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Abstract: The quickly expanded development of artificial intelligence offers alternative ways to solve numerous 
civil engineering problems. The work is devoted to the development of a computer-vision-based crack detection 
system capable to process big data related to pathology recognition. In this study, we discuss an automated crack type 
classification pipeline based on CNN deep learning algorithm and MapReduce framework. The results of numerical 
modeling illustrate the potential of the crack detection system.
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Аннотация: Быстрое развитие искусственного интеллекта предлагает альтернативные способы решения 
многочисленных проблем гражданского строительства. Работа посвящена разработке системы обнаружения 
трещин на основе компьютерного зрения, способной обрабатывать большие данные, связанные с распознава-
нием патологии. В этом исследовании мы обсудили конвейер автоматической классификации типов трещин, 
основанный на алгоритме глубокого обучения CNN и инфраструктуре MapReduce. Результаты численного 
моделирования иллюстрируют потенциальные возможности системы обнаружения трещин.
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1. INTRODUCTION

Thinking on the main principles of orthogenesis, 
taking into account that some "driving force" of 
evolutionary progress is always applied to reach 
a goal, it becomes obvious that the large-scale 
trends in massive digital transformation increase 
informational complexity. Started in the 2010th, 
the explosion of large volumes of structured and 

non-structured data production (text, image, 
video, and audio) initiated the so-called “fourth 
wave” of data evolution. Only several years later 
the “4th Industrial Revolution” stimulated the 
development of new industrial relations. That is 
to say, to stay on the market each company has to 
adapt in real-time available resources (technical or 
human) and solutions with respect to the shrinking 
technological innovation cycle. This makes 
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“data”-related questions (format, quantity and 
quality, availability, time variation, etc.) highly 
important. Being influenced by technological 
progress, civil engineering adapts to the new 
environmental conditions. Many companies 
handle with cloud tools, storage cloud spaces, 
third-party calculations to speed up the project 
realization on all its life-stages with respect to 
technological innovations.  Since no human and 
no “ordinary computer” can evaluate the millions 
of variables concerning a real-world phenomenon 
new AI-based raw data processing platforms and 
frameworks  have to be developed. 
The main streams of AI applications development 
concern the data either deterministic (all factors 
are known and controlled)  or probabilistic (all 
factors have a probability to happen). To illustrate 
these last we limit examples to genetic algorithms, 
swarm intelligence, and artificial neural networks, 

which are considered as a core subset of machine 
learning (ML) techniques (see Table 1). As it is 
possible to admit, the mentioned methods can 
be grouped as modeling, optimization, control, 
or forecast and are related to all the life-stages 
of the construction process from the concept to 
maintenance and demolition. Despite the variety 
of the solutions, the expertise related tasks as 
structural damage detection (SDD) still have need 
of a human-specialist final decision. So, widely 
used visual, ultrasonic, or leak testing as well 
as acoustic emission, optical or laser methods 
can be augmented by ML technology, which 
in-depth development (mostly it is based on a 
statistical representation of a phenomenon under 
study) makes possible to automate most of these 
evaluations due to “deep feature extraction” and 
“feature classification” [12]. The choice of ML 
technology depends on the domain of application 

Technique Method Purpose Application

Genetic algorithm
(GA)
[1–4]

• unsupervised and 
nonparametric
• selective evolutionary
• multi-objective fuzzy-
genetic control

• to solve ill-posed large-scale 
optimization problem
• to determine decision 
boundary
• to monitor the over-time 
changes
• to complete the sensitivity 
analysis

• structural damage detection
• reduction of negative impact 
of environment on structures
• shape and cross-section 
optimization of truss structures
• cable tension changes control
• vibration reduction
• heat exchange

Swarm intelligence
(SI)
[5–9]

• particle swarm 
optimization
• ant colony algorithm
• bee colony algorithm
• krill herd algorithm

• to solve global optimization 
problem in the hyper 
imensional space 
• to select reasonably design 
parameters 
• to update the dynamic 
models

• potential damage reduction 
(i.e. seismic safety of building, 
bridge vibrations)
• slope stability analysis
• optimal selection of 
geomechanical parameters
• diverse design problems 
(tubular column, three-bar truss, 
helical compression string and 
etc.)

Artificial neural 
networks
(ANN)
[10–13]

• supervised
• semi-supervised
• non-supervised
• reinforcement

• to solve highly complex ill-
posed problems
• to predict and forecast 
processes of different nature
•  to classify structural 
damages, predictive scoring, 
predictive maintenance 
•  to detect abnormalities

• structural damage detection
• reliability analysis 
• reduction of construction 
waste
• structural optimization and 
control
• health monitoring
• damage detection

Table 1. Some examples of AI techniques application in civil engineering
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and of the area of engineering research. Let us 
consider the main advantages of ML-based SDD 
for some abstract civil construction.
The life cycle of any civil structure depends on 
cause-damage internal and external environmental 
factors (temperature, humidity, pressure, creep, 
corrosion, shrinkage, etc.). Therefore to prevent 
damages in the early stages, continuous evaluation 
of the structure is required. Despite the popularity, 
mostly referred to the surface inspection (fissures, 
cracks, leaks, etc.) the visual-based methods of 
damage detection become laborious and time-
consuming for relatively large and complex 
structures demanding highly-skilled-trained 
experts. The main reasons are difficulties of access 
to certain parts of constructions as well as quantity 
and quality of structured and non-structured 
information to analyze.
Taking into account the progress being made in 
the field, the aim of this study is the development 
of an automated crack-detection system aided by 
a high-throughput deep learning algorithm for 
complex features extraction.
To reach the objective, we organize the work in 
the following manner. In Section 2, we analyze 
the existing ML-techniques based on computer 
vision and commonly used features for cracks 
detection. Section 3 deals with the methodological 
aspects of the cracks detection and classification 
system based on the semantic segmentation. 
Next, in Section 4, we evaluate the performances 
of the designed system and compare it with 
the other well-performed methods. Section 5 
contains concluding remarks on advantages and 
limitations as well as recommendations for further 
development.

2. METHODS FOR DETECTING CRACKS 

2.1. Cracks: naïve conception

Cracks and fissures refer to the phenomenon  of 
the surface splitting without breaking it apart. 
Usually, they are observed as “lines” or “broken 
curves” of different width, length, and spatial 

orientation. Through empirical observation 
for specified surface (were-used materials, 
physical or chemical characteristics, a period of 
exploitation, environmental conditions, etc.), the 
reason of cracks appearance can be concluded. 
An introduction of cracks classification serves 
to estimate damage they would or already have 
caused. In this work, we would pass on only the 
principles of cracks detection. Hence the further 
considerations concern only concrete surfaces in 
the wide sense.

Figure 1. Some examples of the crack-damaged 
concrete surfaces

S e v e r i t y 
class

Opening
[mm]

Description

0 < a out of consideration
1 [a, b) an aesthetic nature

2 [b, c)
l o w  r i s k  o f  n o n -
r e tu rnab l e  su r f ace 
damage

3 ≥ c
elevated risk of non-
r e tu rnab l e  su r f ace 
damage

Table 2. Crack classification according 
opening (a, b, and c are the threshold values 

taken into account by an expert)
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To create an automated crack detection system, 
first, the classification criteria have to be settled, 
allowing experts to conclude on the damage state 
and to take the actions. Using visual analysis 
(see Fig. 1), cracks can be classified according 
to the opening size or severity (usually graduated 
measures in mm), to the spatial orientation 
(longitudinal, transversal, and miscellaneous), and 
to expert-based characteristics (plastic shrinkage, 
expansion, heaving, settling, overloading, crazing 
or crusting caused by premature drying, etc.). The 
diverse combinations of these features refer to 
multi-class classification problem, where classes 
and subclasses hierarchy has to be introduced by 
an expert with respect to the inspected structure. 
The example of the possible severity-based 
classification presents Table 2. As it is possible to 
notice this classification deal only with four levels 
of severity, other subdivision can be used without 
losing generalities. 
We have also to admit that identification of 
spatial orientation as well as of  expert-added 
characteristics depend on the architecture of the 
automated detection system and computer-vision 
techniques. Let us discuss some of them.

2.2. Computer-vision detection techniques 

 An automatic computer vision-based inspection 
of continuous surfaces (and, in a consequence, 
the defaults detection) supports a process of 
several stages, namely: image acquisition (surface 
lighting, camera configuration, synchronization, 
information storage),  damage detection 
(preprocessing, localization, classification), and 
result exploitation (displaying and reporting 
information, decision making). The performance 
of the decision making depends on both hardware 
and software used in the detection system. It can 
be improved by increasing the quantity and quality 
of processed information subjected to decreasing 
processing time and controlling that repository 
of images fit in memory. In our opinion, the core 
element of the automatic damage detection system 
is the damage detection algorithm (see Fig. 2). 
Once its characteristics are available, the rest of the 

solution can be adapted for obtaining the desired 
parameters of the system as a whole.
The starting point of any damage detection 
algorithm supported by computer vision techniques 
is the digital image representation. The initial 
image is converted to a gray-scale one under 
selected resolution. Hence, the n1 – by – n2 pixels 
grayscale digital image corresponds to the surface 
associated with the bounded closed set

 , (1)

where each pixel (x, y) –  D is characterized by an 
intensity    

⸦

f (x,y) –  F,
        

⸦

where F = {fmin , ..., fmax} ⸦ R+ is an ordered final set. 
Further, the values of intensities are sequentially 
transformed to find regions of suspected damage. 
The detection techniques, called the semantic 
segmentation, can be generalized as follows.
The fact that the pixel frequencies related to cracks 
are usually shifted to “black color,” such that the 
surrounding neighborhood seems to be lighter, is 
used to detect edges of cracks. Therefore choosing 
some threshold value one can point out damages. 

Figure 2. The scheme of the automatic damage 
detection system
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However, if both regions have similar brightness, 
this kind of separation is hardly possible without 
additional pre-processed and post-processed 
transformations. This idea is supported by ML 
technique, which requires:

• preprocessing data (to eliminate anomalies 
related to acquisition system and to remove 
significant variations in initial intensities);
• segmentation (to detect desired features);
• classification (to group extracted features 
according to defined rules);
• post-processing (to refine the segmented and 
classified structures);
• evaluation (to analyze segmentation and 
classification quality). 

As it is was indicated in [12–14], the accuracy of 
the damage detection algorithm mostly depends 
on strengths and weaknesses of the selected 
segmentation method (threshold-based, region-
based, active contour model, mean-shift, K-means, 
Otsu, etc.). It can be significantly improved by 
deep learning methods using complex network 
architectures with significant volume of initial 

data. The CNN-based five-level architecture, 
developed in [13, 14] and called CrackNet, can 
be named as an example of automation of crack 
detection (see Fig. 3). 
To ensure desired pixel-wise accuracy authors 
had used more than million parameters. Despite 
the reduction of parameter space by introduction 
of more hidden layers, these methods are very 
time-consuming methods [15, 16]. 
To speed up the performances of the detection 
method some authors propose to treat the crack 
detection phase and crack characterization phase 
separately, reducing the number of processing 
operations (it can be done by Big Data technologies) 
and consistently getting rid of unnecessary 
information [17, 18].

3. RESEARCH METHODOLOGY 

3.1. Method overview

The damage detection algorithm usually contains 
two stages:
 
• “separation”, where regions of interest (ROI) 
are separated from the background, and
• “classification”, where ROIs are subdivided into 
subsets according to some selected criteria.

Both stages refer to classification problems 
(binary and multi-class) and can be solved either 
by non-supervised or by supervised learning 
methods. In the case of supervised learning, the 
patterns to be recognized are compared with the 
labeled ones. In this work, we will apply the 
supervised methods to both stages each time 
solving the optimization tasks. Analysis of the 
patterns, where cracks were presented, shows 
that the damaged surface is much smaller than 
the background surface. This causes a problem 
of miss-balanced classification on the first stage 
and as a consequence miss-classification on the 
second one. To reduce  miss-classification  error 
a kind of regularization has been included to the 
optimization criteria. 

Figure 3. Sketch of overall architecture for 
crack detection – CrackNet [13]
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Let Itag be the labeled image, which corresponds 
to the image I defined by (1), where total number 
of pixels is M = n1 · n2. We will call a pair (I, I 

tag) as a training example. Labels of I tag form M 
elements ground truth set T subdivided on K 
disjoint subsets Tk  (classes). Each subset Tk, k – K,                 ⸦
contains mk elements tkj, j = {1, ..., mk}, such that 
Σkmk = M, 0 ≤ mk ≤ M. To compensate the influence 
of larger classes, each subset is weighted as
 
  

where ε is a compensation term settled as a 
machine precision value to avoid division by zero, 
if Tk is an empty set.
We denote the results of prediction for some 
possible segmentation Q = {Qk, 1 ≤ k ≤ K} of the 
initial image I by qkj, k = {1, ..., K}, j = {1, ..., mk}. 
The wise-element loss between one image I and 
the corresponding ground truth image I tag can be 
measured by the generalized Dice loss function:

 , (2)

where the ε term is used to avoid division by zero, 
if  Qk or Tk are empty sets.
Hence, the classification turns to the solution of 
the optimization problem:

   (3)

In the supervised learning, the problem (3) is 
repetitively solved N times on the set of training 
examples (Itr, I tag):
                        

tr

 , (4)
  
where the index “tr” stands for the training set. 
The same optimization criteria is applied in case of 
severity class outlining. The severity-class labels 
are determined according to the method proposed 
in [17]. The crack opening is calculated on pixel 
level as average width along the crack skeleton:

 

where ucr and usk are the numbers of pixels 
associated with the detected crack and its 
skeleton, whereas rs is the spatial resolution of the 
acquisition device.
In both classification cases, the solution of (4) is 
considered as a predictive model. Once it have 
been evaluated on the validation set of examples 
(Ival, Itag), each new image can be examined to          val

determined damages. As it is possible to conclude, 
the crack detection and classification algorithm 
has two main phases: the training and the testing. 
The training phase requires the samples selection, 
preprocessing of initial data, the definition of  the 
neural network architecture to create the predictive 
model. During testing phase the cracks are 
detected and classified, the results are evaluated 
by means of the performances metrics (see Fig. 4). 

We refer to [11] for more details on preprocessing 
and ROI identification. The edge detection 
methodology discussed in [11] defines the 
architecture of CNN used in the solution of (4) 
(see Fig. 5).

Figure 4. Main modules of  the crack detection 
and classification algorithm
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To reduce the training time, the training procedure 
is implemented as a general MapReduce 
architecture. The main idea of this framework 
can be shortly described as follows. First training 
samples are divided on chunks. Each chunk is 
treated separately in parallel mode to perform 
a network training (data preprocessing, the 
weights initialization, forward propagation, 
backward propagation, the calculation of 
deviation, the calculation of offset, weights 
update such that to insure the convergence of 
the goal function (4)). As a result a “Key Value 
Store” is created. Next, these values are grouped 
by unique keys and reduced such that “Key Value 
Store” contains the parameters of the trained 
predictive model [19].   
 
3.2. Evaluation metrics

The main idea of the crack detection algorithm 
is a binary classification of pixels as “cracked” 
or “non-cracked”. Hence, to analyze the liaison 
between predicted and labeled ROIs, each target 
crack was marked by a minimum enclosing 
rectangle. The spatial coordinates of this last 
were used to indicate ROIs on the training 
sample. Therefore, accuracy of the classification 
can be measured by standard evaluation metrics 
such as 

    • precision

  

    • recall sensitivity

 

    • F1-score 
 
 

where TP and TN are the numbers of correctly 
classified “crack” and “non-crack” pixels as well 
as FP and FN are the number of misclassified 
pixels. These metrics can be used in a case of 
the severance-leveled classification. To study 
the global performance of this classification the 
mean-intersection-over-union is used. It can be 
estimated as 

 , (10)

where K refers to the number of classes.    

4. EXPERIMENT AND ANALYSIS

4.1. Dataset

The dataset consists of several concrete slab 
survey images with the same resolution. As 
it was mentioned before, the cracks areas are 
usually smaller than that of the total background. 
Hence, to avoid overloads of the training process 
we selected 4500 smaller blocks with a size 
1024×1024 pixels. Next, on 300 patterns the 
cracks were manually labeled. Each labeled image 
was treated as the ground truth with two classes: 
“crack” and “no-crack” (see Fig. 6). The “crack” 
class was subdivided into four subclasses to 
indicate the severity level (“0” if ͞u < 2mm , “1” 
if 2mm ≤ ͞u < 4mm, “2” if , “3” if ͞u ≥ 6mm1). For 

Figure 5. Sketch of overall architecture of 
“Deep Network” module. 

1 This is just an example of classification. In practice, the norms 
have to be applied to define the severity classes [17, 18].
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training-evaluation purposes the dataset was split 
on training, validation and test parts as 3:1:2. 
  

4.2. Implementation details

We used the personal computer with processor 
Intel (R) Core (TM) i7-470HQ CPU@2.50GHz 
RAM 16 Go and graphic card NVIDIA GeForce 
GTX 860M 1029MHz under 64-bit Windows 
8.1 OS to explore the performance of the 
proposed methodology. The crack detection and 
classification algorithm was implemented in 
MatLab R2020b with DeepLearning, Parallel 
Computing and Computer Vision Toolboxes. 
MapReduce framework was executed on a parallel 
pool of four workers. The resolution parameter was 
automatically detected on the set of 100 images. 
This parameter was allied to find the average 
opening of detected cracks. The network was 
trained with the initial learning rate – “0.0001”, 
the maximum number of epochs – “50”, size of 
the mini-batch to use for each training iteration 
was “64”, the validation frequency – “50”. To 
insure the conversance of (4) we used the Adam 
optimization method setting ε = 10–9, gradient 
decay factor as “0.9”, squared decay factor as 
“0.999”. Moreover, a random flip was applied to 
improve the robustness of the trained model.

4.3. Detection results

In the first stage of experiment we were interested 
only in binary classification task: the potential 
to find cracks. The performance of the proposed 
crack detection methodology (it is called as 
“Method” or “MethodMR” if MapReduce 

framework is applied) was compared with other 
semantic segmentation techniques based on the 
CNN architecture (U-Net [20] and CrackNet 
[15]). The experimental setup parameters as well 
as  training, evaluation, and testing datasets were 
the same for each method. The methodology 
discussed in this paper was running twice: without 
MapReduce and with MapReduce framework. 
Table 3 contains the quantitative comparison of 
these methods using on the evaluation metrics 
(6) – (9) as well as training-evaluation time to 
finalize the predictive model. As it is possible to 
see, the proposed segmentation method supported 
by MapReduce framework achieves the highest 
performance. Results expose higher accuracy in 
binary classification and improvements in speedup 
and coincide with these were reported in [14, 18, 
19].

In the second stage of experiment, we have analyzed 
the severity levels detected by MethodMR. The 
severity classification results for one image 
are shown in Fig. 7. To evaluate the multiclass 
predictive model we use the receiver operating 
characteristic (ROC) curves (see Fig. 8) and 
estimated areas under the curves (AUC), namely:

AUCClass''0'' = 0.9159, AUCClass''1'' = 0.9488,
AUCClass''2'' = 0.9601, AUCClass''3'' = 0.9754.

As it is possible to see, MethodMR has better in-
sample performance in classifying cracks with 
bigger openings.  

Figure 6. Example of image part selection and 
labeling

CNN PPV
[%]

TPR
[%]

F1
[%]

–––
I0U
[%]

ttranining
[s]

U-Net 95.87 96.04 95.95 71.33 2784
CrackNet 96.18 97.09 96.63 72.54 2208
Method 97.99 97.43 97.71 74.15 2160

MethodMR 98.21 92.39 92.30 75.62 857

Table 3. The performance comparison 
results on cracks detection using different 

architectures of CNN

A Crack Detection System For Structural Health Monitoring Aided by a Convolutional Neural Network
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5. CONCLUSIONS

The machine learning methods and especially 
convolutional neural networks have gained 
recognition in a wide array of applications of 
civil engineering permitting resolving the well-
known problem of computer vision with better 
precision. Nonetheless, due to the enlargement of 
available information, the rise of computational 
complexity is observed. Big data severely impact 
training processes of CNN. The finalization of 

the CNN-based predictive model with desired 
accuracy suitable for the application has very high 
computational cost.
To overcome these obstacles, this study 
presented a novel semantic segmentation 
strategy for  the automatic detection of 
cracks based on the distributed framework 
MapReduce applied to CNN training phase. 
The proposed method showed significant 
acceleration comparing to other segmentation 
networks. Moreover, results of cracks detection 
and classification reveal high accuracy. The 
proposed solution can be adapted to the 
specificity of the field of application to develop 
high-throughput damage detection systems 
implemented in portable devices using cloud 
technologies.   
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