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Abstract: Filtration of suspension in a porous medium is actual in the construction of tunnels and underground structures. 
A model of deep bed filtration with size-exclusion mechanism of particle capture is considered. The inverse filtration 
problem – finding the Langmuir coefficient from a given concentration of suspended particles at the porous medium outlet 
is solved using the asymptotic solution near the concentrations front. The Langmuir coefficient constants are obtained by 
the least squares method from the condition of best approximation of the asymptotics to exact solution. It is shown that the 
calculated parameters are close to the coefficients of the model, and the asymptotics well approximates the exact solution.
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Аннотация: Задачи фильтрации суспензии в пористой среде актуальны при строительства туннелей и подзем-
ных сооружений. Рассматривается модель долговременной глубинной фильтрации с размерным механизмом 
задержания частиц. На основе асимптотики вблизи фронта концентраций взвешенных и осажденных частиц 
решается обратная задача фильтрации – нахождение коэффициента Ленгмюра по заданной концентрации взве-
шенных частиц на выходе пористой среды. Константы коэффициентов Ленгмюра находятся методом наименьших 
квадратов из условия наилучшего приближения асимптотики к точному решению. Показано, что вычисленные 
параметры близки к коэффициентам модели, а найденная асимптотика хорошо приближает точное решение.
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1. INTRODUCTION

Transport and retention of solid particles in 
a porous medium occur in various natural 
phenomena and in industrial technologies. During 
the construction of tunnels and underground 
structures to create waterproof partitions, liquid 
concrete is pumped into the rock. The solution 
spreads through the pores and when solidified, 
forms a waterproof wall [1].

The transport of suspensions and colloids in porous 
media is accompanied by the retention of particles, 
which get stuck in the pores and form a deposit. 
The reasons for particle retention in porous media 
are straining, attachment, bridging, diffusion into 
dead-end pores, etc. [2, 3]. The intensity of various 
particle capture mechanisms depends on the 
physical and chemical properties of the particles, 
carrier fluid, and porous rock. If the particle and 
pore size distributions overlap, the predominant 
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cause of retention is the blocking of large particles 
in small pores. This capture mechanism is called 
size-exclusion [4]. It is assumed that the retained 
particles cannot be knocked out of the pore throat 
by the fluid flow or suspended particles and always 
remain stationary.
The mathematical model of filtration includes the 
equation of mass balance of suspended and retained 
particles and the kinetic equation of deposit growth 
[5]. At low concentrations of suspended particles, 
the deposit growth rate is proportional to the first 
degree of suspended particles concentration. 
The proportionality coefficient depends on the 
concentration of the retained particles and is called 
the filtration function.
Mathematical models often have analytical 
solutions. For some problems, it is possible 
to obtain a global or local exact solution; in 
other cases, the asymptotics is constructed [6-
9]. Analytical solutions allow to compare the 
mathematical model with the experiment and 
determine the parameters of the model from 
experimental data. The inverse filtration problem 
is to obtain the filtration function by the known 
concentration of suspended particles at the outlet 
of the porous medium, which can be measured in 
the laboratory.
For a simple filtration model that does not take 
into account the change in porosity during deposit 
growth, the inverse problem was solved in [10–12] 
by the method of successive approximations. The 
solution is based on Riemann relation between 
the concentrations of suspended and retained 
particles inside a porous medium at an arbitrary 
time moment with the concentrations at the 
porous medium inlet. However, this method is not 
applicable for complex filtration models in which 
several equation coefficients are functions of the 
concentrations of suspended and retained particles.
In this article a new asymptotic method for 
solving the inverse filtering problem is proposed. 
Asymptotic formulas defining a solution to the 
filtration problem depend on the model parameters 
in explicit form. Equating the asymptotics to the 
given solution at the output of the porous medium, 
all the parameters of the model are determined.

In the simplest filtration model, the filtration 
function is a linear non-negative decreasing 
function of the retained particles concentration. 
Such a filtration function, called the Langmuir 
coefficient, is often used in mathematical 
models [13, 14]. Below, the asymptotic method 
for solving the filtration problem is used to 
obtain the parameters λ0, λ1 of the Langmuir 
coefficient.

2. MATHEMATICAL MODEL

The one-dimensional model of suspension and 
colloid filtration in a porous medium is defined by 
a system of partial differential equations of the first 
order with unknown concentrations of suspended 
C(x,t) and retained S(x,t) particles

 

Here the filtration function Λ(S) is a continuous 
positive decreasing function.
The dimensionless system of equations (1), (2) is 
considered in the domain

Ω = {0 ≤ x ≤ 1, t ≥ 0}.

The boundary conditions for system (1), (2) are 
set at the inlet of the porous medium x = 0 and at 
the initial time t = 0:

 

At the initial moment t = 0, the porous medium 
does not contain any suspended and retained 
particles. The concentrations front of suspended 
and retained particles t = x moves from the porous 
medium inlet x = 0 to the outlet x = 1 at a speed 
v = 1. Before the front in the domain Ω0 = {0 ≤ x 
≤ 1, t < x}, the porous medium is empty and the 
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problem has a zero solution C(x,t) = 0; S(x,t) = 0. 
Behind the front in the domain

ΩS = {0 ≤ x ≤ 1, t > x}

a suspension and retained particles are present; 
the solution is positive C(x,t) > 0; S(x,t) > 0. 
At the concentration front, the solution S(x,t) is 
continuous, the solution C(x,t) has a gap.
A filtration function Λ(S) that has a positive root 
is called a blocking filtration function. The most 
commonly used filtration function is the Langmuir 
coefficient [15]

     Λ(S) = λ0 – λ1S, λ0 > 0, λ1 > 0.   (6)

In a domain ΩS the problem (1)–(5) with Langmuir 
coefficient (6) has exact solution in explicit form 
[13]

  (7)

In the vicinity of the concentration front t = x, 
the second-order asymptotic solution to problem 
(1)–(6) has the form [16]

  (8)

3. INVERSE PROBLEM

Suspended particles appear at the porous medium 
outlet at the moment t = 1 because the length of the 
porous medium sample l = 1 and the concentration 
front moves with speed v = 1. The inverse problem 
is to obtain the filtration function Λ(S) by the 
known suspended particles concentration C(1,t) 
at the outlet of the porous medium.
Denote τ = t – 1.
Exact and asymptotic solutions of the suspended 
particles concentration at the outlet of the porous 
medium are obtained by substituting x = 1 in 
formulas (7), (8)

  (9)

  (10)

In the laboratory of the Australian School of 
Petroleum & Energy Resources of the University 
of Adelaide, Australia, experiments were carried 
out to filter the suspension in a porous medium 
[17, 18]. Chemical composition and size of the 
particles were selected so that size-exclusion 
was the main particle capture mechanism. 
According to the experiments, the parameters 
Λ0, Λ1 of the Langmuir coefficients Λ(S) = Λ0 – 
Λ1S were obtained for filtration of monodisperse 
suspensions with solid particles of three sizes (see 
Table 1).

The unknown constants λ0, λ1 in the Langmuir 
coefficient (6) are determined by comparing the 
exact solution Cex(1,τ) at the porous medium outlet 
of problem (1)–(5) calculated for the Langmuir 
coefficients given in Table 1 with the asymptotics (8).
The constant λ0 is determined by the suspended 
particles concentration at the time of the appearance 
of the suspension at the outlet of the porous 
medium (so called break-through concentration)

The constant λ1 is obtained from the condition of 
the best approximation of the asymptotics to the 
exact solution by the least squares method on the 
interval τ – [0; 10].
                

⸦

Particle radius 
rn, µ

Λ0 Λ1

r1 = 1.568 0,11 0,01351

r2 = 2.179 0,59 0,005956

r1 = 3.168 1,551 0,003457

Table 1. Experimental Langmuir coefficients
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4. NUMERICAL CALCULATION

To find the constant λ1, the integral of the square 
of the difference between the exact and asymptotic 
solutions with the variable parameter λ1 over 
the interval τ – [0; 10] in the explicit form was            ⸦
calculated. The derivative of the integral 
with respect to the variable λ1 is a third-order 
polynomial. The polynomial has 3 real roots for 
all three types of particles. Real polynomial root 
closest to the experimental constant Λ1 is the 
desired approximation of the constant λ1.
The results of calculating the constants λ0, λ1 are 
presented in Table 2.

According to Table 2, the relative error in 
finding the constants is less then 0.01%; the error 
decreases with increasing particle radius.
Figure 1 shows the suspended particles 
concentrations of three particle sizes at the porous 
medium outlet: 1 – blue, 2 – red, 3 – brown. At t 
≤ 50 the graphs of exact solution and asymptotics 
coincide for all three types of particles.
The graph sections with high resolution are 
shown in Figure 2 (the exact solution is blue, the 
asymptotics is red).
According to Figure 2 a), b), c) at time t ≤ 10, 
the relative error of the asymptotics regarding 
exact solution is less than 0.001% for all types 
of particles.

5. CONCLUSION

An asymptotic method for solving the inverse 
filtering problem is studied. For example, the 
constants of the Langmuir coefficients are found. 
The parameters of the mathematical model are 
determined by comparing the exact solution with 
the asymptotics at the porous medium output.
It is shown that the least squares method is an 
effective way to obtain the model parameters. The 
coefficients of the filtration function are determined 
with an accuracy of 0.01%; when t ≤ 10 the 
asymptotics differs from the exact solution less than 
0.001%.
In the laboratory, the parameters of the mathematical 
model should be determined by measuring the 
concentration of suspended particles at the porous 
medium outlet [19]. In this case, the accuracy of 
finding the coefficients may deteriorate due to errors 
in laboratory measurements and deviations of the 
mathematical model from experimental conditions.

rn, μ Λ0 λ0 Λ1 λ1

r1 = 1.568 0,11 0,11 0,01351 0,01352

r2 = 2.179 0,51 0,51 0,005956 0,005955

r3 = 3.168 1,551 1,551 0,003467 0,003467

Table 2. Experimental & calculated constants

Figure 1. Suspended particles concentrations of 
3 particle sizes at the outlet x = 1

Figure. 2. Graph sections of the suspended particles concentrations at the porous medium outlet
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The next step in solving the inverse filtration 
problem is to obtain an unknown nonlinear 
filtration function that depends on 3 or more 
constants. In this case, problem (1)–(5) does not 
have an exact solution in explicit form. To solve 
the inverse problem, a numerical solution by the 
finite difference method is required [20, 21].
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