International Journal for Computational Civil and Structural Engineering, 17(3) 24-38 (2021)
DOI:10.22337/2587-9618-2021-17-3-24-38

SIMULATION OF AERODYNAMIC INSTABILITY
OF BUILDING STRUCTURES ON THE EXAMPLE
OF A BRIDGE SECTION.
PART 2: SOLUTION OF THE PROBLEM IN A COUPLED
AEROELASTIC FORMULATION AND COMPARISON WITH
ENGINEERING ESTIMATES

Alexander M. Belostotsky 23, Irina N. Afanasyeva '#, Irina Yu. Negrozova 2,
Oleg S. Goryachevsky 12

! Scientific Research Center StaDyO, Moscow, RUSSIA
2National Research Moscow State University of Civil Engineering, Moscow, RUSSIA
#Russian University of Transport (RUT - MIIT), Moscow, RUSSIA
4University of Florida, Gainesville, Florida, USA

Abstract: In this paper, we study aerodynamic instability using the example of a two-dimensional problem of flow around
a simplified section of a flexible suspension bridge (on the Tacoma River, USA). A direct dynamic coupled calculation was
performed to determine the critical speed of manifestation of aerodynamic instability. The results obtained were compared
with the results of engineering estimates presented in [40]. This example shows that to solve such problems it is possible
to use the lighter des turbulence model instead of the les turbulence model and, therefore, a coarser mesh. In contrast to
existing engineering techniques, direct numerical modeling of the interaction between the structure and the air flow allows
one to take into account the reverse effect of the structure on the flow, as well as the mutual influence of several types of
aerodynamic instability.
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AHHoTanusi: B Hacrosmei paborte uccieayercss a3poanHaMHUUEcKasi HEYCTOIHUMBOCTD HA TMPUMEpe IBYMEPHON 3a1aqn
00TeKaHMs YIPOIIEHHOTO CeYeHMsI THOKOTO mojBecHoro MocTa (Ha peke Takoma, CLIA). BeimonHeH npsmoit auHamu-
YECKHI CBA3aHHBIN pacdeT IS ONPEAEICHIUSI KPUTHUECKOW CKOPOCTH TPOSIBIICHUS a3POANHAMUYECKOH HEYCTOHUNBOCTH.
[onydeHHBIE pe3ynbTaThl CPABHUBAINCH C PE3YJIbTaTaMU MH)XKEHEPHBIX OICHOK, IpexacTaBieHHbIX B [40]. Ha nanHoM
IIpUMepe MOKa3aHo, YTO VISl PEIICHNUS MOAOOHBIX 3a/1a4 MOXKHO HCIIOIb30BaTh O0JIEe «JIETKYI0» MOJIENb TypOyJICHTHOCTH
DES Bmecto monenu typOynenTHoctu LES 1, ciienoBarensHo, 6oinee rpy0Oyro ceTKy. B omimune oT cyecTByOMmMNX HHKe-
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HEPHBIX METOAUK, IIPAMOE YUCIICHHOC MOACIIMPOBAHUE B3aMMOJICHCTBHS KOHCTPYKIIMN WU BO3AYIIHOTO IMMOTOKA ITO3BOJISACT
Y4€CTh 06paTHO€ BJIMAHUE KOHCTPYKIUU Ha IMMOTOK, 4 TAK)KE B3AUMHOE€ BIIMAHNUE HECKOJIBKUX BUI0OB aBpO,Z[HHaMH‘IeCKOﬁ

HEYCTOMUYUBOCTH.

KoroueBble cj10Ba: a3poiiHAMHUYECKasi HEYCTOHUMBOCTD, TAIONIMPOBAaHKE, AUBeprennys, FSI, Moxens TypOyneHTHOCTH
URANS SST, monens Typoyneatnocta DES SST

1. INTRODUCTION

Long span and flexible structures such as bridges
with long spans are highly sensitive to wind
influences. Such structures are susceptible to
aeroelastic phenomena. Over the past 150 years,
many such cases have been known and described.
Until the 1940s, the wind load was considered
secondary and even its static component was
not taken into account. This continued until the
most famous destruction of the Tacoma Narrows
Bridge in the United States. Almost from the
very beginning of construction work, problems
with the stability of the bridge began to appear,
even in light winds. The bridge immediately
gained a reputation as an unstable structure. Due
to the fact that the windy weather of the bridge
swayed, he was given the nickname "Galloping
Gertie”. Numerous attempts were made to
stabilize the structure, but they could not solve
this problem — on November 7, 1940, a collapse
occurred as a result of the increasing vibrations
of the bridge deck in the air stream. This disaster
marked the beginning of an intensive and
purposeful study of the interaction of flexible
structures with wind flow. The first fundamental
scientific works on this topic appeared, namely
the works of Theodor von Karman [1], Alan
Garnett Davenport [2-3], Barshtein M.F. [4],
Simiu [5], Scanlan [5-8], Den Hartog [9].
Based on these studies, engineering methods
for assessing the occurrence of aerodynamic
instability were developed and introduced into
regulatory documents [10-12].

In a number of cases, the issues of wind flow
around unique buildings and structures during
their design are solved experimentally. For this,
the testing of models in laboratory conditions
is widely used, as a rule, in wind tunnels (WT).
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Experimental studies of the assessment of the
aerodynamic characteristics of structures were
carried out by such scientists as M.I. Kazakevich
[11], S.M. Gorlin [12], Alan Davenport [2, 15],
A. Kareem [16], B. Blocken [17] and others.

The experimental approach, which was practically
uncontested 20-30 years ago, has a number of
serious drawbacks. A correct analysis of the
mutual influence of the air flow and the structure
is practically impossible in an experiment in a
wind tunnel due to the difficulty of observing
the similarity of a scale model of a deformable
structure. Almost all modern experimental
studies are based on the assumption that the
structure behaves as an absolutely rigid body, and
fluctuations in the flow and damping are imitated
by “springs”. In this case, the reverse effect of the
deformed structure on the structure of the air flow
has been repeatedly confirmed. Failure to take
into account the reverse effect can lead to both
an overestimation of the critical wind speeds (at
best), and their underestimation (in the worst case).
Due to the rapid development of mathematical
modeling, numerical methods and implementing
software systems against the background of
an impressive growth in computing power,
another approach has been actively developing
in recent years — mathematical (numerical)
modeling, free from the limitations of physical
(experimental) modeling methods. Today it is
possible to carry out a direct numerical solution
of related problems of aero-hydroelasticity
and directly simulate the phenomena of
aerodynamic instability without resorting
to numerous serious assumptions adopted
in experimental methods. As a result, more
accurate assessments of the criteria for the
occurrence of aerodynamic instability of unique
and especially critical flexible structures are

25



Alexander M. Belostotsky, Irina N. Afanasyeva, Irina Yu. Negrozova, Oleg S. Goryachevsky

obtained and, as a consequence, their mechanical
safety is increased. Among the works devoted
to the numerical modeling of the phenomena of
aeroelasticity, one can single out [18-38].
Despite the advantages of direct numerical
modeling, it also has disadvantages. The main
one is high computational complexity. Although,
along with the further progress of algorithms and
computer technology, this drawback will be more
and more overcome, now it seems relevant to
develop a universal and more economical approach
to assessing the aerodynamic stability of structures.
The purpose of this study is to develop a universal
approach to assessing the aerodynamic instability
of bridge structures in an unsteady wind flow using
a preliminary engineering estimate and subsequent
direct mathematical (numerical) modeling of
the structure's behavior in a coupled aeroelastic
formulation.

2. FORMULATION OF THE PROBLEM

The problem of interaction of a simplified section
of a bridge on the Tacoma River with an air flow
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Figure 1. Geometric parameters of the section.

is considered. This problem was presented by a
team of scientists from China at an international
conference (The Seventh International Colloquium
on Bluff Body Aerodynamics and Applications
(BBAAY) Shanghai, China; September 2-6, 2012).
They presented their results in [39], which describes
their method for solving the problem using the
ANSYS Fluent software package in a related setting
with the author's software package. The geometric
parameters of the section are shown in Fig. 1.
When modeling the dynamic behavior of the
elastic section, the scheme shown in Fig. 2.
The parameters of the material are presented in
Table 1. The parameters of elastic connections
with linear damping are taken from [39] and are
also displayed in the table. In the Ox direction,
the geometric center of the section is fixed. A
torsional elastic link was applied to the entire
Cross section on average.
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Figure 2. Design model.

Table 1. Material parameters

Material parameters Parameters of the elastic model of the bridge section
. Linear weight, kg / m 4250
Density p, kg / m? 1300 —
yp X Moment of inertia, kgm / m 177 730
Elastic modulus E, Pa 2.1-10% | Vertical relative damping 0.005
POISSON'S ratio v 0.16 Relative damping by torsional degree of 0.005
freedom

26 International Journal for Computational Civil and Structural Engineering



Simulation of Aerodynamic Instability of Building Structures on the Example of a Bridge Section. Part 2: Solution of
the Problem in a Coupled Aeroelastic Formulation and Comparison with Engineering Estimates

Air with constant properties at a temperature of
25°C is considered.

In the course of solving the problem in a related
formulation, the following parameters were
determined:

» vertical displacements y,(¢) of point 1 and y,(z)
of point 2 (Fig. 1), the position of which changes
over time due to wind action on the structure;

« angle of rotation 6(¢), which is calculated as
follows:

8=arcsin(~é-5-)—) Q)

L/2

where Ay =y, — y, is vertical displacements of
point 1 and point 2, respectively.

In order to solve the problem, the ANSY'S software
package was used. To simulate the fluid — structure
interaction (FSI), the “2-way FSI” simulation
mode was used — two-way transfer of calculated
data between various independent modules in the
form of displacements (on the one hand) and loads
(on the other side).

3. NUMERICAL SIMULATION
METHODOLOGY

3.1. Numerical CFD Setup

The entire computational air domain was divided
into finite volumes using the ANSYS Meshing
module. Variants of computational grids with

Eloment sizs
in volame; 0,04 m Element slze
: in volume: 0.4m

l First layer thickness: Je-5 m [ES28
Number of layars: 15
Growth rale: 2.5

Llement size on the surface: 0.0Z m

Figure 3. Calculation grid for CFD model:
Model 4 (381 894 FE).

\Volume 17, Issue 3, 2021

indication of the variable parameters were
considered in [40]. Model 4 was chosen to
simulate the behavior of air (Fig. 3).

The INLET condition (U=V, ,V=W=0, where U,
V, W are the components of the velocity vector, V.
is a given constant flow velocity) with a horizontal
directional flow velocity uniformly distributed
along the height is specified as a boundary
condition at the input. On the face opposite
from the entrance, “soft” boundary conditions
“Opening” were set with the averaged relative
pressure equal to zero. On the surface of the
streamlined body, the “liquid-structure” interface
condition was applied. Symmetry conditions were
set on the other faces of the computational domain.
Zero flow rate was taken as the initial conditions
for the problem.

Since the flow is turbulent at typical Reynolds
numbers of ~ 108 for this problem, the turbulence
model must be used to close the Navier-Stokes
equations. In this paper, two turbulence models
are considered: URANS k- SST and DES SST.

3.2. Numerical CSD Setup

For the Computational Structural Dynamics model
(CSD model), a structured finite element model
of a bridge section with an element size of 0.05
m was created (Fig. 4).

Figure 4. Computational grid for CSD model:
Model 4 (10 913 nodes).

In order to simulate the plane problem, both
sides of the section are fixed along the O_ axis,
which coincides with the axis of the bridge. The
movements of the center point are limited along the
O, axis directed along the wind flow (there are no
oscillations in the direction of the flow). The elastic
vertical link was modeled by a single spring with
damping, one end of which is fixed at the central
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point of the section, and the other is motionless (see
the parameters of the vertical link in Table 1). The
elastic torsional bond is modeled through the so-
called Remote Displacement mechanism, when the
angle of rotation of the entire section is calculated
as the average value of the angles of rotation of all
mesh nodes, and, accordingly, this angle and its rate
of change cause elastic and viscous components of
the reactions, respectively (see the parameters of
the torsional bond in Table 1).

3.3. Coupling conditions

The time step size for CFD and CSD solvers is
At =0.02 s. The physical calculation time is 80 s.
To ensure the convergence and stability of the
solution at each associated time step, it is necessary
to set the following calculation parameters:

— the maximum number of iterations at each
associated step (maximum number of stagger
iterations);

— criterion of convergence for loads and
displacements;

Is the under relaxation factor for calculating loads and
displacements at each iteration of the associated step:

LLE H

p=9,taop,,*t9,) )
where ¢ _ is the value of the variable calculated at
the current iteration, e is the value of the variable
calculated at the previous iteration, o is the relaxation
coefficient (by default it is 0.75), ¢ is the corrected
value of the desired value at the current iteration.

In this study, the loads were assigned a constant
coefficient of lower relaxation a = 0.5, while
displacements were transferred without lower
relaxation. To achieve the convergence criterion,
5 FSI sub-iterations were assigned (the maximum
number of iterations at each related step) and the
convergence criterion for loads and displacements
was set equal to 10-3.

4. RESULTS

4.1. Results of solving the problem taking in
account coupling conditions

Below are the results of solving the problem in a
coupled aeroelastic formulation. In fig. 5 shows
the obtained graphs of the dependences of the
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Figure 5. DES SST model: Graphs versus time t, s at different speeds
a - vertical movement of point 1, m, b - angle of rotation 3, °
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vertical dynamic displacement of point 1 and the
angle of rotation 9 on time t for flow velocities of
8 m/sand 10 m /s for the DES SST turbulence
model. Fig. 6 presents graphs of the dependences
of the vertical displacement of point 1 and the
angle of rotation $ on time t for flow velocities
V. equalto 10 m/s, 12 m/sand 15 m/s for the
URANS &-o SST turbulence model. Fig. 7 shows
the velocity fields at different times for the DES
SST turbulence model at a flow velocity of 10 m/
s. Fig. 8 presents velocity fields at different times
for the URANS SST turbulence model at a flow
velocity of 15m/s.

Based on the results of calculations in a coupled
formulation for different flow rates, the vertical
displacement of point 1 and the angle of rotation
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g from time t were obtained. Loss of stability
was determined by an infinitely increasing
displacement and / or angle of rotation. Table 2
shows a comparison of the critical velocity values
in [39] (experimental and numerical simulation
results) and this study.

Comparing the results, it can be noted that the
value of the critical velocity for the URANS
k-o SST turbulence model is overestimated, in
contrast to the results presented in [39]. This is
partly due to the fact that this turbulence model
can underestimate the pulsation components
of aerodynamic loads, as well as thin out the
frequency spectrum, which in turn did not show
aerodynamic instability for speeds of 10 m /s
and 12 m/s. For the DES SST turbulence model,
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Figure 6. Model URANS k- SST: Graphs versus time t, s at different speeds
a — vertical movement of point 1, m; b — angle of rotation 9, °
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Figure 7. Velocity fields, m / s at different times t, s for a velocity V, = 10 m /s (DES SST turbulence
model)
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Figure 8. Velocity fields, m /s at different times t, s for a velocity V, = 15 m /s (turbulence model
URANS k- SST)
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the result was similar to the numerical simulation
result in [39], where the LES turbulence model
was used. The critical speeds can be clarified by
additional calculations, but this does not affect the
conclusions of this study.

4.2. Comparison of Engineering Estimates and
Direct Coupled Calculation

Comparison of the results of direct coupled
calculation and engineering estimates [40]
revealed the following.

For the DES SST turbulence model:

— according to the engineering estimate of the
divergence occurrence [40], at O ° the critical speed
is 7.91 m/s. The related calculation showed that
at an input flow velocity of 8 m / s there was no
unlimited increase in the angle of rotation of the
section - it was observed at a speed of 10 m /'s;
— according to an engineering assessment of the
occurrence of galloping [40], this phenomenon

Table 2. Comparison of the results obtained
in the related FSI setting with the results [39]

V ., m/s
Experiment [39] 11.5
FSI [39] 10
FSI (turbulence model URANS 15
SST)
FSI (turbulence model DES SST) 10
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should occur at a cross-sectional angle of rotation
equal to 10° at a flow velocity of 9.77 m / s.
From the graphs of the dependence of the angle
of rotation of the section 9, © and the vertical
displacement of point 1, m, on time t, s at an input
flow rate of 10 m / s, it can be seen that when
the angle of rotation of the section approaches
10° (time 38—47 sec) significant jump in vertical
displacement. This indicates a possible galloping
effect at this moment. Nevertheless, further
vertical vibrations of the structure returned to a
stable mode (with a rapid increase in the amplitude
of the rotation angle). This indicates a complex
mutual influence of two aerodynamic instabilities,
in which they may not arise, taking into account
the vibrations of the structure along other degrees
of freedom. In this calculated variant, divergence
prevails over galloping.

For the turbulence model URANS k- SST:

— according to an engineering estimate of the
occurrence of divergence [40], at 0 ° the critical
speed was 17.18 m / s. A related calculation
showed that even at an input flow velocity of 15
m /s, an unlimited increase in the angle of rotation
of the section was observed;

— according to an engineering estimate of the
occurrence of galloping [40], at a cross-sectional
angle of rotation equal to 8 © at a flow velocity of
5.76 m / s, we should observe this phenomenon.
If we look at the graphs of the dependence of the
angle of rotation of the section 3, © and the vertical
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Figure 9. Turbulence model DES SST, V, = 10 m /s: Graphs of dependence on time t, s (a) rotation
angle 8, °; (b) vertical movement of point 1, m
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Figure 10. Turbulence model URANS k- SST, V., = 15 m /s: Graphs of dependence on time t, s (a)
rotation angle 8, °; (b) vertical movement of point 1, m

displacement of point 1, m on time t, s at an input
flow velocity of 15 m /s, we can see that the angle
of rotation of the section equal to 8 ° is reached
at the moment of time 68.4 s. Therefore, at about
this point in time, galloping should be observed.
Indeed, at about this moment in time, there is a
sharp increase in the amplitude of the vertical
displacement of point 1 (the center of the section).

5. CONCLUSION

On the considered two-dimensional problem
of aeroelasticity, it is shown that it is quite
acceptable to use a lighter, in comparison with
LES, DES turbulence model and a coarser mesh
(in comparison with “reference” numerical
solutions). This will allow in the near future to take
an important step towards a full 3D computational
model with reasonable computing power.

Also, a test problem with a Tacoma bridge section
showed that, although engineering techniques
provide estimates of the possible occurrence of
aerodynamic instability, they do not take into
account the reverse effect of the structure on the
flow and the mutual influence of several types of
aerodynamic instability. Comparison of the results
showed that such inaccuracies both underestimate
and overestimate the calculated critical wind flow
velocities, which can have detrimental practical
consequences.
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