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Abstract: The article compares the requirements for calculating the snow load on the coatings of buildings and structures
in accordance with the regulations of technically developed countries and associations — Russia, the European Union,
Canada and the United States. It was revealed that in these norms the general approaches, the subtleties of calculating the
coefficients, the set of standard coatings and the schemes of the form coefficient proposed for them differ significantly.
This situation reflects the general problem of determining snow loads — at the moment there is no recognized unified
scientifically grounded approach to determining snow loads on coatings of even the simplest form. The difference in the
normative schemes of snow loads is clearly demonstrated by the example of a three-level roof.
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AnHotanust: B crarbe cpaBHUBaIOTCS TpeOOBaHMS K pacu€Ty CHErOBOM HArpy3Kd Ha MOKPBITHS 3[0aHUI U COOpPYKEHHUN
B COOTBETCTBUH C HOPMATHBHBIMHU JOKYMEHTaMU TEXHMYECKH Pa3BHUTBHIX CTpaH M oObenuHeHui — Poccun, EBpocorosa,
Kanast u CIIA. BpisiBiIeHO, UTO B 9TUX HOPMAaX 3HAYUTENILHO OTIIMYAIOTCS OOLIHE ITOX0/bl, TOHKOCTH BBIYMCIICHNUS KO-
3¢ PUIEHTOB, HA0OP CTAHAAPTHBIX MOKPBITHHI U TIpeyIaraeMble /it HUX cxeMbl koaddurmenta popmel. Takas curyanms
OTpakaeT OOIIYI0 POOIeMy ONpe/Ie/ICHNsI CHETOBBIX HArPY30K — Ha JIaHHbI MOMEHT OTCYTCTBYET IIPU3HAHHBIN €ANHBIN
Hay4yHO 000CHOBAHHBIN ITOJXO/ K ONPEAEICHUIO CHETOBBIX HAIPy30K Ha TIOKPBITUS JAaxke npocTeieit popmel. Pazmuune
B HOPMATHBHBIX CXEMaX CHETOBBIX HArpy30K HAIVISIIHO MPOJEMOHCTPUPOBAHO HA IIPUMEPE TPEXYPOBHEBON KPOBIIH.

KiroueBrble cjioBa: CHEroOBbIE HarpyskKu, HOpMaTuBHbIC JOKYMCHTbI, (1)I/I3I/I‘{GCKOC MOJCIINPOBAHUC,
MAaTEMATU4YC€CKOC MOACIUPOBAHNEC

INTRODUCTION physical modeling in wind tunnel or water

flumes, regulated by the normative documents

The problem of determining the distribution of
snow loads on roofs of various shapes does not
lose its relevance to the present day. Very few
full-scale tests are carried out all over the
world, which does not allow obtaining new
load arrangements or clarifying old ones. The
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of all technically developed countries, makes it
possible to simulate only single snow storms,
and the problem of simulating the natural phe-
nomenon of snow accumulation and scale mod-
els remains unsolvable. Progress in the direction
of determining the snow loads on the roofs of
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structures is currently observed only in the field
of mathematical (numerical) modeling [7].
Despite the development of a large number of
mathematical models, their algorithmic and soft-
ware implementations, the normative documents
regarding the determination of snow loads remain
conservative and for the most part do not allow
the possibility of mathematical modeling.

The conservatism of the norms often causes de-
signers, constructors and other participants in the
construction process to misunderstand that all the
problems have already been solved, and the provi-
sions set out in the norms are unshakable. The
purpose of this article is to show that the regula-
tions in different countries and schemes for the
distribution of snow loads, even for the simplest
roofs, differ qualitatively and quantitatively.

COMPARISON OF BASIC PROVISIONS

This section compares the main provisions of
regulatory documents in terms of determining
snow loads according to the standards of Russia
(SP 20.13330.2016 [1]), the European Union
(EN 1991-1-3 [2]), Canada (National Building
Code of Canada [3]) and USA (ASCE / SEI 7-
16: Snow Loads [4]).

Similar provisions of the norms:

1) the calculation of the load is carried out ac-
cording to the same principle - multiplying the
characteristic value of snow load on the ground
by various coefficients (drift, thermal, etc.), in-
cluding the snow load shape coefficientof the
snow cover of the earth to the snow load on the
cover (or several such coefficients).

2) there are maps of snow zoning of varying de-
grees of detail to determine the characteristic
value of snow load on the ground.

3) to determine the coefficient (or coefficients)
of the shape, there are load arrangements for the
following roofs:

* monopitch and pitched;

* dome and cylindrical;
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e multi-level;

» multi-span (sawtooth, etc.)

4) To determine snow loads on other types of
roofs that are not regulated by standards, it is
recommended to carry out research in satisfying
the requirements of wind tunnels [5].

Miscellaneous provisions of the norms:

Each regulatory document has its own set of calcu-
lated values, and not all of them can be found anal-
ogous; the detailing of zoning maps varies greatly;
some norms allow the use of numerical modeling
for calculating snow loads, others do not stipulate
or directly prohibit due to some circumstances. Al-
so, in some standards there are load arrangements
for the transfer coefficients in addition to the above.
Let's consider in more detail each of these provi-
sions for each of the mentioned documents.

1) Bulding Code of Russia SP 20.13330.2016
"Loads and actions" (with amendment 3) [1]
give the following formula for calculating the
standard value of the snow load:

S = pceceSy, (1)
where u is the shape coefficient, which takes into
account the transition from the weight of the
snow cover of the earth to the snow load on the
roof, ce is the exposure coefficient, ¢ is the ther-
mal coefficient, Sg is nominal weight of snow
cover per square meter of surface. In order to
obtain the design load, this expression is multi-
plied by the load safety factor ys, usually equal
to 1.4. Amendment 3 in some cases allowed a
decrease in the value of the c. coefficient based
on climatic data for the construction site.

Differences from other documents:

In Russian standards, an increase in snow load
for roofs abutting and close to taller construc-
tion works is considered separately for the
windward and leeward sides, while the concept
of wind direction itself is absent. There are also
load arrangements for specific roofs, which, from
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the point of view of other documents, are even
redundant. Much attention has been paid to roof
lanterns, as there are separate load arrangements
presented for longitudal and transversal lanterns
in the norms. Also, a special load arrangement
for a roof abutting two taller construction works
is shown, as well as for arched roofs and vaulted
roofs.

Numerical Simulation:
In contrast to wind loads [6], the Russian stand-
ards do not say anything about the numerical
modeling of snow loads.

2) Eurocode [2] identifies three types of snow
load: for persistent / transient design situations
(s1), for the accidental design situations, where
exceptional snow load is the accidental action
(s2), and for the accidental design situations,
where exceptional snow drift is the accidental
action (s3), and gives the following formulas for
calculating the values of each of them:

S1 = UCeCeSk, Sz = UCeCeSaa, S3 = USk, (2)
where u is the snow load shape coefficient, Ce 1s the
exposure coefficient, C: is the thermal coeffi-
cient, sk is the characteristic value of snow load
on the ground, saa=2sx.

Differences from other documents:

Similar to Russian standards, an increase in
snow load for roofs abutting and close to taller
construction works is considered separately for
the windward and leeward sides, while the
concept of wind direction itself is absent.

Numerical Simulation:

Unlike Russian and Canadian standards, Eurocode
allows the use of numerical modeling to refine the
shape coefficient along with physical modeling,
however, it does not contain any specific require-
ments for the methods that should be used.

3) National Building Code of Canada [3] gives

the following formula for calculating the stand-
ard value of the snow load:
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S = I;55(C, €y, CsCy), 3)
where /s is importance factor for snow load, Ss is
1-in-50-year ground snow load, C» is the basic
roof snow load factor, Cy is the wind exposure
factor, Cs is the slope factor, C, is the accumula-
tion factor. Togethers C», Cs and C. are analo-
gous to u from the Building Code of Russia and
the Eurocode.

Differences from other documents:

In the Canadian standards, wind directions are
clearly distinguished, and the load is calculated
for each of the sides separately, but then the
largest of the obtained values is taken and as-
signed to both sides in reserve.

Numerical Simulation:

Construction Canada explicitly prohibits the use
of numerical simulations of snow accumulation
due to insufficient data on the legality of its use
and the physicality of the results obtained with
its help.

4) ASCE standard [4] gives the following for-
mula for calculating the standard value of the
snow load:

ps = 0.7C,Celspy, (4)
where C. is the exposure factor, C; is the ther-
mal factor, /s is the importance factor, pg is the
ground snow load. Also, a minimum roof snow
load for low-slope roofs, pm, shall be obtained
using the following formula:

Pm = Ispg, (5)

For unbalanced load, the following formula is used:
(6)

bs = LsDy,

where Cis is the roof shape factor.
Differences from other documents:

Similar to the Canadian standards, wind direc-
tions are clearly highlighted, and the load is cal-
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culated for each of the sides separately, but then
the largest of the obtained values is taken and
assigned to both sides as a margin. The values
of the shape factor depend, as can be seen from
formula (4), on the thermal factor.

Numerical Simulation:

American regulations explicitly state that physi-
cal modeling results should only be used in con-
junction with numerical simulations, that shape
factors or load values cannot be generated based
on the experiment alone. The Appendix to the
ASCE standard [5] contains a classification of
numerical methods for modeling snow accumu-
lation. Also, American norms are distinguished
by the most detailed map of snow zoning, it
contains data for all more or less large settle-
ments in the United States due to the arrange-
ment of meteorological stations near airports.

In general, the differences between different
norms are more likely due to the engineering
tradition of countries that serve as prerequisites
for the compilation of norms, and in all respects:
even the standard weight of the snow cover is
taken somewhere strongly in reserve, some-
where it is specified as much as possible to pre-
vent unnecessary large loads. A significant

drawback of all regulatory documents is ob-
served in terms of legitimization and regulation
of mathematical (numerical) modeling of snow
loads. This circumstance for all documents is
undoubtedly an inhibiting factor in the introduc-
tion of mathematical modeling into construction
practice, especially considering the increasing
need for its use and the increasing pace of scien-
tific research in this direction in other countries,
such as China, where in the last 7 years, several
dozen articles on research (for example [18-
19]), carried out with the support of government
grants, were published.

EXAMPLE

In order to demonstrate the differences in the
definition of snow loads according to the regula-
tory documents of Russia [1], the European Un-
ion [2], Canada [3] and the USA [4-5], an ex-
ample of a three-level roof is considered (Fig.
1). Calculation formulas and values of the cor-
responding parameters and coefficients are pre-
sented in table. 1. Figures 2-5 show calculation
results.

Table. 1. Calculation formulas for various regulatory documents

Regulatory documents

Formula for snow load

Accepted values in the formula

Building Code of Russia SP
20.13330.2016 (with amend-
ment 3)

S = pcectSy

c. = 0.7 for the central level,
¢, = 1.0 for side levels, ¢; =
1.0, 5S4 = 1.5 kPa

EN 1991-1-3 (2003)

s = uC,Cisy (persistent);
s = uC,Cisqq (exceptional

C, =08 C,=10,5, =15
kPa, Sad = ZSk = 3 kPa

snow load)
S = US,q (exceptional snow
drift)
National Building Code of Can- | S = I;S(C,C,,CsCy) I, =1.0,C, =1.0,C, = 1.0,
ada 2015 S; = 1.5kPa
ASCE/SEI 7-16: Snow Loads pr = 0.7C.Celspy C,=09C =10,I,=1.1
Pm = Ispg (minimum load for | Pg = 0.96 kPa (analogue of Sg)

low-slope roofs)
ps = Cspr (unbalanced load )
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Figure 4. Load arrangement according to the National Building Code of Canada 2015
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Figure 5. Load arrangement according to ASCE/SEI 7-16: Snow Loads

CONCLUSIONS

Based on the results of the analysis and compar-
ison of the regulatory documents of Russia, the
European Union, Canada and the United States
in terms of determining snow loads on the roofs
of structures, as well as comparing load ar-
rangements using the example of a three-level

roof, determined according to the relevant doc-
uments, the following conclusions can be
drawn:

1. Normative documents of technically ad-
vanced countries / associations have their own
general approach to determining snow loads,
which differ significantly from other countries.
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2. All normative documents contain recommen-
dations for carrying out physical modeling of
snow loads, but recommendations for mathe-
matical (numerical) modeling are contained on-
ly in the norms of the European Union and the
United States.

3. Load arrangements, even for the simplest
roofs, differ in different documents both qualita-
tively and quantitatively.

4. This reveals the general problem of the lack
of progress in a common understanding of how
to determine the snow loads on roofs. We can
say that in this matter there is no reliable sup-
port even in the norms.

Improvement of Russian normative documents
in terms of physical modeling (regulation of re-
quirements and procedure for conducting exper-
iments) and mathematical (numerical) modeling
(legitimization and regulation) will help to par-
tially solve the problem of uncertainty in the
assignment of snow loads to complex surfaces.
Such measures, in particular, will increase the
mechanical safety of large-span structures, for
which the snow load is one of the determining
factors.

The improvement of Russian normative docu-
ments in terms of assigning snow loads to sim-
ple typical roofs can also be helped by studies
based on physical (experimental in wind tunnel)
and mathematical (numerical) modeling. This
alternative approach seems to be more effective
than field experiments and observations, which
are very time-consuming, labor-intensive, and
financially expensive.
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