.0 m. Steel framework of the building

|
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consists of portal frames with span 69.0 m
positioned along building length with bay 7.5 m.
Steel portal frames consist of the lattice
structural members fabricated from pipes with
steel grade St20 according to design code [12].
Joints in the lattice structural members were
designed using welded connections without
gussets.

There is a service platform at the level +28.25 m
provided for supporting the crane-loader and
conveyor (see Fig. 3.1). The load-bearing
structures of the platform are suspended to the
structural members of the portal frames. Welded
I-beams of this platform were manufactured
from the universal steel sheets of grade S245.
Design scheme of the steel lattice portal frame
was assumed as a hinged-bar structure with
hinged column bases. Geometrical scheme of
the portal frame was described using the set of
nodes and bars with orientation on
implementation of the finite element method for
linear static analysis. Node coordinates of the
design scheme were determined in Cartesian
coordinate system and presented as expressions
in dependence of geometrical design variables
of the optimization task.

Figure 3.1. Assembling process on job site (Photo has been provided by V. Shymanovsky Ukrainian
Research and Design Institute of Steel Construction)

Dead loads included self weight of the portal
frame, roof purlins, roof bracings, fire escape
staircase and mezzanines, profiled panels which is
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used as non-warmth-keeping walling as well as
service loads on fire escape staircase and
mezzanines. Safety factors for the design loads
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and effects as well as safety factor for the building
responsibility were defined according to [12].
Live loads (or technological loads) were accepted
according to the target specification. Calculation
the design values for climate loadings has been
performed according to the requirements [12]. So,
tree types of snow loads and two types of wind
load have been considered when optimum
designing of the steel portal frames.

Design loads and effects have been combined in
16 design load case combinations taken into
account the combination factors according to
requirements of design code [12]. All loads and
effects on the structure were presented as
concentrated loads at the nodes and were
determined analytically depending on the
variable parameters of the geometrical scheme.
Mathematical model of the parametric
optimization task for the steel portal frame with
lattice structural members has been formulated
as nonlinear programming task including the set
of design variables, system of constraints as
well as specified purpose function.

3.1. Design variables

Parameters of the geometric scheme of the portal
frames have been considered as design variables.
Variable parameters of the geometrical scheme
were building height at the eave node H_, and at

the ridge H _,, distance between upper and lower

chords of the lattice rafter at the eave node hop
and at the erection joints A,, h,, h, 1 h,, distance

between chords of the lattice column at the eave
node bop and parameter b, (see Fig. 3.2). Start

values for the design variables were accepted
according to the design decision of the steel
framework developed by Open Join-Stock
Company “V. Shymanovsky Ukrainian Research
and Design Institute of Steel Construction”,
namely: H_,=39.58m, H_, =10.63m,

hy=h,=hy=h =h, =b, =2.6m, b,=0.56m.

Additionally, cross-sectional sizes of the structural
members with circle hollow sections (CHS) for
each stiffness type were considered as design
variables (see Table 3.1).

Table 3.1. Variable cross-sectional sizes for the CHS structural members of the portal frame

Destination and | Stiffness | Design variables | Start Stiffness | Design variables | Start

location of | type name, diameterx | values, type name, diameterx | values,

structural number | thickness mmxmm | number | thickness mmxXmm

member

Chords of the | 1 d, xt, 299%25 7 d,xt, 299x16

lattice

structural 2 d, xt, 299x14 8 dy x 1 299x10

members 3 d, xt, 299x10 9 d, xt, 299x10
4 d, xt, 299x14 10 d,, xt, 299x14
5 d, xt, 299x14 11 d, xt, 180x12
6 d, xt, 299x10 - - -

Elements of the | 12 d, xt, 152%8 14 d, xt, 102%5

lattice rafters 3 d <, 121x8 ~ ~ ~

Frame ridge 15 d s Xt 152%8 17 d,, xt, 18012
16 d,xt, 102x5 18 d,g X1, 180x12

Elements of the | 19 dyxt, 299%10 21 d, xt, 299x25

lattice columns 20 d, <1, 209x25 | 22 dy, xt, 102x5

Suspension arm | 23 d,, xt,, 180x12 - - -

of the service

platform
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Figure 3.2. The design scheme of the portal frame with specification of the variable geometrical

parameters

3.2. System of constraints

The system of constraints Eqgs.(1.2)—(1.3)
should cover strength and stability constraints
formulated for all design sections of all
structural members of the considered steel
structure  subjected to all design load
combinations at the ultimate limit state. The
following strength constraints have been
included in the system of constraints
Egs. (1.2) - (1.3), formulated for all design

sections, Vi=1L, N ,; (N, is the total number

of the design sections in structural members), of
all structural members, Vj=1,N, (N, is the

total number of the structural members),
subjected to all ultimate load case combination,

Vk=1,N;2, namely normal  stresses
verifications:
N, (X
() ~1<0; 3.1)

1s the value of the
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normal stresses caused by axial force N, ()Z' )

acting in ith design section of jth structural

member subjected to kth ultimate load case
combination calculated from the linear
equations system of the finite element method

presented by Eq.(1.5); An,j()?CS) is the net

cross-sectional area of jth structural member

calculated depending on the variable cross-
sectional dimensions of the structural members

Xcss 7. 1s the safety factor [12]; R is the

design strength for steel member subjected to
tension, bending and compression; Ry, are

[12];
Ok ()? ) are normal stresses at the specified

allowable value for normal stresses

cross-section point caused by internal forces
acting in ith design section of jth structural
member subjected to kth ultimate load case
combination calculated from the linear
equations system of the finite element method
presented by Eq. (1.5). The value of the normal

stresses o, ()? ) at the specified cross-section

point has been calculated depending on the
variable geometrical parameters of the structure
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X, and variable cross-sectional dimensions of

the structural members X .

The following constraints on slenderness of the
structural members have been included in the

system  of  constraints  Egs. (1.2) —(1.3),
Vi=1N,:
L, (X
L =l “’y;’( ‘) ~1<0; (3.2)
ly,j (XCS )ﬂ”uy,j
L. (X
‘?f’z;"( o) ~1,0<0; (3.3)
lz,j (XCS)/qu J

where i (XCS) and I (XCS) are radiuses of

inertia for jth structural member’s design

cross-section relative to the main axis of inertia
and calculated depending on the variable cross-

sectional dimensions of the structural members
X Ly ()?G) and [, ()?G) are design
lengths for jth structural member in the main

planes of inertia calculated depending on the
variable geometrical parameters of the structure

X.: A

».; and A, are the ultimate slenderness

for jth structural member. Design lengths of

the structural ~members Iefw(XG) and

lef’z,j()ﬁ(G) were defined according to [12] as:

for chords, support diagonals and support
columns of the lattice structural members —

Ly s (XG ) =1 (XG ) S Ly (XG ) =1, ;; for other
elements of the lattice structural members —

Loy (X6)=0850(X,)s L., (Xo)=0850;

here /; is the geometrical length for ; th bar of

lattice structural member; / ; is the distance

between out-of-plane restraints of the member
from the horizontal displacements in out-of-
plane direction. Ultimate values for the
slenderness of the lattice structural members
were specified according to [12] as:

\Volume 17, Issue 3, 2021

Ay =4.; =400 for all tensioned members;
A i =4

uy,j uz,j
The following stability constraints have been
included in the system of constraints
Egs. (1.2) = (1.3), formulated for all design

sections, Vi=1, N ,, of the structural members

=150 for all compressed members.

subjected to all ultimate load case combination,
Vk=LNS |
verifications

namely  flexural  buckling

for all
subjected to axial compression force N, ()? ) ,

structural members

Vji=1,N,
_ ﬁN”k(#)ﬁ ~1<0;  (3.4)
¢7y](XGaXcs)A_/(XCS)Ry,j ¢
qN” (X) -1<0; (3.5)

where 4, ()? CS) is the gross cross-sectional area
of jth structural member calculated depending
on the variable cross-sectional dimensions of

the structural members X ?,; ()? X CS) and

Q. (f( X, CS) are column’s stability factors
corresponded to flexural buckling relative to the
main axes of inertia and calculated depending
on the design lengths /, (XG), Ly (XG),

cross-section type and cross-section geometrical
properties for the jth structural member [12].

The flexural buckling factors ¢, ()?G,X CS)

and ¢_; ()? X CS) calculated depending on the
variable geometrical parameters of the structure

X, and variable cross-sectional dimensions of

the structural members X .

The following local buckling constraints have
been also included into the system of
constraints:
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o (st) ~1<0; (3.6)
.09
lﬁ""( fs) ~1<0 (3.7)
5 (X)

where A

" ()?CS) and /TM ()?CS) are the non-
dimensional slenderness of the web and flange

respectively of the cross-section for jth
structural member; 4, ; (X ) and 4, (X ) are

the maximum values for corresponded non-
dimensional slenderness for column structural
members calculated depending on the internal
forces (ration of the bending moment to the
axial force), as well as depending on the design

lengths [, ., [,.,, cross-section type and

cross-section geometrical properties for the jth
structural member [12]. The non-dimensional

Z! (X cs ) and 4, ()?CS )

calculated depending on the variable cross-
sectional dimensions of the structural members

slenderness

X.s only. At the same time, the maximum

values for corresponded non-dimensional

()? ) and Zuf’ ; ()? ) calculated

the
parameters of the structure X, and variable

slenderness A

uw, j

depending on variable  geometrical

cross-sectional dimensions of the structural
members X .

The system of constraints Egs. (1.2) — (1.3)
has been also covered the displacements
constraints (stiffness inequalities) for the
specified nodes of the considered steel
structure subjected to all design load
combinations at the serviceability limit state.
The following horizontal and vertical
displacements constraints have been included
into the system of constraints Egs. (1.2) -

(1.3), formulated for all nodes, Vm=1,N,
(N, 1is the total number of nodes in the
of the

considered steel structure), steel
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structure subjected to all serviceability load

case combination, Vk =1, N;%’ , namely:

X
o | )—130, (3.8)
5ux,m
5. (X
= )—130, (3.9)
where &, ()? ) and o, (f( ) are the
horizontal and  vertical displacements

respectively for/th node of the steel structure
subjected to kth serviceability load case
combination calculated from the linear
equations system of the finite element method
presented by Eq.(1.6); 6, and o _ are the

allowable horizontal and vertical displacements
for mth structural node. Ultimate values for
linear node displacements of the steel lattice
portal frame were calculated according to [12]
as o, , =H_,/210 and 6_, =L/300=230 mm.

Additional requirements that describe structural,
technological and serviceability particularities
of the considered structure, as well as
constraints on the building functional volume
(see Fig.3.3) can be also included into the
system Eqgs. (1.2) —(1.3). In particular these
requirements can be presented in the form of
constraints on lower and upper values of the

design variables, Vi=1,N, :

Xl

1- (3.10)

Xl
S 1<0;

1

(3.11)

where X* and XY

1 1

are the lower and upper

bounds for the design variable X, ; N, is the
total number of the design variables.
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Figure 3.3. Technological equipments and constraints that describe useful space in the building

Additional constraints on cross-sectional sizes
of the structural members with circle hollow
sections type have been formulated according to
the requirements of [12]. There were constraints
of permissible minimal thickness and

permissible maximum diameter-to-thickness
ratio for the structural members, namely,
VIi=1LNg :
tl
1,0-——<0; (3.12)
min,/
DI
-1,0<0;
5 (3.13)

1™~ max,/

where [ is the number of the stiffness type; N,
is the overall quantity of the stiffness types in
the considered steel lattice portal frame; ¢, and
D, are thickness and diameter of the circle
hollow section for /th stiffness type (see
Table 3.1) respectively; 7., is the minimum
thickness of the circle hollow section in

accordance with design code [12] as
t . =3mm for chords, support diagonals and

min,/

support columns of lattice structural members

\Volume 17, Issue 3, 2021

and ¢
)

max,/

=2.5mm for other lattice elements;

min,/
1s the maximum diameter-to-thickness
ratio for the structural member with circle

hollow section in accordance with design code
[12] depending on the yield stress value

R, =245MPa <295MPa as ¢, ,=30 for
chords elements of the Ilattice structural
members and &, , =90 for other Ilattice
elements.
The following constraints that describe
conditions for designing gusset-less welded
joints between CHS structural members
formulated according to the requirements [12]
have been also included in the system
Egs. (1.2) - (1.3), ¢, p=1..Ng;:

0,3d,<d, <d,; (3.14)

where p and ¢ are the numbers of the stiffness

types of structural members connected in the
joint, here p 1is the number of the chord’s

stiffness type; ¢ is the number of the lattice
stiffness type.
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3.3. Objective function

Minimum weight as well as minimum
construction budget has been considered as
purpose function. Analytical expression for the
structural weight depending on the variable
cross-sectional sizes of the members can be
written by the following formula:

N
M(XG’XCS):prIA_/Zj =
=

. (3.15)
= 4”60/?2 g (Dj —1 )l/ — min;

J=1

where 4, and [, are gross cross-sectional area

and geometrical length for jth structural
member respectively; p — steel density,
p =7850kg/m3; ¢ is the factor that takes into

account the increment of structural weight due
to the present of the adjunct elements in the
structural members and joints (stiffeners, ribs,
end-plates, gussets etc.), ¢ was defined

according to the steel specification mentioned in
the source project for the warehouse framework,
pU11.

Construction budget of the steel portal frame
with lattice structural members taken into
account construction budget of mezzanines
erected at the level +28,25 can be presented as
follow:

_ it sl wil
K= Cmnf + Cmnf + Casm + Casm +
+Czr.p. + Cq.c. + Cmat;

where C ,an is the manufacturing cost of lattice

sl
Cmnf

cost of mezzanine’s structural members; C,, is

structural members; is the manufacturing

the assembly cost for steel portal frame; C is

asm

the assembly cost for walling; C,, is the cost

on the work package for corrosion protection of
the steel framework; C, . is the cost for the

quality control of welded connections; C, , is

146

Vitalina V. Yurchenko, Ivan D. Peleshko, Nikita A. Biliaiev

the material cost for structural members of the
steel portal frame. Analytical expression of the
construction budget for manufacturing and
erection of the steel lattice portal frame
depending on the design variables have been
presented by the following, UAH:

K =20670M (X, X )+1525D,, (X, )+

F1300H,, +110A, (X, Xy )+ (3.16)

+21120 — min;

half-rafter
1

DOVZ((O,SL)2+(sz_ szk)z)i; P

where D is the

ov

length,

portal frame span, L =69 m; AS(XG,XCS) is

the total surface area of the steel lattice portal
frame to be subjected to anti-corrosion
treatment.

4. PARAMETRIC OPTIMIZATION
ALGORITHM BASED ON THE
GRADIENT PROJECTION METHOD

Let present the following numerical algorithm
to solve the parametric optimization problem for
steel structures formulated above.

Step 1. Describing an initial design (a set of
design variables) and initial data for structural

optimization.
— T

The design variable vector X, = ()? cr X CS)

k
has been specified, where k 1is the iteration
index, £=0. The structural topology, cross-
section types and node type connections of the
bars, the support conditions of the bar system,
as well as loading patterns, load case
combinations and load design values are
prescribed and constants.

Initial data for optimization of the considered
steel structure are design strength for steel
member R , safety factor y,, factors to define
flexural design lengths [, ., [ for all

ef.z,j
column structural members; allowable values
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for horizontal and vertical displacements o

ux,!
and o, , of the specified nodes of the

considered steel structure; lower X’ and upper
XY bounds for the design variables; as well as

specified objective function f(X )

Step 2. Calculation of the geometrical and
design lengths for all structural members.
The geometrical lengths /, of all structural

members are calculated based on the node
coordinates of the considered steel structure.
The latter depend on the unknown (variable)

geometrical parameters of the structure X .
[

ofy.j 2 Tefz]
structural members are calculated using
calculated geometrical lengths /; and initial data

The design lengths [ of all column

relating to the design length factors. The latter
are constant during the iteration process
presented below. Variation of the geometrical
lengths /., and corresponded design lengths

/ /

o tefz
performed based on the current values of the
X, of the

on the further iterations has been

variable (unknown) parameters

geometrical scheme.

Step 3. Calculation of the cross-section
dimensions and geometrical properties for all
design cross-sections.

Geometrical properties of the design cross-
sections (areas, moments of inertia, elastic
section moments, radiuses of inertia, etc.), as
well as non-dimensional slenderness for cross-

section elements (webs and flanges) /Tw’j (/? CS)

and ﬂ_gm (X’ CS) have been calculated depending

on the current values of the unknown (variable)
cross-section dimensions X .

Step 4. Linear structural of the
considered steel structure.

For each m th node of the finite element model
subjected to kth serviceability load case

combination the displacements and rotations, as

analysis

well as the design horizontal &, ,, ()? ) and
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vertical o, ()Z' ) displacements can be

calculated using the linear equations system of
the finite element method presented by
Eq. (1.6).

For each ith design section of jth structural
member subjected to kth ultimate load case
combination the design internal forces can be
calculated using the linear equations system of
the finite element method presented by
Eq. (1.5).

Step 5. Calculation of the
(stresses, buckling factors,
dimensional slenderness etc.).

state  variables
allowable non-

The value of the normal o, (X’ ) stresses at

the specified cross-section point has been
calculated depending on the axial force acting in
ith design section of jth structural member

subjected to £ th ultimate load case combination
as presented by the design code.

The flexural buckling factors (ﬂy,_,-()? G X ),

> CS
®.; ()? G,)? CS) have been calculated depending

on the corresponded design lengths, cross-
section type and cross-section geometrical
properties for the structural members according
to the design code [12].

The maximum values for corresponded non-

dimensional  slenderness /TMW’ ; ()? ) and
qu, ; ()? ) for column structural members have

been calculated depending on the design lengths

lyy;» lys.;» cross-section type and cross-

section geometrical properties for the jth
structural member [12].

Step 6. Verifications of the constraints and
construction the set of active constraints
numbers A .

Verification of the constraints Egs. (3.1), (3.4),
(3.5) has been performed for all ultimate load
case combinations and all design cross-sections
of all structural members. Verification of the
constraints Egs. (3.8), (3.9) have been also
conducted for all serviceability load case
combinations and all design structural nodes.
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Additional requirements in the form of
constraints Egs. (3.10), (3.11) on lower and
upper values of the design variables, local

buckling constraints Egs. (3.6), (3.7),
constraints on the member’s slenderness
Egs. (3.2), (3.3), constraint Eq.(3.12) on
permissible minimal thickness, constraint

Eq. (3.13) on permissible maximum diameter-
to-thickness ratio for the structural members, as
well as the conditions Eq. (3.14) for designing
gusset-less welded joints between structural
members with circle hollow sections have been
also verified. Set of the active constraints
numbers A  calculated for the current

Xk
according to Eq. (2.2).
Step 7. Calculation of the current objective

approximation has been constructed

function value f(X,), objective function

gradient V£ (X ,) and determination of the

desired decrement of the objective function
value Af(X,).

The objective function gradient Vf(X,) can be

calculated by the numerical differentiation with
respect to the design variables using the finite
difference  approximation. = The  desired
decrement of the objective function value

Af()?k) can be assigned as 5...25% from the

current objective function value f(X )

Step 8. Construction of  the  constraint’s
violations vector V and the matrix of the active

constraint’s gradients [V¢]. The vector of the

values of the constraint’s violations V and the
matrix of the constraint’s gradients [Vgo] are

constructed for active constraints only according
to the set of active constraints numbers A .

Step 9. Construction the matrix of active linear-
independent  constraint’s  gradients  with
triangular  structure. The set of linear-
independent constraint’s numbers L and the
matrix of active linear-independent constraint’s

gradients H[V(p] with triangular structure are

constructed according to the

presented by the paper [14].

algorithm
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Step 10. Step parameter & calculation. Step
parameter £ has been calculated according to
Eq. (2.11) or Eq. (2.12) and can be modified on
the further iterations depending on convergence
of the iterative process presented by Eq. (2.1).

Step 11. Calculation the column-vectors £, and

4, which define the design variables increment

subject to the condition of elimination the
constraint’s violations and subject to the
improvement of the objective function value.
The vectors £, and zi, can be calculated using
Eq. (2.18) and Eq. (2.19) respectively.

If some /4th component of the column-vectors

a4, and g satisfies Eq.(2.17), the
corresponded constraint gradient V¢, has been
excluded from the matrix [Vg], and

corresponded violations ¥, has been excluded

from the vector V, as well as the return to step
9 has to be conducted. In contrary case
transition to the step 11 has been performed.

Step 12. Calculation the increment vector for the
current design variables and determination the
improved approximation to the optimum

solution. The increment vector AX, for the

current design variables values X, has been
calculated according to Eq. (2.20) or Eq. (2.21).
The improved approximation X . to the

optimum solution has been determined
according to Eq. (2.1).

Step 13. Stop criteria verification of iterative
searching for the optimum solution. If all
constraints Eqgs. (3.1) — (3.14) are satistied with
appropriate accuracy, as well as inequality
Eq. (2.22) or one of the stop criteria described
by the paper [14] is also satisfied, then transition
to the step 13 has been performed. In contrary
case return to the step 1 has been conducted
with k<« k+1.

Step 14. Discretization the optimum solution
X, obtained in the continuum space of the
design variables.
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Y

optimization. & is the

Step 1. Describing an initial design (a set of design variables) and initial data for structural

iteration index, k=0.

(D—

i

Step 2. Calculation of the geometrical and

design lengths for all structural members.

\

y

Step 3. Calculation of the cross-section dimensions and geometrical properties for all
design cross-sections.

Y

Step 4. Linear st

ructural analysis

\

i

Step 5. Calculation of the state variables (internal forces, stresses, etc.)

/

X

Step 6. Verifications of the constraints and
construction the set of active constraints numbers A

\

i

Step 7. Calculation the current
objective function gradient Vf(f(k

objective function value f()?k) ,
) and desired decrement Af()?k)

Y

and the matrix of the active

Step 8. Construction of the constraint’s violations vector V

constraint’s gradients [V¢]

O—

Step 9. Construction the matrix of active

H[ Vo] with triangular structure and vector Hv/

linear-independent constraint’s gradients

Figure 4.1. The flow chart for structural optimization according to the searching technique based
on the gradient projection method
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Step 10. Step parameter & calculation

Y
Step 11. Calculation the column-vectors 4, and z, determining the design variables

increment subject to the condition of elimination the constraint’s violations and subject to the
improvement of the objective function value

Excluding the constraint gradient
Vg, from the matrix [Ve] and

violation ¥, from the vector V

ﬂ\ Verification the inequali
quality
1E3 Eq. (2.12) for all columns

of the matrix [V |

Step 12. Calculation the increment vector AX, for the current
design variables and determination the improved
approximation to the optimum solution )Z',H

Iteration index
ke«k+1

Step 13. Stop
criteria verification

Step 14. Discretization the optimum solution )?,c

Y

Step 15. Optimum parameters of the structure is )?k with optimum

value of the objective function f()?k)

Figure 4.1. (continuation). The flow chart for structural optimization according to the
searching technique based on the gradient projection method

Step 15. Optimum parameters of the structure i function f/( )}k)_

X, with optimum value of the objective Figure 4.1 presents the flow chart for structural
optimization according to the searching
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technique describing by the gradient projection
method considered above.

5. OPTIMIZATION RESULTS

A parametric optimization methodology
presented above has been realized in software
OptCAD [19]. This software provides
solutions to a wide range of problems,
namely: (i) linear static analysis of bar
structures; (ii) verification of the load-bearing
capacity of the structural members according
to specified design code; (iii) searching for

values of the structural parameters when
structure  complies with design code
requirements and designer’s criterions; (iv)
parametric optimization of the steel bar
structures by the determined criterion.
Mathematical apparatus of the software
combines the finite element method to
perform linear static analysis of the bar
system, as well as improved gradient
projection method to solve parametric
optimization problems formulated as non-
linear programming tasks [19].

Table 5.1. Optimal values for variable geometrical parameters of the portal frame’s design scheme

Design variable | Start value, Optimum values, m, by the criterion of minimum
weight costs on fabrication and erection
when lower chord of lattice rafter is
straight-line polygonal straight-line polygonal
. 39.58 38.82 39.55 38.74 39.44
H_, 10.63 11.92 11.84 12.08 12.03
h, 2.60 — 3.23 — 3.31
h, 2.60 — 3.21 — 3.23
hy 2.60 — 2.68 — 2.70
h, 2.60 2.18 2.68 2.13 2.61
b, 0.55773 1.00 0.56 1.05 0.63
h,, 2.60 3.61 3.72 3.73 3.87
b,, 2.60 3.08 3.02 3.02 2.95
Weight, 30.78 18.98 18.45
x103,kg
Costs, UAH 786681 534647 524257
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Table 5.2. Optimal values for variable cross-sectional sizes of the lattice structural members of the

portal frame
Optimum values, mmxmm, by the criterion of minimum
weight | costs on fabrication and erection
Design variable Start ‘ . when lower chord of the‘lattic.e rafter is
value, m stralght—hne‘ polygonal ‘stralght—hne‘ polygonal
in the search space
continuous discrete continuous discrete
d, xt 299x25 [183.4x8.4 |192.3x8.6 [194x9.0 (173.9x9.3 |172.9x8.6 |[168x11.0
d, xt, 299x14 [183.4x6.1 |192.3x6.4 |194x7.0 [173.9%6.9 |172.9%6.3 |168x8.0
d, xt, 299x10 [183.4%6.9 |192.3x6.5 [194x6.5 [173.9x7.3 |172.9x7.4 |168x8.5
d xt, 299x14 [183.4x8.5 [192.3x9.3 {194x9.0 (173.9x10.7 [172.9%9.3 |168x11.0
d, xt; 299x14 [183.4x6.1 |192.3x6.4 [194%x6.5 [173.9x5.8 |172.9%5.8 |168%6.0
d,xt, 299x10 [297.4x9.9 303.1x10.1 299%10.0 [298.1x9.9 [292.3x9.7 [299x10.0
d,xt, 299x16 [297.4x11.3 [303.1x11.4 299%12.0 [298.1x11.6 [292.3x11. [299x12.0
5
dg xt, 299x10 [264.4x8.8 [269.4x9.0 [299x10.0 269.0%9.0  [263.6x8.8 [273x9.5
d, xt, 299x10 [203.0x6.8 [210.7x7.0 [194x8.5 211.5%7.0 [202.8x6.8 [219x7.5
d,xt, 299x14 [143.5x4.8 |147.1x4.9 [152x5.5 [148.1x4.9 |143.3x4.8 |146%5.5
d, xt, 180x12 [183.4x9.7 [192.3x9.6 [194x9.5 (173.9x11.5 |172.9x11. |168x13.0
1
d,xt, 152x8 [161.2x4.5 [165.6x4.6 [152x5.5 |164.9x4.6 |160.8x4.5 [168%5.0
d,xt, 121x8 |110.3%x3.9 [107.4x3.6 [108x4.0 [80.7x4.9  [79.1x5.6 |83%5.0
d,xt, 102x5 [89.2x3.5  190.9x3.5 [95x3.5 [89.4x3.5 87.7x3.5 [95%3.5
dsxt; 152x8 [143.5x5.2 |147.1x5.1 [152x5.0 |133.5%5.9 |135.1x5.6 |133%6.0
d %t 102x5 [55.0x3.5  |57.9%x3.5 60x3.5 |52.2x3.5 51.9x3.5 [54x3.5
d, xt, 180x12 [112.8x4.9 |116.3x4.7 |108%5.0 (90.4x6.1 101.8%5.4 195%6.0
dg Xt 180x12 [143.5%6.3 |147.1x6.6 [152%x6.5 [148.1x6.6 |143.3x6.4 |146x7.5
dyxt, 299x10 [297.4x9.9 303.2x10.1 299%10.0 [298.1x9.9  [292.3x9.7 [299x10.0
dy xt,, 299x25 297.4x9.9 303.2x10.1 [299%10.0 [298.1x9.9 [292.3x9.7 [299x10.0
d, xt,, 299x25 297.4x21.0 303.2x21.1 [299%22.0 [298.1x22.3 [292.3x22. [299x24.0
3
d,, xt,, 102x5  189.2x3.5  90.9x3.5 [95x3.5 [89.4x3.5 87.7x3.5 [95x3.5
dyy Xty 180x12 [148.9x5.3 [151.6x5.3 [152x5.5 [79.7x11.4 |81.8%10.6 [83x1.2
Weight, 30.78 |18.45 18.98 19.70 — — —
x103,kg
Costs, UAH  [786681 — - 534647 524257 552368
152 International Journal for Computational Civil and Structural Engineering




Application of Gradient Projection to Parametric Optimization of Steel Lattice Portal Frame

Figure 5.1. The optimum design decision by the criterion of minimum structural weight when
lower chord of the lattice rafter is straight-line

Formulated parametric optimization problem for
the steel lattice portal frame has been solved
using software OptCAD. Task dimensions are:
account of design variables is 50, account of
problem constraints is 14000.

Optimization results received using software
OptCAD are presented by the Tables 5.1 and
5.2. Figure 5.1 show optimal design decision by
the criterion of minimum structural weight of
the steel lattice portal frame (project with start
values of the design variables is indicated by the
red color, optimum project is indicated by the
blue color).

CONCLUSIONS

The results of the presented study can be
formulated as follow:

1. The paper has proposed a mathematical
model for parametric optimization problem of
the steel lattice portal frame with CHS structural
members. The design variable vector includes
geometrical parameters of the structure (node
coordinates), as well as cross-sectional

\Volume 17, Issue 3, 2021

dimensions of the structural members. The
system of constraints covers load-carrying
capacities constraints formulated for all design
sections of structural members of the steel
structure subjected to all ultimate load case
combinations. The displacements constraints
formulated for the specified nodes of the steel
structure subjected to all serviceability load case
combinations have been also included into the
system of constraints. Additional requirements
in the form of constraints on lower and upper
values of the design variables, constraints on
permissible minimal thicknesses, constraints on
permissible maximum diameter-to-thickness
ratio for the structural members with circle
hollow sections, as well as the conditions for
designing gusset-less welded joints between
structural members with circle hollow sections
have been also considered in the scope of the
mathematical model.

2. The method of the objective function gradient
projection onto the active constraints surface
with simultaneous correction of the constraints
violations has been applied to solve the
formulated parametric optimization problem.
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3. A numerical algorithm for

solving the

parametric optimization problems of steel lattice
portal frames with CHS structural members has
been presented in the paper.

4. New optimal layouts of the steel lattice portal
frame by the criterion of the minimum weight,
as well as minimum costs on manufacturing and
erection have been shown.
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