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ON DIFFERENT DEFINITIONS OF STRAIN TENSORS IN
GENERAL SHELL THEORIES OF VEKUA-AMOSOV TYPE

Sergey 1. Zhavoronok
Institute of Applied Mechanics of Russian Academy of Sciences, Moscow, RUSSIA

Abstract: Several possible definitions of strains in a general shell theory of I.N. Vekua—A.A. Amosov type are considered.
The higher-order shell model is defined on a two-dimensional manifold within a set of field variables of the first kind
determined by the expansion factors of the spatial vector field of the translation. Two base vector systems are introduced,
the first one so-called concomitant corresponds to the cotangent fibration of the modelling surface while the other is defined
on a surface equidistant to the modelling one. The distortion appears as a two-point tensor referred to both base systems
after covariant differentiation of the translation vector field. Thus, two main definitions of the strain tensor become possible,
the first one referred to the main basis whereas the second to the concomitant one. Some possible simplifications of these
tensors are considered, and the interrelation between the general theory of A.A. Amosov type and the classical ones is shown.

Keywords: hierarchical modeling of shells, dimensional reduction, analytical continuum dynamics, strain tensors, stress
tensors

O PA3JIMYHBIX ONPEJAEJEHUSX TEH30POB
JTE®OPMALIMHU B OBLIEN TEOPUU OBOJIOYEK
U.H. BEKYA — A.A. AMOCOBA

C.U. ’Kasoponok

WnctutyTt npukiagHoit Mmexanuku Poccuiickoit Akagemuu Hayk, MockBa, Poccust

AHHoTanmsi: PaccMOTpeHbI pa3uyHble BOBMOXKHBIE ONpeiesieHnst ieopMariui B odmieit Teopun odonouek M.H. Bekya —
A.A. AMocoBa. Moyiest 000JI09KH BBICIIIETO MOPSIAKA OpeieieHa Ha ABYMEPHOM MHOTO00pa3Hi MHOMKECTBOM MEPEMEHHBIX
TIOJISL TIEPBOTO POJIA, OTPE/IETICHHBIX KO3((HUIIMEHTaMH Pa3IoKEeHHs TPOCTPAHCTBEHHOTO TIOJISI BEKTOPA MEPEMEIIECHHS 10
HEKOTOpOii cucteMe (hyHKIM. BBeseHbI 1Be crcTeMbl 6a3UCHBIX BEKTOPOB, @ IMEHHO COITY TCTBYIOIHI 0a3MC B KaCaTEIbHOM
paccioeHny MHOT000pasHsi, COOTBETCTBYIOIIEIO PENIEPHON MOBEPXHOCTH 00OJIOUKH, 1 OCHOBHOM 0a31C, COOTBETCTBYIOIIECH
MIPOU3BOJILHON MOBEPXHOCTH, SKBUIUCTAHTHOH penepHOi. BBeIeHbI Takke ABYXTOUEUHBIE IPECTaBICHUS TEH30pa JUCTOP-
CHH B TEH30PHOM ITPOM3BE/ICHNH KacaTeIbHBIX IPOCTPAHCTB K PETICPHOM M SKBUMCTAHTHOH IIOBEPXHOCTSIM, TIOPOKIAEMBbIC
TpaJMeHTOM TOJIs BEKTOpa repeMenieHust. TakiM 00pa3oM BOSHHUKAIOT J(Ba OIPe/IeICHHS TEH30pa Ie(hOpMaIii 000JIOUKH KaK
TPEXMEPHOTO TeJIa, EPBBII N3 HUX OTHECEH K OCHOBHOMY 0a3mCy, TOT/a Kak BTOPOH — K COITyTCTByIomeMy. PaccMoTpeHsl
HEKOTOpBIE YIPOIIEHHbIE ()OPMBI 3aIMCH TEH30POB Je(hOpMaIiK, COOTBETCTBYIOIINE TEOPHSIM HU3IIHX IOPSKOB, M YKA3aHO
COOTBETCTBHE MEXXTy TeopHei 00oouek B popme A.A. AMOCOBA M KIIACCHYECKUMH TEOPUSIMU.

KiaroueBrble ciioBa: HUCPAPXUICCKHUEC MOACTIN O6OH0‘16K, peayKuusa HpOCTpaHCTBGHHOﬁ PasMEPHOCTH, aHAJTIUTUYICCKAA
MCXaHHWKa KOHTUHYAJbHBIX CUCTEM, TCH30PbI I[e(bOpMaIII/II/I, TEH30PbI HAIPSIKCHU S

INTRODUCTION curvature lines of the modelling surface [3] while the

modern shell theory is based on the tensor analysis
The intrinsic kinematics of the classical shell [4]. Various refined theories of shells use different
theory is based on two parameters, the tangent and  strain definitions [5, 6] referred to the orthogonal
bending strains of the modelling surface of a shell coordinates or tensor-based definitions [7—10].
[1, 2]. These quantities were initially defined using  One should note that most of cited works introduce
the orthogonal coordinates referred to principal different strain tensor definitions; several theories

Volume 17, Issue 1, 2021 117



operates with tensor coefficients with no description
of base systems in details [9, 10]. Indeed, at least
two base vector triads could be used in generalized
shell theories [7, 10—12], the spatial (or main) basis
of an arbitrary curvilinear frame normally attached
to the modelling surface and the concomitant one [ 7,
11, 12]; the first one generates a set of space tensors
whereas the second one generates surface tensors
[7]. Let us note that more complex models use two-
point tensor definitions [13—15]. Such a situation
leads to different work-conjugated pairs of stress and
strain tensors and different formulation of variational
principles [16] for a shell theory.

This work is a brief systematization of strain and
stress tensor representations in higher-order shell
theories. The two-point spatial distortion tensor [15]
is used as a background; two main formulations
for the spatial strain and four for the stress tensors
allowing one to obtain the surface tensors after
integration over the thickness are introduced. It is
shown that a clear analogy of these quantities and
the tensors used in the nonlinear solid mechanics
appears if a surface equidistant to the base one is
obtained as a result of the imagined motion along
normal, and the spatial, or main, basis could be
interpreted as “acting” one while the concomitant
basis as “initial” one [18]. The appropriate work-
conjugated tensor pairs are defined, the strain
energy is formulated, and the sets of surface stress
and strain tensors defining a higher-order shell
theory are described. Finally, the interrelation
between the strain tensors in the higher-order theory
[15] and the classical shell theories is shown.

GEOMETRY OF THE MODELLING
SURFACE OF A SHELL

Let us consider a two-dimensional manifold:
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¢ are curvilinear coordinates on S. The tangent
fibration 7S can be defined by:

TS = ]_[ TS, TyS= {J’mru y el }

Mes

(1.2)

The fibration 75 is furnished by the metric a

p

a: ISxIS—>0,, a=ar'r’,

p
Aup =Ty "Iy, a:det(auﬁ), a0 =

YMeS 3Ja®, a"ﬁaaﬁ Vi S 1

P

and the discriminant tensor T = T“Brarﬁ. The
cotangent fibration 7S is given as

°8=]]7:8 TeS={yr*|y, €0} (13)
Mes

The orientation of the manifold S is defined by the
normal unit vector n:

n(M)=a"%' ar® =1%r, ATy, (1.4)

so that we obtain the normal fibration of .S:

NS=]]N.S. N S={m|yeO}. (1.5

Med

The differentiation of r , n is defined by

O =TT r'+b,n, &,p'=-I" rf+5'n,
pra aft afp e B p B (16)

el o
Opn = —b ,r.

KINEMATICS OF A DEFORMING
MODELLING SURFACE OF A SHELL

Let us define a vector field u :
ug:Sx(0,u{0})>T°SDNS,
(1.7)
u, =i, (E_,B,r] r* + w(iﬁ ,r)n;
here u correspond to the tangent translation while

w is the deflection of a surface S. Introducing
Nabla operator V=r"0, we have
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here 2/ denotes the shell thickness. We can define
d=V® W, = .:?Burﬁr“‘ - Sﬁrﬁn, hence an equidistant surface S, for any (# 0, e.g.
(1.8)  a manifold with the fibrations

dy, = Vi, —bogw, 8, = Bw + b0,
78, =[I{»*R.1»* €0},
Let us consider the deformed surface S”: T Mes

R, =0 R=Ar, 4'=8 0%
VMeS r'(Mt)=r(M)+uy(M,t); (1.9)

NS, =] J{ym|yeD}=Ns: =12
MeS
Thus, we obtain the tangent fibration 7S’ and u
) TV = 'R m;=TS, D NS.
normal one NS’ for the deformed surface S": !!—[,{J a ™ }n} 2
. . _E,
75 — H {yar; (M)|y* el }, here the linear transfor_m. given l.ﬁy A5 [7, ]f‘:]
Mes (1.10)  detfines the parallel shifting. This transform is
r'(M)=r,(M)+dFfr, +9_n; nonsingular if 4=det(4")=0,1. e. if[15
B gu -
a’=alr" @rf = (aaﬁ +26,, )r“rﬁ, A=120hH + R K= (1- Lhk, )(1- Chi, ) # 0
R (1.11)
“un = 3(Valfy + Vot )~ b o h<inf, k', a=12  (1.16)
Me§ Ma 2 At '
oS H{J e }’ where k.  are principal curvatures of S. Accounting
u (=12 for, we lézould obtain [7, 14]
n'=Ja'fa ™K~ n— 9 r° ’ ’

=GR, A4 =80

Here ¢, is the surface tangent strain while its e e (1.17)
bending strain is defined by the tensor u: Ay =4 (Sﬁ -G b )
b= (bu[} 4 Zm&ﬁ)l‘arﬂ, ;= 1) The metric g on 7S is defined by (1.18) [7]:
. V(BT 4 BT ’ . L
= (Va8 + Vg8, ) + 3(bldy + 7L, ), 8o = A1 4%, = a,— 20hb o+ Chic,,,
812 2 .
here the second-order terms are neglected as g= det(gaﬁ): det(ADf') a=4A%a, (1.18)

provided by linear shell theories [2]. c=blb,. H=1b5°, K= det( b"z_')‘

GEOMETRY OFTHE SHELLASATHREE- For more details see [14, 15, 17].
DIMENSIONAL BODY

PARALLEL SHIFTING TENSORS
Let us consider hence the shell as 1 0 °[15]:

One could have two interpretations of parallel shift

VM. eV HR(Mi.) =r(M)+gm(M), (1.14) tensors. Let us consider a unit tensor I:

teD,=[-1,1];
) Lrir®— AR —dor RG—

(1.19)
=4 4°R R =R R =R .R;
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such an interpretation was introduced by [.N. Vekua
in [7]; the left indices of AC;_'_E’ must be raised and

lowered by the metric tensor g whereas the right
ones — by the metric a [7]:

| L0 R R ) S T U o

4

I= A/ R,r* = £ a"Ryr; = ARy, ...

The Vekua unit tensors (1.19) allow to define
vector fields on the fibrations 7S, I=S:
u, :Vx (D LU {0})—> TS, u;=i,R";
u, Vx(0, w{0}) > T°8, uy =ur,
u-I=4%4 R"Rr®= A%4 r=u r"; (1.20)
Iu,= A'rf‘uﬁrﬁ T, R'= A,fMﬁRT: ﬁTR";

A o - B o B -~
u =4, u,=A u.
On the other hand we have the tensor A({):

AR =i = AR R

(1.21)
AF—r RS AtR RE=—Airrs:
Let us note the analogy of A and the position
gradients [18] if the vector r_ is interpreted like
“initial basis” and R like “acting basis™:

A-r,=R;, A".R, =r,, (1.22)
This tensor provides the linear morphism
A TS TS, A:.T°S, >T°S;
B : (1.23)

A7 :T°S>T°S,, A 15, > T5.
SPATIAL KINEMATICS OF A SHELL

Let u(M, ¢, t) be translation vector field:

w: V(O ulo)>TF,
(0. 010) ' (1.24)
IIZHERﬁ + u,n.
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Since the fibration 7V is defined by (1.15) and the
morphism (1.23) of bundles exists, 7'S,= 7S x D,
we could represent 7¢V as

TV =T°S, ®NSO T°S®NSxD,, (1.25)

thus, the vector field u can be determined as

u:SxDx(0,0{0}) TS ® NS xD, o
= u=ug’ +um,

where the basis r“,n does not depend on .
Let V=R"0,+nd, be Nabla operator on
IV=15,D NS ; thus, we obtain the two-point
formulation of the distortion d =V @u [14]:
ot 2um ) =

= = i~ (1.27)
=dR°r’+d, R0 +d,nr'+ dy;nn;

d=(R°0,+n0,)®(u

|

= Vuuﬁ— b u

- P
apls s d,= Vm1f3+bu_zr3,

2 ’ (1.28)

p = Oty s = 0t

Taking into account (1.20) we have [15]

d ,: daﬁrarﬁ+fi&ran + aiman+ d?nn = o
=d, R*R'+d ;R"n+d, nR'+d, nn;

(";Yu' - A--Bgoe 2 c;(oe :ga
- A (1.30)
d3,_*‘1,-d3|3: dy; =ds;
d—eazd AT
S (1.31)
d3|3 = dsp.: d33 - d33

THREE-DIMENSIONAL
REPRESENTATION OF STRAIN
TENSORS FOR A SHELL

The formulation (1.29) allows one to obtain the
symmetrized tensor, i.e. the strain field:
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e=e,r T’ +e, (r*m+nr®) + eynm = (1.32)
=é,R°RP+E,, (R“n + nR“) +&,,nn; (1.33)

the first formulation (1.32) is referred to the basis
r* in 7S that depends not on ¢, and
€p= %(VﬁztaJrVuuﬁ ) = (bu[}+ ChKa,g )3{3—
-1 CT'-'?"EJ;}‘ (TQHVTHB-F TE_LLV?MD( );
e %(vuu3+bfuﬁ+a,_‘uu )+%C_2?32K@Quu— (1.34)

(T"'?'b;f"[wv?uﬁ Ku,+2H0,u, );

bl | —

& = (VF20hH + CR*K )0 uy; ;=476

at the same time the second one (1.33) is referred
to the main basis R* in 7§

o)~ (Bupt Chicyg Jus-
—Ch (B Vgu, + 8,V ); (1.35)

B S
—Chb, 0,uy; &, =0, u,.

Let us note that both strain formulations use
the translation components u , u, referred to

the basis r”, n on the fibration 7°S @ NS .
Let us consider hence the tensor e :

LY A

eS:AT-e-A, A=A tnn; (1.36)
e;= &, rr e, (r'ninr”)+ e mm. (1.37)

Accounting for (1.36) and (1.37) we have the

- T ~
inverse formula, i. e. e = (A'l) TINY

DIMENSIONAL REDUCTION

Let H[-1,1] be a Hilbert space, and let us introduce
a base function system on H [15]:

Volume 17, Issue 1, 2021

H ={py, (O)}=p"(2)};

(Peop™ ) =500

(1.38)
(1.39)

(1.39) denotes the appropriate scalar product,
thus, Py p™ is a biorthogonal base system.

Let us introduce a subspace H,, = {p(k)}kzo___N,

so that H =H, @A, . Taking into account

(1.24), (1.38), and (1.39), we obtain [14, 15]
u-= uf-k?'p[k-} (&) u® = 4 ugk-"n,

(k) E) S50

u' :(u_,pl ), k=0...N

The formula (1.40) approximates the spatial
translation within N + 1 Fourier coefficient

u:§x(0,u{0}) >T°SONS  (1.41)

being the vector fields on the Whitney sums of the

cotangent and normal fibration of S.

Let us consider hence the strain tensor e defined

by (1.34). Since this tensor is referred to r®, n,

we could define them within a set of Fourier

coefficients corresponding to (1.38):
e=e¥p,(C), € =(epy))  (142)

The Fourier coefficients ¢® define tensor fields
on the fibration of the manifold S:

elk): § % (D R {O}) —
—(T°S®NS)®(T°S @ NS).
On the other hand, let us consider a tensor
A=yg/a;

e=e. (1.43)

- %%

defined by e’aﬁ, é ., €,,; this tensor allows to
represent its Fourier coefficients as follows:
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emﬂ:%(v u( +V_ u ))
(& 3g5+hﬁa$zﬁj)(ﬂ_

(k) v
IZ{MT b”(T Vu +Tﬁpvyu )

&0 _1 (v ) 1 62 + D) -

(k) [ rgom (m)
Lz ( b T,V uy +

(m)

(1.44)
+Kut"’}+ 2HD['f"]:¢(-"] ) +
+Z 2 KD u;
% = (8

ZgK)D

27 hH +

DEmyl®)

uc
+Z (n)

Accounting for (1.32), (1.34), (1.43)—(1.44), we
obtain the Fourier coefficients for e :

£ eg)p(k]? eﬁt) = (e‘“p[!‘:) ) (1.45)

The tensor e referred to the basis R, n and defined
by (1.35) cannot be represented by surface tensors

being its Fourier coefficients, but we could define
the “shifted” tensor e

e :e(;-'p[k}, eg'] = (es,pm); (1.46)

the surface tensors e(;‘) are determined by

(£)

=0 0°r'3+e“(r ninr ) &)

€33 I,

Lﬁ) —%(Vuul R uu_])—

“ W+ hcupz(? ]ul"')

(1.47)
—zigh(b;v3¢?‘+5¢vau§)}

D' ’T*] l’"))

et = %(Vuugk] +bfu” )

o3

kb2 ZID; &) = D)™,
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STRESS TENSORS FOR A SHELL

Let us introduce the following stress tensors:
G— G“Brurﬁ+ 0“3(r°‘n+m'°’ ) +onn = (1.48)
=5"R R+ 6“3(R°n+nR° ) +67nn; (1.49)

this tensor defines the true stress as the Cauchy
one in the nonlinear mechanics [18];

s=s%rr +s%r n+s%nr, +s%nn = (1.50)

& P

:A[&“BraRBJréua(r“ n+nR" )+ c"rﬁnn]. (1.51)

Let us provide the analogy of the basis r* and
the initial basis, as well as the basis R* and the
acting basis in the nonlinear mechanics (i.e. the
equidistant surface is obtained by motion of base
surface points along normal). Thus, (1.50) is
analogous to the Piola tensor;

b :A[c"r"“erqr[pL &“s(r“lﬁnr“ } 46331111J (1.52)

is analogous to the 2" Piola stress tensor [18];

o ~ ~ i
s:AAﬂo,n:AA*c(A*).(Lﬁ)

Finally, let us introduce the tensor t = Ac:

t :A[G“Brurﬁ+ t:r'”(r“‘n+nr°E ) +cr”nn} (1.54)

analogous to the Trefftz-Kappus tensor [18].

Let us note that the tensors (1.48), (1.50), (1.52),
(1.54) could be represented by their Fourier
coefficients being surface tensors:

), =(0,p(kj);

=(S,p{k]);
m =", “{k]:(“=p(n);

e ® B
t=t,p, %H‘(“HH}

6=0,D

§ = s(Hp |
(1.55)
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STRAIN ENERGY FORMULATION

Accordingly to [16], we have,

U:%jo:edl/’ :%jjo:mha’c_d& (1.56)
¥V §-1

Let us define a surface strain energy density:

1
US:sthd(;, Wy=1de:e; (1.57)
-1

Here the strain energy density W could be
represented using the equivalent formulations, e.g.
we have the work-conjugated tensor pairs

2 —oae =1 —grae = fae ] .5 8)

where D is the reduced distortion tensor [15]:

_z\T
DSl (1.59)

= c?mﬁrt"rB +d_r'n + E_%Bnrﬁ +d,nn.

Accounting for (1.42)—(1.47), (1.48)—(1.55) as
well as for (1.38) and (1.39), we obtain

o k) —(k
2U, = Um i )y 20{;] el 4 crff)ei;',
(1.60)
Sy :h(‘j -’Pm)-‘
r a ) ad ~(k k)
2U; = nhé el + 21 68 + T8 &y,
(1.61)
ey = FT(AGWU«))‘-
W, =l + 203 + el
(1.62)
= h(40” Dy );
r k ['s k k
2= s d P sead S rshdy Hsindss
(1.63)

)‘h( =pm)

The formula (1.63) was used to derive the dynamic
equations in [14] and [15].

Volume 17, Issue 1, 2021

STRAINS AND STRAIN ENERGY FOR
THE FIRST-ORDER SHELL THEORY

Let us consider hence the 1 order shell theory as
a particular case of the N order:

u=u?+zu? (1.64)

Here

(L.7);
amplitude 1y,

u” = #,r“ +wn so that corresponds to
u = % X" +wn, here the displacement
corresponds to the tangent
rotation angle, ¢@* :T“‘Bxﬁ, while w is the

transverse normal strain. Thus, we have
veu® = d, D=d+ynn+ Q{l(]);
)= dORer® + dlRn.

1.65
a0V g b d® Vb0 :
af ccx[j uﬁw? [ o P

Accordingly to (1.11), (1.13), (1.35), (1.65), we
obtain the following 1* order approximation of
the strain tensor (1.37):

€,p = Eog T Gy — Ch W

1.66
18 (8Ldy) + 8,7d0); —
éc(S = lT(-Soa ap 1@,) + %Cvawe é33 — W- (1.67)

Thus, the reduced strain tensor (1.37) of the 1%
approximation referred to the basis r% n on the
fibration 7S ® NS is given by the surface strains,
i.e. tangent strain (1.11) and bending strain (1.13)
of the surface as well as the averaged transverse
shear 0 , splitting shear V_w [7] and the normal
transverse .

Let us consider hence the true strain tensor e in
terms of the 1% order approximation; it is given
by the covariant components (1.66), (1.67).
Since this tensor is referred to the basis R% n on
the fibration 7S & NS it does not allow one to
create a set of surface tensors by the integration
over the thickness.
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Let us represent this tensor by the particular sum
of Taylor series with respect to {; since we have
the formula for the base vectors R*:

R(’Jﬂ:2 RCI

Lot CORT = (8547 r®, (1.68)

Use of the Taylor series together with (1.68) gives
the following strain tensor e:

e=er'ri+e, (1'°‘n+m'“) + e,,nn,
€y N &y +Q1< (1.69)
K =M, +blg, +bge

a®py T O0pEo

thus, the first-order term obtained by Taylor
expansion gives the reduced bending strain tensor
K, corresponding to the one used in classical shell
theories (e. g. see [2, 3]).

Let us note that the tangent strain €, and the
reduced bending strain K, definig the tensor e =
eaﬁr“rB are two quantities being unknowns in the
compatibility equations of the classical theory of
thin shells [2]:

V1%, — by V118 = 0;

oty |30 oy, pd .
V VT T € 5 + b, 17T K 5 = 0,

that provide the static-geometry analogy [2].
Accounting for (1.62), (1.33) and introducing
averaged shear 0 =9 + y , we have hence

T ol
2U, + 27,0 +T[|0]‘Lp+

(0) af (0) e

m

i (1.70)
+TEU} (I_I.l,u13

banJ‘)-l—ET[mVa\p,
s h_[ &6 4d, nf*g_kj &% Acde, (1.71)

Lm_kj 6 Ad¢, mi= h_[ &% ACde; (1.72)

] -
n= %J. lc“BAQZa’f" o=

2~ 32 0= ‘33Ad¢ (1.73)
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o a3 33
Here Tons Tons

o are expansion factors

of the “2™ Pjola” tensor 7, or the moments of
the contravariant components of the true
strain tensor G”. Here the tensor given by

n('g; works on the tangent strain ¢, (1.11),

the tensor given by nfﬁ works on the bending

strain m,, (1.13) (and by ), while TEFS

works on the averaged shear 0. Thus, n{'f)

defines the work-conjugated tangent force

tensor, nﬁﬁ defines the work-averaged

bending couple, while nﬁf) is the work-

averaged shear force and finally TI:FS is the

work-averaged splitting force [7]. Let us note
that these quantities differ from the ones
working on du,, oy, and being unknown
quantities in the dynamic equations [15]; the
last ones were defined as S(0)>
surface tensors on 7S @ NS [7]. Accounting

for the formulae for the contravariant
components of the stress tensor s [15]:

Sys e being

s = A4 0™ = 44,767,

s = 447 6% = 467, 5™ = 40™ = 44,76%,

we obtain the quantities equivalent to the ones
introduced in [19]. The stresses used in classical
shell theories [2] appears as a result of neglecting
of the value A = Vg/a (e.g. see [2]), the similar
assumption was used by [.N.Vekua for the general
theory of thin shallow shells [7]; such a tensor

could be obtained as S = A™! - 6, therefore we have
5ot = hI A°6%de, SE = El 4767,

On the other hand one could consider the strain
energy (1.62) with the components of the strain
el.j(k) defined by the formula (1.69); this is the
formulation that uses the tangent and bending
strains accordingly to [2]. Thus, we obtain the
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following definitions of the tangent force and
bending moment:

1
18 = h j tPde,
-1

off _ 1 I
e t _er Lde;  (1.74)

(1)

here the contravariant components 7 = Ag? of
the stress tensor referred to the basis r , n in the
fibration 7S & NS are used contrarily to where
the ones referred to the basis R%, n in the fibration
T.S ® NS were used. The definition of tangent
forces and couples tensors corresponding to [2]
could be obtained by neglecting the multiplier 4.

CONCLUSIONS

One can conclude that several different strain
tensors could be considered. These definitions
are required, in particular, to derive the constraint
equations for extended higher-order shell theories
[20] that appears a result of the translation of
boundary conditions from faces onto a base
surface. The further construction of extended
shell theories without the use of constraint
multiplier could be based on the constraint
equations represented in terms of generalized
strains. Moreover, the statement of the boundary
value problem of the higher-order shell theory
in terms of generalized forces requires the
appropriate compatibility equations such as the
ones proposed in [22] where only the 1st order
shell model was considered; various definitions
of strain tensors generate different formulations
of the two-dimensional compatibility equations.
On the other hand the solution of problems of
coupled dynamics of medium-thickness shells
and surrounding media (e.g. see [23, 24])
require constraint equations corresponding to the
impermeability condition on wetted shell face;
such equation could be also expressed in terms
of strains, thus, an approach similar to [2] where
the strain boundary conditions were defined on
shells’ contours. Finally, the solution of different
static problems [25, 26] could be more efficient
if the stress-based problem statement is used as a
background.
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