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Abstract: Different approaches to the computer simulation of damping properties of structural elements, which are made
of materials with complicated physical structure, such as composites and nano-materials, are considered in this paper. In
such cases application of classical models, e.g. ones based on the Kelvin-Voight hypothesis, can lead to the results that are
not even close to the real composite structure behavior. The main point of the proposed approaches is delocalization of
the damping effects in space and time. The described nonlocal damping models are more flexible in comparison to classic
ones. The model calibration based on the experiment data allows to determine the optimum value of the characteristic
parameter of nonlocal model using the least square method. The results of three-dimensional numerical simulation of
the composite beam vibration were used for model calibration. The numerical simulation was implemented in SIMULIA
Abaqus software. The material was considered as orthotropic; its parameters were picked up according to the physical
properties of the real composite material. The developed beam vibration models considering nonlocal damping were
created in MATLAB. The obtained results were compared to the results based on classic Kelvin-Voight damping model.
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AHHOTanus: PaccMarpuBaroTCst TOIXOABI K YMCIIEHHOMY MOZIEITMPOBAHUIO IEMIT(HUPYIONIMX MapaMeTPOB KOHCTPYKIIUH,
BBITIOJTHEHHBIX M3 MAaTEPHAJIOB CO CIIOKHOM (DI3UYECKOH CTPYKTYPOM, TAKMX KaK KOMITO3UTHBIE M HaHO-Marepuaibl. Mc-
TIOJIb30BAaHME B 3TOM CITydae KJIACCHYECKUX Mozeneil neMrupoBaHs, K MPHIMEpPY, OCHOBAaHHBIX HA THUIIOTE3€ BSI3KOTO
Tperust QoirTa, MPUBOAUT K PE3yiIbTaTaM pacdéra, BEChbMa JAIICKUM OT PEabHOTO MOBEACHIUS KOHCTPYKIHI U3 TIOZ00-
HBIX Marepuasios. [Ipeyiaraemble B cTarbe MOAXO/BI 3aKITFOYAI0TCS B AeNOKaIM3anii d(dekra aeMdrpoBaHus, Kak Mo
TIPOCTPAHCTBEHHON KOOPAMHATE, TaK U BO BpeMeHH. ONMChIBAEMbIE HENOKAIBHBIE MOZIETN AEMII(HPOBAHMS SIBIISTFOTCS
ynpasisieMbIMy. KannOpoBKa Mozieneii 1o pe3yrsraram SKCIIepHIMEHTa 3aKITI0YaeTCs B BBISIBIICHUH ONITHMAIILHOTO 3HAYECHHS
YIIPaBISIEMOTO TapaMeTpa MOZEIH C HCTIONb30BAHNEM METO/Ia HAMMEHBIIINX KBA/IpaToB. B KauecTBe OMOPHBIX PE3yIBTaTOB
B CTaTbe MCIOIB30BAHbI IaHHBIC BBIYMCIUTEILHOTO SKCIIEPUMEHTA Ha/l TPEXMEPHON MOJIENBIO CTEPXKHEBOTO IEMEHTA,
BBITIOTHEHHOT'O M3 KOMITO3UTHOTO MaTepraa. JTOT YUCICHHBIHA SKCTIEPUMEHT ITPOBEJIEH C UCITOIB30BAHNEM POTPAMMHOTO
xomruiekca SIMULIA Abaqus. Mareprait mpu 3ToM TIpecTaBIeH OPTOTPOIHBIM, TTApaMeTPhI OPTOTPOIHH Ha3HAYAIIHCH
B COOTBETCTBHH C (PM3MIECKUMH XapaKTEPHCTHKAMH PACCMaTPHBAEMOr0 KOMITO3UTHOTO Marepuana. PaspaboTraHHbIE BBI-
YHCITUTENBHBIE MOJIEIH KOJIEOaHMH CTEP’KHEBOTO IEMEHTA C yIETOM HETOKAIbHOCTH IEMIT(HPOBAHIS ObLIN PeaTn30BaHbl
B porpammHOoM Komimtekce MATLAB. TIprBeneHo cpaBHEHHE IOy YeHHBIX PE3YIIBTAaTOB C PE3YIIBTaTaMHt PACIETOB, TIOMY-
YEHHBIX C UCTIOJIF30BaHNEM KITACCHIECKOH MOJIEHN AEMIT(UPOBAHIS, OCHOBAHHOM Ha TuroTese Doiira.

KuroueBble ciioBa: konebaHst KOHCTPYKIUH, HEJIOKAIbHOE AEMII(pUPOBAHUE, BBIYNCIUTEIBHBIN SKCIIEPUMEHT,
yTpasisieMast MOZIeNb
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INTRODUCTION

The materials with complicated physical structure,
such as composite materials and nano-materials,
become more and more widespread in the
engineering practice. Generally, for the design of
structures, made of such materials, the detailed
three-dimensional finite element models are used.
In such models materials generally are modeled
as orthotropic and anisotropic ones. Problem of
damping modeling for the structural composite
elements is especially sophisticated. Meanwhile,
the detailed three-dimensional modeling of, for
example, beam elements is very often cumbrous and
unreasonable. In this case, one-dimensional models,
which are flexible enough for damping simulation
for the composite structures, are preferable. Nonlocal
damping model can be used as such flexible model.

VIBRATION SIMULATION USING
NONLOCAL IN SPACE DAMPING
MODEL

Damping in the certain point of the structure
with longitudinal coordinate x1 is assumed to
be dependent not only on local value of motion
velocity at this point v(x1), but also on the values
of motion velocity in the neighboring points. The
more distance between the two points the lower
influence that one of them has on the other [2].
The Kelvin-Voigt material model is commonly
used to describe the damping process in engineering
structures:

o= Ee+ yE¢, Q)

where g, ¢ — normal stress and axial strain, & —
strain rate, £ — Young modulus, y —damping ratio.
If we consider damping nonlocal in space, then
equation (1) transforms to [2]:

1

o(x,t) = E[e(x,?) +y f C,(lx —6Dé@6,6)do].  (2)
0
Here C (|x — d]) — the kernel function of internal
damping, |x — 6| — distance between the neighboring
points. The C (|x — 4]) function must satisfy to
normalization requirement:
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o

f C,(Ix — 0o = 1. )
In the paper the error kernel function is used:
U —p?(x—8)?
C,(lx—08])=—"¢ 2 .
Here 1 is the parameter that characterizes the space
nonlocality level in the damping model (fig. 1).
The higher is x, the closer is the damping model
to the classic local one (1).
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Figure 1. Error kernel functions for different
influence distance parameter

The equilibrium equation for the Euler-Bernoulli
beam is:

0?M(x, 1) 20%v(x, t)
=m |

F 542 q(x,t). (5)

Here v(x,7) is beam deflection, m is the distributed
mass, q(x,z) — distributed load.

Considering (2) and the plane sections assumption,
the bending moment expression for the nonlocal
approach is:

2w(x,t)
M(X, f) SES il T
l o ®)
w(o,t
+}’0f Cv(|x—9|)md9‘,

where EI — the bending stiffness of the beam.

Substituting the second derivative of the bending
moment expression (6) to the left part of the
equation (5), we obtain the vibrating beam
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equilibrium equation regarding the deflection
function v(x,?):

2%v(x,t) +EI d*v(x,t)
at? m| dx*

(7)

J2
+yas [ G- 6D

0

a3v(0,t) q(x,t)
6%t dQ‘ T om
To solve the equation (7) Galerkin method
was used, with the first beam Eigen forms,
responding to the boundary conditions,
considered as the coordinate functions. The
satisfying number of the coordinate functions
was picked up based on the numerical study
of the results convergence.

Consider GFRP beam with the fixed ends made
of orthotropic thermoset vinyl ester class 1
FRP under instantly applied distributed load
g = 10 AN/m. The beam is 6 m long and has a
rectangular cross-section. The characteristics
of the material obtained experimentally in [9,
10, 11].

The method of determining the influence
distance u using the least squares based on the
numerical simulation data is described in [6].
This method was also used in this paper. For the
nonlocal in space damping model calibration
the three-dimensional finite element model of
the beam was constructed in SIMULIA Abaqus
CAE (fig .2).

The material is suggested to be orthotropic. The
calibrated value of the influence distance is u =
1.071/m Comparison between the results of one-
dimensional modelling of the beam vibrations
considering nonlocal in space damping with

Figure 2. Finite element model of the
considering beam in SIMULIA Abaqus CAE
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the calibrated x and the results of detailed three-
dimensional finite element simulation is shown
on the fig. 3.
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Figure 3. Comparison of the results obtained

using nonlocal in space damping model and

ones obtained in Abaqus CAE

The difference between Abaqus results obtained
with 3D orthotropic material model and the results
obtained with one-dimensional beam where local
Kelvin-Voigt model is used to describe damping
is shown on fig. 4.
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Figure 4. Deflection of the beam using local
Kelvin-Voigt damping model in comparison to
3D numerical simulation data

VIBRATION SIMULATION USING
NONLOCAL IN TIME DAMPING MODEL

The beam element vibration process considering
damping that is nonlocal in time is modeled using
the finite element analysis. Using this method,
the equilibrium equation of the beam bending in
time is solved. In FEA the equilibrium equation
is applied in matrix form:
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M-V@)+D-7(t) +K-7(t) = F(¢). (8)

Here V(t) — vector of displacements of the
finite element model nodes (dot indicates time
derivative), K — stiffness matrix of the finite
element model, D — damping matrix, M — mass
matrix, F(f) — vector external forces that are acting
at the considered point of the structure.

To simulate the nonlocal in time properties of
structural vibration damping («damping with

memory») equation (8) is represented as:
¢

M-ﬁ(t)w-f G(t—1) - V(Ddr +
K-V(t) = F(t).0

Here G(¢ — 7) is the kernel function for nonlocal
in time damping. This function describes the
decrease of the strain rate influence at the moment
7 on the damping at the current moment ¢, and:

JtG(t —1T)dr = 1. (10)
0

©)

As above, the error function is taken here for error
function, constructed on the base of Gauss integral:

% e dx =m, (11)

that, taking into account the condition (10), can
be written as:

2p 2 2
Gt —1)=—-e #E17, (12)
v

T

Here u is a parameter, that characterize the level
of damping nonlocality in time.

To solve the dynamic equilibrium equation, the
method of the central differences is used [8]. In this
case, the first and second order time derivatives of the
displacement vector #1(7) participating in (8) and (9)
are approximated by central finite differences. Then
the equation (8), obviously, takes the following form:

1 _ _ _ 1
— M-(Viy —2Vi+ Vi) +5—-D

At? N B T 2-At (13)
“(Viga —Vis)) +K-V() =F,.
Herei=1, 2,3, ... —number of the considered

moment in time ¢, At — time increment.
In order to replace the classical damping model in
(13) with the damping model with memory, at first
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we represent the central difference in the second
term on the left-hand side of equation (13), which
is responsible for damping, as the average of the
«forward» and «backwardy differences:
1 _ o 1
a2z M Wiy —2Vi+ Vi) + 5D
V=V +

1 _ _ _ _
7 D V-V +K-V(@) =F.

(14)

The term with the «backward» difference is

replaced by:

1 _ _
STAL D-(V;-Vi_1) -
l
D _ _ _
=5 ). 66) (7 ~7-),
=1

where i — number of the time step which is
corresponding to the considered time moment t,
t=At-i,t =At-},j=1,2,...,i—number of the
time step when calculating the kernel G(, /).
G(i, j) is the discrete analogue of G(¢ — 7) kernel
(12), which for the error function (12) is calculated
as follows:
2 -w(e-(-5))

G(@i,j) = 7= e

(16)

After the described transformations equation (14)
can be written as:

o]

1 _ o _
M Vi -2V +Vi)+5-Z +

Atzl 2 (17)
m'D'(VHl_VE)‘l‘K'V(t):Fir
where
oo ()
7=, ﬁ(t $ 2)) Vi = V1) )

Still, the influence distance u determine the
nonlocality level in structure. The higher is x, the
closer is the damping model to the classic one.
Transform (17) to the computational scheme
for the st:ep-by-gtep calculating of VM using the
vectors V. and V_, which are calculated on the
increments i and i — 1:

Vi+1:Q'Fi_Q1'Vi_QZ'Vi—l_QIi'Z_J (19)
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where:

0= (ggh+ D)

At? 2-At ’

2 1
0 =0 (~gzM 7D +K).
1 (20)
Q2= FQ M,
1
Q3 =§Q'D-

For the first step i = 1 we assume ¥, =0and 7, =0
as the initial conditions.

The calibration of the nonlocal in time damping
model was implemented, as above, based on
the results of the numerical simulation of three-
dimensional finite element beam vibration in
SIMULIA Abaqus CAE. The determined optimum
value of x for the beam, that was considered in
privious section, is u = 0.11/s. The displacements
of middle section of the beam in time are shown
in fig. 5. The solid line shows the displacements
of the beam which is obtained using a calibrated
nonlocal model, and the dashed curve — using a
3D model built in SIMULIA Abaqus.
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Figure 5. Deflection of the beam obtained with
calibrated nonlocal in time damping model in
comparison to 3D numerical simulation data

Itis obvious, that calibrated nonlocal model allows
to obtain much more accurate results, than the
Kelvin-Voight classic model (fig. 4).

CONCLUSION

In comparison to local time models the model
presented in this article allows managing the main
characteristics of the simulated composite structures

Vladimir N. Sidorov, Elena. S. Badina

vibration process in more reliable and flexible way.
Increased flexibility makes it possible to use one-
dimensional models of beam elements in the dynamic
analysis of structures which are made of modern
composite materials with orthotropic properties.
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