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Abstract: During the construction of hydraulic and underground structures, a grout solution is pumped into the ground 
to create waterproof partitions. The liquid grout is filtered in the porous rock and clogs the pores when hardened. The 
mathematical model of deep bed filtration describes the transfer of suspension particles and colloids by a fluid flow through 
the pores of a rock. For a one-dimensional filtration problem in a homogeneous porous medium with almost constant 
coefficients, an asymptotic solution is constructed. The asymptotics is compared with the numerical solution.
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Аннотация: При строительстве гидротехнических и подземных сооружений для создания водонепроницаемых 
перегородок в грунт закачивается раствор укрепителя. Жидкий укрепитель фильтруется в пористой породе и 
при застывании закупоривает поры. Математическая модель фильтрации описывает перенос жидкостью частиц 
суспензий и коллоидов через поры горной породы. Для одномерной задачи фильтрации в однородной пористой 
среде с мало меняющимися коэффициентами построено асимптотическое решение. Асимптотика сравнивается с 
численным решением.

Ключевые слова: фильтрация, суспензии и коллоиды, пористая среда, взвешенные и осажденные частицы, 
асимптотическое решение.

1. INTRODUCTION

Filtration of suspensions and colloids in porous 
media occurs in many natural and technological 
processes: the spread of microorganisms in the 
aquatic environment, filtration of water in rocks, 
treatment of industrial and domestic wastewater, 
a decrease in oil production due to the deposition 
of small particles entrained in water near the well, 
and much more [1–3]. During the construction 
of tunnels and underground storage facilities for 
hazardous toxic and radioactive waste, a liquid 
grout is pumped into the rock under pressure to 

create watertight walls. The grout filters in the 
porous soil and clogs the pores after solidification 
[4].
The transport of micro- and nanoparticles in a 
porous medium is accompanied by the retention 
of particles and the formation of a deposit. Various 
retention mechanisms of particles carried by a fluid 
flow in a porous medium of complex structure 
are determined by electric, gravitational and 
hydrodynamic forces [5–7]. Filtration models take 
into account either a single prevailing retention 
mechanism, or several mechanisms acting 
simultaneously [8, 9].
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The mathematical model of deep bed filtration 
includes the equation for the balance of the 
masses of suspended and retained particles and 
the kinetic equation of deposit growth, which 
form a quasilinear hyperbolic system of the first 
order partial differential equations [10]. To solve 
filtration problems, both numerical and analytical 
methods are used [11–16]. Analytical methods 
allow to obtain exact and asymptotic solutions 
and their dependence on parameters. This makes 
it possible to fine-tune experiments and to solve 
inverse filtration problems [17–19].
The classical filtration model assumes that the 
properties of the porous medium do not change with 
the formation of deposit. More sophisticated models 
take into account the dependence of porosity and 
permissible flow on the concentration of deposit [20]. 
In these models, it is assumed that a suspension or 
colloidal solution of constant volume concentration 
is injected at the inlet of a porous medium.
We consider a one-dimensional model for deep 
bed filtration of particles carried by a fluid flow in 
a homogeneous porous medium. It is assumed that 
the carrier fluid is incompressible; at the porous 
medium inlet the suspended particles concentration 
is variable. Experiments show that the coefficients 
of the filtration equations depending on the 
retained concentration do not change much. This 
allows us to construct an asymptotic solution 
to the filtration problem. The asymptotics 
is compared with the numerical solution. 

2. MATHEMATICAL MODEL

In the domain Ω = {0 ≤ x ≤ 1, t ≥ 0}, consider the 
system of first-order differential equations

Here the blocking filtration function Λ(S) is 
smooth and positive at 0 ≤ S < Sm , Sm > 0; Λ(S) 

= 0 at S ≥ Sm; the functions g(S) and f(S) are 
positive at 0 ≤ S ≤ Sm; C(x,t), S(x,t) – the unknown 
volumetric concentrations of suspended and 
retained particles [21].
For the uniqueness of the solution to the system 
(1), (2), the initial and boundary conditions are set

Condition (3) means that a suspension of variable 
concentration is injected at the inlet of the porous 
medium; by condition (4), at the initial moment 
of time, the porous medium does not contain 
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concentrations front of the suspended and retained 
particles given by the formula x = vt, v = f(0)/g(0) 
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Consider the condition on the concentrations front
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Conditions (3) and (5) take the form
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CONSTANT COEFFICIENTS

Assume that the coefficients of equations (1), (2) 
admit expansions

Here ε is a small positive parameter.
The solution to the system (6), (7) is obtained in 
the form [22, 23]

Substitute the expansions (10), (11) into the 
equations (6), (7) and equate the terms at the 
same powers of ε. We obtain a recurrent system 
of differential equations

Conditions for the equations (12)–(15) follow 
from (8) and (9)

Solution to the system (12)–(15) with the 
conditions (16), (17)

Here

Substituting the solutions (18)–(20) into the 
expansions (11) and passing to the Cartesian 
coordinates, we obtain an asymptotic solution to 
the problem (1)–(4) in the domain ͞Ω1
		

numerical and analytical methods are used 
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4. RESULTS OF NUMERICAL
MODELLING

The numerical calculation was carried out for 
the coeffi  cients of equations (1), (2) obtained 
from the results of experiments with particles 
of a suspension with a radius of 2.179 microns 
in the laboratory of the University of Adelaide, 
Australia [24]

The calculation was made for a linearly increasing 
suspended concentration at the porous medium 
inlet p(t) = 1 + 0.01t. Figures 1–4 show the 
asymptotics at ε = 0.01 (yellow line) and the 
numerical solution (blue line).
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Figure 1. Concentrations at the porous medium outlet x=1 a) suspended C(1,t); b) retained S(1,t).

Figure 2. Concentrations at fi xed time t=20 a) suspended C(x,20); b) retained S(x,20).

Figure 3. Concentrations at fi xed time t=40 a) suspended C(x,40); b) retained S(x,40).
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At the porous medium outlet x = 1, the relative error 
of the asymptotics increases with time. For the 
suspended and retained particles concentrations, 
the error reaches 2.5% and 0.1% at t = 40, 
1% and 5% at t = 60, 5% and 10% at t = 100, 
respectively. For a fi xed time, the relative error 
of the asymptotics throughout the whole porous 
medium does not exceed 1% at t = 20, 2% at t = 
40, and 4% at t = 60 for both types of particles 
concentrations.

5. CONCLUSIONS

The study of the mathematical model of deep 
bed fi ltration of suspensions and colloids in a 
porous medium allows us to draw the following 
conclusions.
– An asymptotic solution to the fi ltration problem 
is constructed.
– The main term of the asymptotics coincides with 
the exact solution of the problem with constant 
coeffi  cients.
– The asymptotics is close to the numerical 
solution.
– The asymptotic solution depending on the model 
parameters can be used to fi ne-tune laboratory 
experiments and to solve the inverse fi ltration 
problem.
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