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SIMULATION OF A MULTI-FREQUENCY STOCKBRIDGE
VIBRATION DAMPER OSCILATIONS WITH ENERGY
SCATTERING HYSTERESIS
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Abstract: Spatial vibrations of a system containing a cable and a mass (solid body of arbitrary spatial configuration)
are modeled. The problem is solved in a geometrically linear formulation, taking into account the hysteresis of
energy scattering that is based on the kinematic equation. Identification of its parameters is carried out on the basis
of experimental data on hysteresis loops of the limit cycle.
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AHHOTauus: MoaenupyroTcs IpOCTPAHCTBEHHBIE KOJIEOaHNs CHCTEMBI, COCTOSIIECH U3 TPOCHKA M TPpy3a — TBEPAOTO
TeJ1a MPOU3BOJIBHOM TPOCTPAHCTBCHHON KOH(PHUTYPAIlHK. 3a1a4a PEIIacTCs B TeOMETPHUCCKH JIMHEHHOM ITOCTaHOBKE
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INTRODUCTION

Vibration protection of wires, lightning cables,
fiber-optic communication cables in systems of
overhead power lines (OL) is carried out by various
methods. The main of them is protection with the
help of multi-frequency vibration dampers, which
are structurally similar to the Stockbridge ones [1-
3]. The typical design of such a damper consists of
two mass connected by cables (flexible elements)
with a clip that is rigidly fastened to the OL wire
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using a plate (Figure 1). The masses are located
on different sides relative to the vertical axis of
the clamp, in general, at different distances. The
energy dissipation of vibrations occurs as a result
of the mutual friction of the wire spirals from
which the cable is made.

Experimental studies of the energy scattering
of OL wires vibration dampers currently play
a key role in the analysis of their effectiveness.
However, it is important to create mathematical
models of vibrations that allow not only to
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calculate the dynamic properties of dampers, but
also to optimize their design parameters in order
to increase the dissipation of vibration energy in
the widest frequency range.

Figure 1. Vibration dampers conductors of OL

Energy dissipation occurs in the cable of the
damper due to the elastic-plastic interaction of the
wire spirals during their mutual friction. At the
same time, as experiments show, the dependences
of force factors on the corresponding kinematic
parameters have a pronounced hysteresis
character.

In this paper, we propose a kinematic model for
describing hysteresis [4-6], according to which
the bending and torsional momenta and their
corresponding curvatures are connected by a special
first-order differential equation, the coefficients of
which are determined from experimental values for
the limit cycle loop. In this case, one equation can
describe an infinite set of similar trajectories, each
of which is uniquely determined by the position of
the initial point in the deformation diagram inside
the limit cycle. The similarity of these curves is
determined by their asymptotic approximation to
the limit cycle curve. This model leads to a natural
definition of the hysteresis cycle "orbital" under
external non-stationary action on the damper.
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BASIC KINEMATIC RELATIONS

Spatial vibrations of a system containing a
cable and a mass (solid body of arbitrary spatial
configuration) are considered. It is considered
that one end of the cable is cantilevered, and
the other is rigidly tethered to the mass. The
gravitational load on the system is not taken into
account. The cable axis is considered straight in
the initial state.

Alocal trihedron of axes O'x'y'z" is associated with
the mass, which oscillates with the mass relative
to a fixed coordinate system Oxyz. The pole O
is aligned with intersection of the cable axis and
the surface of the mass in the place of their rigid
fastening.

A rod model is taken for a cable, assuming that
its cross-sections are displaced in space as rigid
non-deformable disks.

The oscillations are considered small, allowing
one to represent the movements of the cross-
section points of the cable with the coordinate in
the form

u(x,y,2) = ug(x) +0,(x)z — 6;(x)y,
v(x,y,2) = vo(x) — 6, (x)z,
w(x,y,z) = wo(x) + 61 (x)y,

(1)

Here u,, v,, w, are displacements of the cross-
section pole; 0, 0,, 0, are rotation angles of
the cross-section relative to the axes x, y, z,
respectively.

Figure 2. Coordinate axes, kinematic and power
parameters of the “cable-weight” system
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System “cable-weight” and the related coordinate
frame are shown in Figure 2. Here the positive
directions of the displacements and rotation angles
of an arbitrary section of the cable are also shown,
as well as forces and moments acting on the cable
and mass at the point of their contact.

ELASTIC DEFORMATION RELATIONS

Formulae (1) allow us to obtain the following
expressions for strains:

du , , ,
& === Uy + 6,(x)z — B5(x)y,

ox
B v _ ow .
YTy =0%"09;""
ou 6v .
Yoy = ay 6 —65 + vo 0,z
Ju ow
Yxz = az+a =0, +W0+91y

Here and further, the strokes denote the derivatives
of the values in the direction of x, except for the
notation for the moving coordinate system O'x'y'z.
The relationship between stresses and strains is
assumed in the form of Hooke's law using some
reduced elastic £ and shear modulus G. Then the
axial stress o_= E¢ , determines the axial force

N = fp 0, dF = EF(up — Ycb3 + 2c6;)" (2)
and bending moments
M, = — [, yo.dF =E(—ycFu, +

+),05 — J,0) (3)
My = [, zo.dF = E(zcFuy — J,,05 +

]yGZ)'J

where y,, z . are the coordinates of the center of
mass of the section relative to its pole.
Tangential stresses

T - nyy’ xz nyz

determine the transverse forces
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Qy :f TeydF =

Fcy
= GFy[—605 + (vo — 24601 ], 4
Q, = chz Ty dF = GFCZ[BZ + (wo + yggl) ];

as well as the torque

M;, =J- Txyde—f T,z ZzdF =
Fcy Fcz

= GJxb, + GE.,y,(0, +wy) +
+GFyzy(05 — ), (5)
where Vg Z, are the coordinates of the section
stiffness center relative to its pole; Fcy, F_ are
equivalent cross-sectional areas working for a shift
in the direction of transverse forces Q, and Q;

]sz yzdF+f z?dF
Fcz Fcy

The axes x, y, z will be considered below as the
principal and central ones for the cable sections.
Then (2)-(5) are simplified:

N = EFu, (6)
M, = EJ,05,M, = EJ,0, (7
Qy = GFcy(_afi + Ul;): Q; =

= GF.,(6, +wp) (8)
M = GJic6; ©)

Formulas (6)-(9) are accepted as basic physical
relations, where the EF tensile-compressive,
EJ  EJ, flexural, GF_, GF_ shear and GJ,
torsional stiffnesses can be calculated analytically
by formulae that take into account the internal
structure of the cable [7-9], or by formulae
obtained experimentally [10].

THE PROBLEM OF THE SYSTEM
NATURAL OSCILLATIONS

According to the D'Alembert-Lagrange principle,
the variation of the total energy of the system is
represented as
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62=0U-04,— 4, =0. (10)

Here 6U is the variation of the cable deformation
potential energy: 04, 64 - variations of the
external and inertial forces work:

84, = fp-éuds
S

SA; :—j,oﬁ-é'udv
14

where u is the displacement vector of the body
point, p is the load acting on the surface S; finally,
p, V are the density and volume of the body.

In problems of natural oscillations

04 =0.
P

The dynamic equations following from (10) have
the form of Euler-Lagrange equation, and their
natural boundary conditions appear.
High-frequency lateral vibrations are neglected
below, since the damper is designed to suppress
only low-frequency transverse vibrations. To
simplify the problem, we will also neglect the
shears strains using the relations

82 —_ _wl;, 9'; - 1?6
It is also considered that the bending stiffness is
EJ =EJ. =EJ,

the section moments of inertia are

and the polar moment of inertia is denoted by

I =1.

x p

Thus, the equations of vibrations after the exclusion
of transverse forces are written in the form (11)

EJvlY — Iy + mii, = 0,
EJwlY + Iy + mw, = 0,
—GJi 0, + 1,6, = 0.

(11)

The boundary conditions at x = / take the form

Qy(1) + MO|wo(D) + x85() -

-z98:,0)| =0,

Q1) + MO vy (D) - x6,(1) +
+y26,(D] = o,

My (1) + M| =20, (1) + y (D] +

+1£6, - 194, - 1985 = o, (12)

M, (1) — MOxDvg (1) — 198, + 156, —

-1%4; = o,

M, (1) + MOxO5,(1) — 18, — 156, +
+194, = 0.

where M is the mass of the load; x,g ), y(gr), Zér)

and Ii(].r)(i, Jj =x,y) are the coordimnates of the

mass gravity center and its moments of inertia
relative to the trthedron of the moving axes

Oxvyz.
The solution of (11) are:

vy =sinw t(4;sinax +

+A, cos ax + A3shbx + A,chbx),
W, =sinwt(B; sinax +

+B, cos ax + Byshbx + B,chbx),
0, =sinwt(D,sinkx+ D, coskx),

where 4,,,,, B,,,,, D,, are the constants of

integration, o = o, (i = 1, 2, ...) are the natural
frequencies;

1
2 _ 2 212
a ZEj(w I+ w\w?l +4Ejm),
b? = L(—mzl’ + wy w22 + 4E]m)-
2E] ’

k2 — (U "‘p
Gl

Taking into account the console pinning at x = 0,
the solution takes the form

Vo = sinw t(Aypq + Az;), Wy =

sinw t(By@q + By93), (13)
6, = Dsinwtsinkx,
where we have the eigenforms:

@41(x) = shbx — 2 -sinax,p,(x) = chbx —
—cosax (14)
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The constants 4, ,, B, , and D are found from the
boundary conditions (23) at x = 1. Substituting
(13), (14) into (12) leads to a homogeneous system
of five equations with respect to the required five
constants. The equality of determinant to zero is
the nontriviality condition of the system solution

Alw) =0, (15)
the roots of which are the frequencies of the system
natural oscillations:

a)i,i=1, 2, ...

The search for the transcendental equation roots
(15) of a very complex structure can be carried out
by a step-by-step method, changing the frequency
@ with some small step Aw from zero to some
selected value. When changing the sign of the
determinant, some numerical method is used, for
example, the method of dividing in half.

DESCRIPTION OF THE NON-
STATIONARY PROCESS HYSTERESIS

To describe the hysteresis under the conditions of
nonstationary oscillations, we propose an ordinary
differential equation of the first order [4-6] with
the right-hand side of the form

—ZZC M

i=1 j=1

where « is the bending curvature of the cable, A/
is the bending moment; C,y are the coeflicients
determined by approximation methods,
minimizing the discrepancy of the analytical
am
dx

(16)

representation (16) to the experimental

data describing the limit cycle.

Itis assumed that all possible hysteresis trajectories
—dependences M(x) lie within the limit cycle, i.e.,
the region bounded by curves M(x) corresponding
to the maximum ranges of curvature and moment
changes. The numbers k and m are selected as a
result of simple numerical tests. The values of
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these parameters determine the character (speed)
of the asymptotic approximation of the solution
with the initial point (x,, M) inside the domain
to the limit cycle curves.

The values C, can be calculated using the least
squares method for instance.

An example of the dependencies M(x) obtained
experimentally in [11] is given in Figure 3. The
bold lines correspond to the limit cycle. The thin
lines correspond to possible loop-like trajectories
within the limit cycle region. Trajectories for
which the curvature increases with increasing
moment correspond to the process of “loading”.
Conversely, trajectories for which the curvature
decreases as the moment decreases correspond
to the “unloading” process. The beginning of the
process is determined by some point inside the
limit cycle area.

M[H M].

-0.5 0 0.5

-1.0

1.0 x [1fa]

Figure 3. Hysteresis trajectories.
“Loading” processes are marked with up
arrows, “unloading” — with down arrows. Bold
curves limit the area of the limit cycle. Thin-
define possible trajectories of intermediate States

Next, the following notation is introduced:

_ " _ " _ !
Ky = —Wq.Ky = —Wq, K = 6y .

Based on (16) and the introduced curvature
notation
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My _ p Mz _ 5 Mk _
dry (py’d:cz =, dxg ¥, (17)
Where
k m
&= > DGy w)
i=1 j=1 _
b, = Xy X7y Cy(vo)M) (18)
NE—T i
w =3k Y D;(6,) M
The equations follow from (17)
ﬂ?l’ = —Wo Py,
M, = vy, (19)
M, =6,¥,

that must be integrated together with the equations
of forced oscillations in the form:

M — Iy + mijy = f,;
—M,, + IVig + mivy = f;
—M; + 1,6, = fi.

(20)

Here, ]j (¢, x), £.(z x) and £, (¢, x) is the specified
external distributed load.

The unknowns of the system (19), (20) are v, w,,
0, M, M, M,

The solution is constructed using the expansion
with respect to the eigenforms of vibrations of the
undamped system:

Vo (t,x) = iz @i (O)Vi(x) , wo (£, x) =
i=0 Bi (W, (x),
6, (t, %) = Xi=oVi(£)0;(x),

My (t,x) = Zloo ()W (x), M (8, %) =

LoviV 00, 1)
M (t,x) = Zizom:i(t)0;(x),
where the waveforms (22)
Vi(x) = Appri(x) + Ao (x), Wi(x) =
Byi91i(x) + B2z (), (22)

0;(x) = D;sink; x

are determined from the solution of the spectral
problem; index i is the number of natural frequency
of vibrations;  is the number of considered natural
forms of vibrations; the value i = 0 corresponds
to the unit forms that determine the motion of the
system as a solid. The functions a.(z), A(2), y.(?),
u (1), v(1), n,(¢) are to be defined. Substituting
(21) with (22) in (19), (20) leads to a system of
equations

oWy + pio, W) = 0,

oWV — @ d,V)) = 0, Xi_o(1:0; —
7:¥0,) =0, (23)

i—oldi(mV, = 1V) + vV["] = f,,

ool Bi(mW; — W) — ;W] = £,

f:o()';i[p@z - ni@iﬂ) = fx-

-4 :

=15 =10 =05 0 0.5

! —4 ! ! .' :
k[/M] -15 -10 =05 0 0.5

Figure 4. Characteristic hysteresis loops under different initial conditions and external excitation
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Sequential multiplication of the (23) by the
corresponding oscillation forms V', W , @ (m =
1, ..., r) and integration along the length of the
cable leads to the initial problem for the system
of ordinary differential equations with respect to
otHOCUTENBHO ot (1), B.(1), 7(1), (), v (£), n.(¢). This
system is integrated by numerical methods. Some
characteristic hysteresis trajectories obtained as a
result of solving the nonstationary equations (23)
are shown in Figure 4.

CONCLUSIONS

In this paper, we propose an approach to solving
problems of multi-frequency vibration dampers
of OL wires non-stationary oscilations, taking
into account the energy dissipation of the
hysteresis type. To account for energy scattering,
a phenomenological method based on the use of
kinematic equations, the coefficients of which
are determined from the analysis of experimental
data for limit cycles, is proposed. This approach
can be extended to the problems of non-stationary
vibrations of other mechanical objects with a
hysteresis character of energy scattering.
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