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FINITE ELEMENTS FOR THE ANALYSIS OF REISSNER-
MINDLIN PLATES WITH JOINT INTERPOLATION OF
DISPLACEMENTS AND ROTATIONS (JIDR)

Viktor S. Karpilovskyi
ScadGroup Ltd., Kyiv, UKRAINE

Abstract: This paper proposes a method for creating finite elements with simultaneous approximation of
functions corresponding to displacements and rotations. New triangular and quadrangular finite elements have
been created, which can have additional nodes on the sides. No locking effect is observed for all the created
elements. All created elements retain the existing symmetry of the design models. The results of numerical
experiments are presented.
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KOHEUYHBIE DJIEMEHTHI 1151 PACUETA IIJIACTHH
PEMCCHEPA-MUHJIJINHA C COBMECTHOMW UHTEPIIOJIS-
IIMEW NEPEMEIIEHUM U YIVIOB TIOBOPOTA (JIDR)

B.C. Kapnunoeckuii
000 ScadGroup, . Kue, YKPANNHA

Annotanus: [IpemmoxkeH METO MOCTPOCHNST KOHEUHBIX 3JIEMEHTOB C OJHOBPEMEHHOH ammpoKCUManueil pyHKITHA, co-
OTBETCTBYIOIIHMX MEPEMEIIECHHUSM U yIJIaM MOBOPOTa. [10CTpOEHBI HOBBIE TPEYTOIBHBIE M YETHIPEXYTOJIbHBIE JIEMEHTHI
KOHEYHBIE JJIEMEHTHI, KOTOPbIE MOTYT UMETh JOTOIHUTEIBHBIE Y3JIbI HA CTOPOHAX. [I7Is1 BCEX MOCTPOSHHBIX 3IEMEHTOB
orcyTcTByeT 3¢ et 3anupanus. Bce MOCTpOEHHBIE 37IEMEHTHI COXPAHSIOT CYIIECTBYIOIIYI0 CHMMETPHIO PACUETHBIX CXEM.
[IpuBeneHs! pe3ynbTaThl YUCICHHBIX SKCIEPHMEHTOB.

Ki1ioueBble ci10Ba: KOHEUHBIE 3IIE€MEHTHI; PeliccHep-MuHAINH; N3THO TUTUT; TPEYTOIBHBIA AIEMEHT;
TIPSIMOYTOJIBHBIHN AIEMEHT; YeTHIPEXYTOIBHBIN AIEMEHT

fz(x)
X= {x } , f(x) =<{m,(x) ; is the area load.
4 my (x)

1. INTRODUCTION

Write down the Lagrange functional for

Reissner-Mindlin plates as follows [1-3]: The geometric operator 4 and the elasticity

1 r - matrix D (for an isotropic material):
() = EfQ(Au) DAud Q — [, fTud 2 (1)

- T
where: Q — plate of thickness h: solid body with a_ax % 0 0 0
a midplane XOY; 0 0
. A= 0 -1 > o | (2)
u(x) = {w(x),0,(x),0,(x)} is the vertical 0 o
displacement and rotations, I 0 ox @
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D = 1 v , A=
v 1
| 0.5(1 — v)]

E 1s the Young’s modulus, v is the Poisson’s
ratio.
Equations of equilibrium:

00, % _ q
ay 8x D
A0 )_ _l—vﬁzﬁx 1+V820y:0
X 8y 52 2 ox? 2 Ox0Oy
ow 0’ 0, 1_V8249y 1+v &? 0,
A +0)= xz 2 9?2 oxoy =00)

Classic finite elements have three degrees of
freedom in each node: vertical displacement w;
and rotations &, 6, i=1,2,...,N, where N is the
number of element nodes. Finite elements have
3N unknowns, which are arranged in the
following order during the generation of a
stiffness matrix of the element:

{W])H)(]Iey]l 1WN: XN 7 N} (4)
which has a corresponding system of
approximating functions

{ P11, P12 P13 PN Pn2 Pzt (D)

We introduce a generalized displacement vector

G={w,0,,0,,7.7,2) (6)

where :

Jz, )5 are shear characteristics depending on the
displacement w and rotations &, 6.

Then the functional (1) can be written as
follows:

I1(u ):% [(Ba) DBidQ~ | T ud (7
Q Q
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_6%0110_
%—1001
B={0o 0o 200 (8)
0—%000

_O_a% %00_

Represent the approximating functions (5) of
the element in a five-dimensional space for the
generalized displacement vector (6):

;
<Pl§~(x,y)={¢,-},(p,-,2-,qo,-,3-,¢,§-‘,¢,-,5-} i=1+N,j=1,2,3(9)

where i is the node number, and j is the number
of its degree of freedom.
Elements with:

e ¢, =0%=¢p% — the corresponding approxi-
mations of the elements of the plane
problem of the theory of elasticity;

o P =0i=0h=0h=05=p3=0,i=1=N
o @ =p;=0,i=1+N, j=123,

as a rule, provide convergence of the method
only for medium thickness plates. The so-called
locking effect often occurs during the analysis of
thin plates, when the calculation results differ
significantly from the analytical ones.

The main reason for the locking effect is that it
is impossible to set such values of the degrees of
freedom of an element so as to ensure constant
moments in its area for the corresponding tasks.
There are many methods for eliminating the
locking mechanism. The most common elements
use:

o Mixed Interpolation of  Tensorial
Components, MITC [2,4];

e Discrete Shear Gap, DSG [5];

e hybrid models based on Reissner's

functional [6];
and others.
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This paper proposes another method for creating
finite elements for Reissner-Mindlin plates without
the locking effect: Joint Interpolation of
Displacements and Rotations (JIDR). In this
method:

oL, 05, @3 — not necessarily correspond-
ding approximations of the elements of the
plane problem of the theory of elasticity.
These can be, for example, approximations
of finite elements for Kirchhoff-Love plates;
@), = @)y — nonzero functions depending on
Prr P

PR=0N=0h=04=0, ¢j=¢;=0,/=123
in addition to approximating functions (5),
up to four specially constructed functions

are introduced corresponding to some
internal degrees of freedom of the element:

)
e ={0,0,0, ¢ 17| k<4 (10)

We will assume that the functions ¢}, @5, @3

are compatible for the constructed JIDR ele-
ments. Incompatible functions are (10), which
may have discontinuities on the element sides.

2. COMPLETENESS AND
INCOMPATIBILITY CRITERIA

Consider the residual:

Viktor S. Karpilovskyi

w N
S(x)=16, —Alg(Wi‘PiﬁHx,i‘Pinr z‘P:3) (11)
0 =

y

where A1 is the matrix operator that transforms
functions in a five-dimensional space into three-
dimensional ones:

10000
A4=[0 10 0 0
00100

It follows from the equilibrium quations (3)
that:

g _ow 1[0 1-v08, 1:v 36, |
ooy Al o 2 52 2 0Ox0Oy
w 1w 1-v ow 1+v dw |
@y A o’ 2 oy 2 oxoy?
0 ow 1 825y 1_V62¢9y_1+v 529,( _
7 Ox A ox? 2 9 2 Ox0y
_ow 1 ow 1-v ow _l+v o'w +.. (12)
ox A\ o’ 2 8x6y2 2 axzay

Substituting (12) into (11) and expanding the
values of displacement w with respect to the
origin, we obtain:

1 » 1 2
w|X:0+xwx|x:0+ywy|X:0+§x WXX|X:0+xwa|X:0+§y WW|X:0+...

1 1 1 1
{x)=qw, |x=0 Taw,, |x:0 tw,, |X:0 + (Ex2 +Z)WXXy |X_0 +XW,,, |X_0 +(—y2 +—)Wyyy |x_0 +...

1 1
_Wx|x:0 _xwxx|x:0 _ywxy|x:0 _(§x2 +

1 > 1
5N W XYWy, +§yi

™M=

(w+xw +yw, +

I
AR

M=

(W +xw, +y,wyv+(—x, 7

1 >
(W FXW o + YW, +(§x,

™M=1r

1
1 + E)Wxxx +X )i

50 International

Y

2
Wyy+'

1
Wiy +(§y12

) xxx| xnyxy|x0 ( Yy +i)wxyy|x 0+

")|x=0 Ap; -

1 1 » 1
)Wxxy + xiyiwxyy + (Eyl +Z)W}yy )|x0 Al‘pi2 +

1
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Let us equate to zero the coefficients of the
corresponding derivatives of w. We obtain the
identities of the completeness criterion [7-8]:

e oforder p=1:
N X
» A _Zl(xi‘Pn —p;3)= ,
i= -1
e of order p=2:

} (14)
2

.
N x; x2

A Y (5@ — X, )E{_:Ol_x} ’
1i:1 2 1 3 2

oo =

N
A Zl‘pil =
i=

N
A (i +@in)= {
i=1

S e

N yz y2 r
A Z(Tl(pil +Yi9;2) 5{7' Y 0}
i=1

N T
A -Zl(x;)’f‘Pn +XiPj, — ViPj3) = {xy, X —y} (15)
i=
e of order p=3:
N3 X2 1 {x3 x? 1}T
A o, —(-+p., |={— 0 ————
1%(6"’” (2+/1)""3J 6" "2 1)’
N xizyi X 1 _
AIEI > ‘pi1+(7+7)¢i2_xiyi<pi3 =
2. 2 T
©y a1 }
{ 2 2 TV
N xp? vl
Aligl #‘Pi1+xiyi¢iz_(7'+7)¢i3 =
{lx oL 2_L}T
R T AY)
Nl 3 2 302 T
Vi yi 1 _{y yo . 1 }
AS| L@, +(E-+), |=7=—,=—+—,07 (16

It should be noted that the identities of the com-
pleteness criterion (14) and (15) coincide with
the corresponding identities of the Kirchhoff-
Love thin plate elements. See [7,8,10]. Identities
of order p=3 coincide as well if

Mz

ol=1, j=2.3 (17)

1
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The completeness criterion identities of order
p=1 are the equations of the rigid body motion
of a finite element.

Failure to satisfy the completeness criterion
identities of order p = 2, as a rule, leads to the
so-called locking effect, when the method does
not converge to an analytical solution during the
analysis of thin plates.

If the completeness criterion identities of order
p=2 are not satisfied, then it is impossible to
implement the constant moment tests, and for
p=3 — the constant shear tests.

For all the created elements, incompatibility is
allowed only for functions (10). Since when
constructing the stiffness matrix of a finite
element the functional includes the following
expressions:

4 0 1 2 5(0 1, 3
ﬂk[@%’“ﬂ;jjr ﬂk(a(ﬂlﬂ'(ﬂyj, (18)

then the incompatibility criterion [7-9] of the
minimum order that provides piecewise testing
[11] is reduced for this problem to the following
equalities:

[ @ldQ=0, k<4. (19)
Q

K

Due to the fact that functions (10) correspond to
internal degrees of freedom, they can only
increase the order of fulfillment of the
completeness criterion identities of the system
of functions (5).

According to [7-9], if the completeness criterion
identities (14), (15) and the incompatibility

criterion equalities (19) are satisfied, the
convergence of the method will be ensured.
3. CONSTRUCTION OF
APPROXIMATING FUNCTIONS
We will assume that in (9)
O =Pin =Py = 11 Si=1=N (20)
51



where y: are classic approximations of the
elements of the plane problem of the theory of
elasticity, for which the completeness criterion
identities of order p=1 are satisfied:

N N
ZIZ,-EI, ; iXi =X, ZyIZI (21)
Transform  the coordinate system  for
isoparametric elements:
N N
x= lei}(i' y=Zly,'Zi, (22)
i= i=

Hence, (21) is satisfied as well.
Suppose that the last identity (15) is satisfied.
Then, according to (21):

N N
2 (i 50 = i) = 2 (33)

Form the vectors from the residuals (26):

0

§§/1+§/?
w=1F b 1234 27)
@gk_ k

Specify the components of functions (10) as
follows:

W=wl+ay, m@=w+b, ,k=1234 (28)

52

_(pll +X; iVi®Pi2 —

T E 2o
} ZA1 T‘Pnﬂ 4 +7)‘Pi2]
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Let us set, keeping symmetry:

1 1
Ph =5 X (y=yi), s =5 (x-x) @4
Check that all identities (14) and (15) are
satisfied for (24), since:

N 1 1
oy — — —_ :0’
I§1¢12 216%2,)(,(); yl)
N
Z(ﬂilsz—zz Zi(x=x;)=0 (25)
i=1 ieQ,

The fulfillment of (24) ensures the convergence
of the method without the locking effect, which
is confirmed by the numerical experiments.
Functions (10) are designed to improve the
accuracy of elements. To construct them, we use
the residuals of the completeness criterion (16)
of order p=3:

I}T Al (’2+ =)
z Z 1 6 P /1(P,3 ’
{xzy X 1 }T N
S I I Kl 2“1(

xy2 y2 lT N
Z3={T’xy’_7_7} ZA{

Iyl

2
|
—<P,1+( % +7)(pi2_xiyi(pi3]

Iyl (yl +l)¢,3}

(26)

The constants ax, bk in (28) are found from the
incompatibility criterion equations (19).
Nonzero  functions  (28)  usually
discontinuities on the element sides.
Analyze the constructed system of functions and
supplement the system of approximating
functions (5) with nonzero and linearly
independent functions (10), correlating them
with some internal degrees of freedom.

Instead of introducing the internal degrees of
freedom, we can “scatter” functions (28) over

have
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the approximations of the element, specifying in

)

of =il i=1+N,j=1,2,3, m=4,5, (29)
k

k

where ¢ are coefficients which are determined

by solving systems of equations based on the
completeness criterion identities.

Let high-precision elements be used, for which
the completeness criterion identities of order
p=2 are satisfied for the approximations y;:

Zx Xi=x, Zx,y,z,—xy, Zy, 2=y (30)

Then, using the first and last identities (16) and
keeping symmetry, we assume:

1 1
Oh = 3}(:()’ i) Ph Z—gli(x—x;) (€29)
It follows from (31) and (30) that:
NN N N
lei%‘z ZZIymﬁiz = lemﬂls = Zlyi§0i3 =0 (32)
1= 1= 1= =

Hence, identities (15) are satisfied.
All identities (16) of the completeness criterion
of the 3rd order are satisfied as well:

131 1 2 1)_1.3
15(6)6 2 2x +ﬂ,)§0"3)_6x

N1 1
2(2 xzy/%l (_x12

]

1 1
+)ph — x,-y,-(ﬂ}aj =5y

._.

Mz

1 1
(2 /yl(011+x/yl§0/2 ( y/ + )§0/3j 2xy

I
—

3

Mz

1 1 1
S (4o0eh+ (bt + ok | =% (33)

To construct approximations (5) and (10), we
can use the approximating functions of
Kirchhoff-Love thin plate finite elements.

Let in (9):

\Volume 17, Issue 3, 2021

1 2_ 3

@i =Vij,» Py =P = Xi» (34)
2_.3_ .3 _ 2 4 5

=P =P =03 =0; =¢; = 0,
i=1+N, j=1,2,3,
where y is the system of approximating functions
of a Kirchhoff-Love thin plate element
corresponding to the degrees of freedom (4). They
usually satisfy the second-order, if not third-order
completeness criterion identities. In order to
ensure consistency they only have to belong to the

Sobolev space Wzl, and not W22 ;

i 1s the system of approximating functions of
the element of the plane problem of the theory
of elasticity.

We construct functions (27) based on residuals
(26). Next we calculate the constants in (28)
from the equations (19). Then we analyze the
constructed system of functions (10) and
supplement the system of approximating
functions (5) with nonzero and linearly
independent functions, correlating them with
some internal degrees of freedom.

It would be a mistake to define the functions
corresponding to the rotations through the
derivatives .

0

0
ay l//u ’ ¢,3 a

@l = ~; i=1+N, j=12,3 (35)

The relationship between the approximations of
the rotation functions and vertical displacements
leads to a significant narrowing of the required
space for solving the variational problem. Thus,
for example, in the case of analysis of a simply
supported plate, we obtain zero shear forces with
good convergence in displacements and moments.

4. FINITE ELEMENTS

4.1. Three-Node Element (JIDR3)

Let us consider a triangle in the local coordinate
system shown in Fig. la. After changing the
coordinates (36), it is transformed into a right
triangle with unit legs shown in Fig. 1b.
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1 b
§=—(x—;y), n=—y (36)
g 3 (be) " 3(0,1)
. x ! ¢
1 2 (a,0) 1 2(1,0)
a) b)

Figure 1. Triangle and its master-element

Assume that the functions y: in (20) are linear
approximations:

n=l=c=n y=¢, x=n,=123 (37)
Since (21) is satisfied, then using (24):

Ph=0h=0%=y, =123

1
1 :%77)(11 o3 =—5lag+bn)x,
1
V=561, Ph=-5&las+bn-a)
1
P3 :%'7(’7—1)' 33 :—777(05"‘/377—[3) (38)
Construct residuals (26):
3 3 3
X by O o) S g
¢ =10
¥ a® b?
T2t
Xy b o, b _bc
% 22772 cy=—nly=c n(x b)
)X _at . b
ZZ - P 2 é P n
—xy+bcn
xy2 bc?
7_777_777(3/ c)——77(x b)
{3 =1xy—bcn
v
AP
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3 2
Yy o oo
62 o 477(y c)
2
Geleg o
0

Calculate vectors (27) according to (39):
w = {a c+3(b—a)by

w :2b—a{y }
12c|(a=b)(-a?+3bx)] > 4 |-x

=57 o) an=f3{Cf 40

Substituting (40) into (28), we find the values of
the constants ax, bx from the incompatibility
criterion equations (19). Discarding the zero
function from the linear independence
condition, we obtain only one function (10):

1, ={0,0,0,c(37-1),a+b—3(ac+bn)}", (41)

corresponding to the internal degree of freedom.

4.2. Four-Node Isoparametric Element
(JIDR4)

Let us consider a convex quadrangular finite

element in the local coordinate system shown in

Fig. 2a. After an isoparametric transformation

of the coordinate system (42), it is transformed

into a unit square shown in Fig. 2b.

4 (d.e)

Y 3o s o

4(L,1)

o X — é‘
1 2 (a,0) 1 2(1,0)

a) b)
Figure 2. Quadrangle and its master-element

x:ag(l_n)'i_b(l_é)n-i_d‘f?]r (42)
y=c(l=&n+ecn
Assume that the functions y; in (20) are

multilinear approximations:
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n=01=8)1-n), x,=£01-n), 43)
x=0=8n,  xa=¢n

They were also used for the isoparametric
transformation (42).

Since (21) is satisfied, then using (24):

Ph=0h=ph =1, i=123,4

1

|
¢’112 :zy)(p ¢’113 :_Exll'

11 11
%) —EJ’er D23 —_E(X—a)lz:

1 1
9l =§(y—C);(3, P13 = —E(x—b);@,

1 1
Pl =§(y —e) s Pi= _E(X—d)ﬂm’ (44)

Construct residuals (26). To obtain functions
(10), we substitute (26) into (27) and find the
values of the constants ak, br in (28) from the
incompatibility criterion equations (19). There
are only two functions left for the rectangle:

w ={0,0,0,0,(1-&))
,=1{0,0,0,7(1-7),0} (45)

4.3. Six-Node Isoparametric Element
(JIDRO)
Let us consider the triangle shown in Fig. 3.

v
3 (b.c)

X
1 2 (a.,0)
Figure 3. Isoparametric six-node element

Use the functions defined on the master-element
in Fig. 1b:

\Volume 17, Issue 3, 2021

=0=c=n1=25=2n); y, =£(25-1);
23 =1(2n=1); Xy =4n(l=¢=n);
X5 =45(1=8=n); Xo=4T- (46)
After transforming the coordinate system (22),
the element is transformed into a right triangle
with unit legs, shown in Fig. 1b.

Use formulas (24) to specify go,-lz, (p,-l3 and
construct the residuals (26). To obtain functions
(10), we substitute (26) into (27) and find the
values of the constants ak, br in (28) from the
incompatibility criterion equations (19).

If intermediate nodes are located at the
midpoints of the sides of the element, then the
Jacobian of the transformation (22) is a linear
function. Since functions (46) satisfy the
completeness criterion identities of the second
order (30), formulas (31) can be used to specify

@, 5. All the completeness criterion

identities of the third order (16) will be satisfied,
and all the residuals (26) will be equal to zero.

4.4. Eight-Node Isoparametric Element
(JIDRS)
Let us consider the quadrangle shown in Fig. 4.

v
3 (b,c)

. 4 (de)

X
1 2 (a,0)
Figure 4. Isoparametric eight-node element

Use the approximations defined on the master-
element in Fig. 2b:

11 ==& (1-n)(1-2& -2n);

12 =¢(=-1)(28 -2n-1);

13 =(1=En(2n-2£-1);

Xa=6n(2n+28-3);

15 =4=Emll-n);  xs=4E0-E)1-n);
13 =45(1-En.

27 =4&n(l-n); (47)
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After transforming the coordinate system (22),
the element is transformed into the master-
element in Fig. 2b.

Use formulas (24) to specify ¢, (0,-13 and

construct the residuals (26). To obtain functions
(10), we substitute (26) into (27) and find the
values of the constants ax, br in (28) from the
incompatibility criterion equations (19).

Suppose that the Jacobian of the transformation
(22) is a linear function (rectangle with the no-
des at the midpoints of the sides of the element).
Since functions (47) satisfy the completeness
criterion identities of the second order (30), for-

mulas (31) can be used to specify ¢, ¢. All

the completeness criterion identities of the third
order (16) will be satisfied, and all the residuals
(26) will be equal to zero.

4.5. Four-Node Element with a Piecewise
Polynomial Approximation
(JIDR4SubAreas)

Let us consider a quadrangular finite element in

the local coordinate system shown in Fig. 2a. It

is transformed into a quadrangle shown in Fig. 5

by transforming the coordinate system (48). A is

the intersection point of the diagonals of the
element.

Figure 5. Four-node element in
a special coordinate system

{X=xA+(a—xA)§+(d—xA)’7 (48)

y=y,0=E+(e=ya)n

Viktor S. Karpilovskyi

Consider the functions from [12], which are
second degree polynomials in each subdomain
Qi, i=1,2,3,4 and are continuous together with
their first derivatives on the diagonals of the
element:

i, i=1,2,3,4 (49)

Use formulas (24) to specify o), (0}3 and
construct the residuals (26). To obtain functions
(10), we substitute (26) into (27) and find the
values of the constants ak, br in (28) from the
incompatibility criterion equations (19).

4.6. Eight-Node Element with a Piecewise
Polynomial Approximation
(JIDR8SubAreas)

Let us consider a quadrangular finite element in

the local coordinate system shown in Fig. 2a. It

is transformed into a quadrangle shown in Fig. 5

by transforming the coordinate system (46).

Consider the functions from [12], which are

second degree polynomials in each subdomain

Qi, i=1,2,3,4 and are continuous together with

their first derivatives on the diagonals of the

element:
i, I=1+8 (50)

Since functions (50) satisfy the completeness

criterion identities of the second order (30),

formulas (31) can be used to specify ¢, .

All the completeness criterion identities of the
third order (16) will be satisfied, and all the
residuals (26) will be equal to zero.

5. TESTS

All calculations were performed in SCAD,
which is a part of SCAD Office®.

5.1. Patch Tests

A rectangular plate is shown in Fig. 6. The plate
sizes are proportional to those in the Patch Tests
considered in [13].
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y y
0.12)

(24,12

(0.8,0.8) (1.6.0.8)

0D (1.0,0.3)

(2.4,0)

Figure 6. Rectangular plate

Two groups of kinematic loadings with known
theoretical values were considered.

The first three load cases are a check of the
displacement of a rectangle as a rigid body
when moments and shear forces over the entire
area of the plate are zero:

e displacement along the OZ axis: w|r=l,

&r, 6|r=0;

e rotation about the OX axis: w|r=y,
&{r=1, 6|r=0;

e rotation about the OY axis: wir=y, &|r=—

1, &r=0.
The following three load cases provide non-zero
constant moments and zero shear forces over the
entire area of the plate:
. wlr=x?, &|r=0, &|r=2x;
o W=7 &r=2y, 6|r=0;
. wir=xy, &{r=x, Gr=y.
Patch tests are performed in order to check
whether the completeness criterion identities

(15) are satisfied for all

elements:

e stiffness matrices of all the considered finite
elements have three eigenvectors
corresponding to their displacement as rigid
bodies;

e the results for plates subjected to constant
moments were obtained with an accuracy up
to a computational error.

These tests serve only as a criterion for the

correctness of the program code.

the considered

5.2. Rectangular Plate Simply Supported
along the Perimeter Subjected to the
Transverse Uniformly Distributed Load

Let us consider a rectangular plate simply

supported along the perimeter subjected to the

transverse uniformly distributed load shown in

Fig. 6. Specify:

E =30000 kPa,v=0.3,h=0.2m,
a=24m,b=48m,p=1.0 kPa.

Specify the boundary conditions:

w|r=0, 6,(0,5)=06,(a,y)=0,(x,0)=0,(x,b)=0

VR VRSl
B ByY——4—4-— B ' Ba—
|
|
|
| l | B
A X B X c *
;J:—.— N — I!IA ;J: - -p-= !I-‘—é;-— }Bi‘h +__|!'_‘4;'_ ;Jh ! A
E X F X G r H X

Figure 7. Design models of a rectangular plate
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To study the locking effect, the plate thickness
varied from h=0.001m=a/2400 to h=1.2=a/2.
Experiment design models taking into account
the symmetry axes are shown in Fig. 7. Table 1
presents the calculation results for a thin plate
when h=0.08m=a/30. Analytical solution of this
problem in the center of the plate (point 4) and
in the middle of the larger side (point B)
(Analytical solution according to the spatial
theory: wla = 0.239663m; according to the

Viktor S. Karpilovskyi

Kirchhoff-Love theory: wja = 0.238907 m, the
values of the moments and shear forces
coincide):

w|a =0.23975%9m,

Mq|a, = 0.585695(kNm/m),
M,|a = 0.266978(kNm/m),
Qx[B,= 1.11602(kN/m)

Table 1. Displacements, moments and shear forces in the plate

Mesh Eloment Displacement wa (m) Moment My a (kNm/m) g:sr(l?\;/cnj)
type Mesh Mesh Mesh
2x2 4x4 8x8 | 16x16| 2x2 4x4 8x8 | 16x16| 2x2 4x4 8x8 | 16x16
A | MTC4 |-0.2363|-0.2384(-0.9394]0.9394 | 0.454 0.5809|0.5845|0.5854(0.8226|0.9676|1.0415| 1.0787
JIDR4 1-0.2302(-0.2382|-0.2393|-0.2396| 0.585 |0.5847|0.5852]0.5856|1.1523(0.9224|1.0376| 1.0782
JIDR4SA4 1-0.2379]-0.2397|-0.2397|-0.2397|0.6001 | 0.5616 | 0.5871 | 0.586 |2.2426|1.3454|1.0611| 1.0678
B DSG3 ]-0.0879|-0.2171|-0.2367|-0.2393/0.2172]0.5315{0.5765|0.5838 [ 1.2419 | 1.0958 | 1.0861 | 1.1369
JIDR3 |-0.1838|-0.2311{-0.2377|-0.2393/0.4276 | 0.5581 0.5788 | 0.5841{0.9327|1.0717| 1.108 | 1.1274
C | MTC4 |-0.2335/|-0.2385/-0.2389|-0.2395| 0.454 |0.5872[0.5852(0.5867|0.79380.9263|0.9666 | 1.0028
JIDR4 |-0.2097|-0.237 |-0.2388|-0.2395/0.4737 1 0.5695 | 0.5819|0.5854 | 1.1062 | 1.1911|0.9985| 1.0187
JIDR4SA |-0.2118|-0.2374|-0.2395|-0.2397|0.4604 | 0.574 |0.5864|0.5862|1.0494|1.9069 | 1.2488 | 1.0785
D DSG3 ]-0.1627]-0.222 |-0.2375|-0.2393/0.3379(0.51520.5815]0.5861 | 0.8049|0.9572| 1.1442| 1.2105
JIDR3 ]-0.1941|-0.2317|-0.2379|-0.2393|0.4239|0.5473|0.5802 | 0.5854 | 1.5143 | 0.8798 | 0.8864 | 0.9576
E | JIDR4 | -0.24 |-0.2398]-0.2398|-0.2398|0.6077 [ 0.5907|0.5869| 0.586 |0.8362|0.9553|1.0397 | 1.0783
JIDR4SA |-0.2398|-0.2398|-0.2398|-0.2398| 0.617 |0.5938|0.5878|0.5862|0.8685| 0.966 |1.0403| 1.0784
F JIDR6 |-0.2414{-0.2399|-0.2398|-0.2398| 0.659 [0.6019]0.5894|0.5866|0.8142|1.0022|1.0659| 1.0912
JIDR4 |-0.2417|-0.2396|-0.2397|-0.2398|0.6671 | 0.5985 | 0.5874 | 0.5861 | 0.5796 | 0.8685| 1.0046 | 1.0616
JIDR4SA |-0.2425|-0.2398|-0.2398|-0.2398| 0.682 |0.6056|0.5905| 0.587 [0.7586(0.9254|1.0077| 1.0611
H | JIDR6 |-0.2424|-0.2398|-0.2398|-0.2398(0.6849 | 0.604 |0.5902| 0.587 |0.8495|0.9604|1.0436| 1.082
5.3. Stress-Strain State of a Clamped :% !

Hexagonal Plate Subjected to the
Uniformly Distributed Load

Let us consider a regular hexagonal plate
clamped along the perimeter subjected to the
transverse uniformly distributed load shown in
Fig. 8.
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Figure 8. Hexagonal plate
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Specify:

E =30000 kPa,v=0.3,h=0.1m,
a=1m,p=10 kPa.

and boundary conditions:
W|l":0n|l"=01 |r =0.

A numerical solution of this problem was
obtained according to the Reissner-Mindlin
theory at the center of the plate at point 4 with a
high degree of accuracy:

wa=-38.749(mm), Mx|a=0.6511(kNm/m).

The solutions were obtained for various types of
finite elements. The maximum order of the
system of equations for which the solution is
obtained is 2747925.

The solution of this problem according to thin
plate theory is given in [14] and is:

wa=-36.324(mm), M:=0.64786(kNm/m).

The calculation results for the design models in
Fig. 9 are given in Table 2.

Figure 9. Design models Ix1 of a hexagonal plate

Table 2. Displacements and moments in the clamped plate

Mesh Displacement wa (mm) Moment My 4 (kHm/m)
; ese Element Mesh Mesh
yp 1x1 2x2 4x4 8x8 1x1 2x2 4x4 8x8
A MITC4 -36.619 | -37916 | -38.57 | -38.737 | 0.7259 | 0.6573 0.656 0.6514
JIDR4 -27.752 | -35.899 | -38.081 | -38.584 | 0.5335 0.6405 0.6489 | 0.6504
JIDR4S4 | -29.89 | -35.932 | -38.09 | -38.586 | 0.5236 | 0.6439 0.6478 0.6504
B DSG3 -21.032 | -35.274 | -38.132 | -38.663 | 0.3751 0.6101 0.6293 0.6429
JIDR3 -24.194 | -35.77 | -38.035 | -38.565 | 0.5076 | 0.6184 0.642 0.6486
C JIDRS -36.853 | -38.559 | -38.717 | -38.743 | 0.7235 0.6602 0.654 0.6518
JIDRS8SA | -37.37 | -38.614 | -38.734 | -38.747 | 0.7317 | 0.6657 0.6549 | 0.6521
D JIDRG6 -37.47 -38,66 | -38.739 | -38.747 | 0.6842 | 0.6613 0.6538 | 0.6518
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6. CONCLUSIONS

All the created elements:

* have passed all Patch Tests;

 numerical experiments have confirmed that there
is no locking effect;

* agood approximation of the numerical solution
to the analytical results and the results of high-
precision calculations has been obtained.
Elements based on thin plate elements were
created. Approximating functions were used for:
* triangular elements [7,15];

* quadrangular elements [16].

Numerical experiments did not increase the
accuracy of calculations in comparison with
the approximations given in the paper with a
significant complication of the algorithm.
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