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Abstract: In the present paper, the nonlinear free vibrations of fractionally damped plates are studied, equations of motion of
which take the rotary inertia and shear deformations into account and involve five coupled nonlinear differential equations in
terms of three mutually orthogonal displacements and two angles of rotation. The procedure resulting in decoupling linear parts
of equations has been proposed with further utilization of the generalized method of multiple time scales for solving nonlinear
governing equations of motion, in so doing the amplitude functions have been expanded into power series in terms of the small
parameter and depend on different time scales. The occurrence of the internal or combinational resonances in Uflyand-Mindlin
plates has been revealed and classified.
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BPEMEHHBIX MaclITa00B. BhISBIEHB BO3MOKHBIE TUIIBI BHYTPEHHUX ¥ KOMOWHAIIMOHHBIX PE30HAHCOB, KOTOPBIE MOTYT BO3HUKATh

B IIaTHKax Y QuisHaa-MuHuIMHA, U 1aHa UX KiacCu(UKaLusL.

KoaroueBble ciioBa: HeMHEHHO yrpyras miacTuHka Y ¢isiHaa-MuHaarHa, AeMIpHUpoBaHUE ¢ IIOMOIIBIO APOOHOI TIPOU3BO-
JHO#, Monens KenbBuna-doiirra ¢ 1poOHO# pon3BOAHOM, 0000IIEHHBIH METOI MHOTUX BPEMEHHBIX MacITaboB

1. INTRODUCTION

Recently the interest to nonlinear dynamic response
of viscoelastic plates or elastic plates vibrating in a
viscoelastic surrounding medium has been greatly
renewed due to the appearance of advanced materials
exhibiting nonlinear behavior, and a comprehensive
review in the field, including experimental results,
could be found in [1-7]. In so doing the damping
forces are usually taken into account according to the

Rayleigh's hypothesis [2,8], resulting in the modal
damping [9], i.e. it is assumed that each natural mode
of vibrations possesses its own damping coefficient
dependent on its natural frequency. For describing the
viscoelastic features of plates, the Kelvin-Voigt model
[5] or standard linear solid model [6] are of frequent
use in engineering practice considering either linear
or nonlinear springs in viscoelastic elements [10].

The analysis of free undamped [11] and damped [5]
vibrations of nonlinear systems is of great importance
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for defining the dynamic system's characteristics
dependent on the amplitude-phase relationships and
modes of vibration. Moreover, nonlinear vibrations
could be accompanied by such a phenomenon as
the internal resonance, resulting in strong coupling
between the modes of vibrations involved [11-16]
and hence in the energy exchange between the
interacting modes.

The internal resonance could be observed in the case
of some combination of natural frequencies of one
and the same type of vibrations. Thus, nonlinear
vibrations of rectangular plates, dynamic behavior of
which is described by von Karman equations in terms
of the plate's deflection and stress function, have
been considered in [13] by reducing the governing
equations to a set of two modal equations applying
the Galerkin procedure.The case of the one-to-
one internal resonance (when frequencies of two
modes of flexural vibration are equal to each other)
accompanied by the external resonance (when the
frequency of the harmonic force is close to one of
the natural frequency) has been studied.

The one-to-one internal resonance has been
investigated also in [14] and [15] for nonlinear
vertical vibrations of rectangular plates under
the action of harmonic forces acting in the plate's
plane [14] and out of the plate's plane [14,15], in
so doing a set of three equations in terms of two in-
plane displacements and deflection and a set of five
equations considering the shear deformations have
been used in [14] and [15], respectively. However,
considering the inertia forces only for vertical
vibrations and utilizing the Galerkin procedure,
in both papers a set of two nonlinear equations
has been obtained in terms of two flexural modes,
which are assumed to be coupled via the one-to-one
internal resonance. For the first two natural modes
of flexural vibrations, the cases of the 1:2 and 1:3
internal resonances have been also studied in [15].
Another type of the internal resonance has been
investigated by Rossikhin and Shitikova [16-20],
when one frequency of in-plane vibrations is equal
(the 1:1 internal resonance [18,20]) or two times
larger (the 1:2 internal resonance [16,19]) than a
certain frequency of out-of-plane vibrations. As
this takes place, a set of three nonlinear differential
equations in terms of three mutually orthogonal
displacements has been used considering inertia
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of all types of vibrations, what allows the authors
to study the combinational resonances of the
additive and difference types as well [17, 20-22].
Combinational types of the internal resonance
result in the energy exchange between three
or more subsystems. It should be noted that
investigations in this direction were initiated
by Witt and Gorelik [23], who pioneered in the
theoretical and experimental analysis of the energy
transfer from one subsystem to another using
the simplest two-degree-of-freedom mechanical
system, as an example.

Moreover, in order to study nonlinear free damped
vibrations of a thin plate, the viscoelastic Kelvin-
Voigt model involving fractional derivative [24]
has been utilized, since this model possesses the
advantage over the conventional Kelvin-Voigt model
[11-15], because it provides the results matching the
experimental data. Thus, for example, experimental
data on ambient vibrations study for the Vincent-
Thomas [25] and Golden Gate [26] suspension
bridges have shown that different modes of vibrations
possess different magnitudes of damping coefficients.
Besides, the increase in the natural frequency results
in the decrease in the damping ratio. In order to lead
the theoretical investigation in the agreement with the
experiment, in 1998 it was suggested in [27] to utilize
the fractional derivatives to describe the processes of
internal friction occurring in suspension combined
systems, what allowed the authors in a natural way to
obtain the damping ratios, which depend on natural
frequencies.

Nowadays fractional calculus is widely used for
solving linear and nonlinear dynamic problems of
structural mechanics, what is evident from numerous
studies in the field, the overview of which could be
found in the state-of-the-art articles by Rossikhin
and Shitikova [28,29], wherein the examples of
adopting the fractional derivative Kelvin-Voigt,
Maxwell and standard linear solid models are
provided for single-mass oscillators, rods, beams,
plates, and shells.

In particular, linear vibrations of Kirchhoff-Love
plates with Kelvin-Voigt fractional damping were
considered for rectangular and circular plates,
respectively, in [30] and [31] using one equation
for vertical vibrations, while utilizing three
equations of in-plane and transverse vibrations in
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[8,32], and later multiplate systems were analyzed
in [28,33]. It has been proved [29,34] that if
viscoelastic properties of plates are described by
the Kelvin-Voigt model assuming the Poisson’s
ratio as the time-independent value (though for real
viscoelastic materials the Poisson's ratio is always
a time-dependent function [35]), then this case
coincides with the case of the dynamic behavior
of elastic bodies in a viscoelastic medium. Thus,
the authors of [30,31], and not only them, replaced
one problem with another, namely: a problem of the
dynamic response of viscoelastic Kirchhoff-Love
plates in a conventional medium with a problem
of dynamic response of elastic Kirchhoff-Love
plates in a viscoelastic medium, damping features
of which are governed by the fractional derivative
Kelvin-Voigt model. The vibration suppression
of fractionally damped thin rectangular simply
supported plates subjected to a concentrated
harmonic loading has been studied recently in
[36] in order to minimize the plate deflection at
the natural frequencies of the plate, in so doing
the vibration suppression is accomplished by
attaching multiple absorbers modelled as Kelvin-
Voigt fractional oscillators, i.e. generalizing the
approach suggested in [28,33].

As for the analysis of nonlinear vibrations of plates,
then except the above mentioned papers [16,18-21],
the fractional derivative Kelvin-Voigt model was used
in [37-42] and fractional derivative standard linear
solid model in [7,43,44] but without considering the
phenomena of the internal resonance.

Thus, free and forced vertical vibrations of
an orthotropic plate have been studied in [37]
considering first four modes of flexural vibrations,
and during the analysis of force driven vibrations
the frequency of a harmonic force was assumed
to be equal to one of natural frequencies. The von
Karman plate equation with fractional derivative
damping was utilized in [38] for analyzing the
cases of primary, subharmonic and superharmonic
resonance conditions, when the harmonic force
frequency, respectively, is approximately equal,
three times less or larger than the first or second
natural frequency of vertical vibrations. Nonlinear
random vibrations of the same plate was studied
in [41]. Dynamic nonlinear response to random
excitation of a simply supported rectangular plate
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based on a foundation, damping features of which are
described by the fractional derivative Kelvin-Voigt
model, has been considered in [40]. The analysis
of chaotic vibrations of simply supported nonlinear
viscoelastic plate with fractional derivative Kelvin-
Voigt model has been carried out in [42] for the case
when the plate is subjected to an in-plane harmonic
force in one direction and a transverse harmonic
force. The Galerkin decomposition has been used to
obtain the modal equation of the system, in so doing
the authors restricted themselves only by the first
mode. The fractional derivative standard linear solid
model has been utilized in [44] for a viscoelastic
layer for active damping of geometrically nonlinear
vibrations of smart composite plates using the higher
order plate theory and finite element method with
discretizing the plate by eight-node isoparametric
quadrilateral elements.

Recently the approaches suggested in [19,20] for
solving the problem on free nonlinear vibrations
of elastic plates in a viscoelastic medium, damping
features of which are governed by the Riemann-
Liouville derivatives of the fractional order, and
in [45] for studying the dynamic response of the
fractional Duffing oscillator subjected to harmonic
loading have been generalized for the case of
forced vibrations of a simply-supported nonlinear
thin elastic plate under the conditions of different
internal resonances, when two or three natural modes
corresponding to mutually orthogonal displacements
are coupled [46-49].

In the present paper, the procedure proposed in [20]
for solving the problem of free nonlinear vibrations
of elastic plates in a fractional derivative viscoelastic
medium, when the damped motion is described by a
set of three nonlinear equations, has been extended
for the case of free vibrations of a simply-supported
fractionally damped nonlinear thin elastic plate,
the motion of which is described by five equations
involving shear deformations and rotary inertia.

2. PROBLEM FORMULATION

In order to consider free damped vibrations of a
nonlinear simply-supported rectangular plate, first we
recall the equations of motion of a nonlinear elastic
rectangular plate, which take into account shear
deformations and rotary inertia [50]
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as well as the boundary conditions (a) along the
y-axis direction
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where u = u(x, y, ), v=v(x, y, t) and w = w(x,
v, t) are the displacements of points located
in the plate's middle surface in the x-, y-, and
z-directions, respectively, y (x, y, 1) and z//y(x, ,
t) are the angles of rotation of the normal to the
middle surface and in the plane tangent to the lines
z and x, k 1s the shear coefficient, u is the Poisson's
ratio, a and b are the plate's dimensions along the
x- and y-axes, respectively, 4 is its thickness, and
t 1s the time.

Let us rewrite equations (1)-(8) in the dimensionless
form introducing the following dimensionless values:

u*=£, v*=£, W*:E=
a a a

==, =2, ©
a b

r*:i L_
a\(1-p*)p
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Substituting then (9) in (1)-(8), omitting asterisks for
ease of presentation, and introducing the forces of
resistance of the surrounding medium, resulting in
damped vibrations, as it was suggested in [16,18], yield
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where 8, = a/b and 8, = h/a are the parameters defining
the dimensions of the plate, X (i= 1,2, ..., 5) are damping
coeflicients, overdots denote time-derivatives, lower
indices after a comma label the derivatives with
respect to the corresponding coordinates, and D”

Marina V. Shitikova, Elena I. Osipova

is the Riemann-Liouville fractional derivative [51]
defined as

0 fF( )dz

pr=2[_ )%
ot T(1-y)t”

(15)

3. METHOD OG SOLUTION

Let us seek the solution of equations (10)—(14) in
the form of expansions in terms of eigen modes of
vibration

= (x,y,r) - szlnm (I)??mm (JC, J’) >

e
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where x_ (¢) (i = 1, 2, ..., 5) are the generalized
displacements corresponding to the plate's in-plane
displacements, its deflection and angels of rotation,
while the eigen forms satisfying the boundary
conditions (7)-(8) have the form

7 - (x,y) = N (x, y) = COS TMXSIN TNy,

(7. (x,y) = SIN 7mx COSTNY,

(17)

My (X, 3) =15,,,, (X, ) = sin zmexsin zny.

Substituting (16) and (17) in equations (10)-(14),
multiplying then (10)-(14) by n, (x,y), respectively,
integrating over x and y, and applying the condition of
orthogonality of the eigen modes within the domains
0<xy <1, we are led to a set of coupled nonlinear
second-order differential equations inx, (7)
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== ¥ nm mn __
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Nonlinear parts of equations (18)-(20) have the form
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The analysis of the structure of equations (18)-(22)
shows that equations (18) and (19) are coupled with
each other via linear terms and with equation (20) in
terms of nonlinear terms F, (j = 1,2,3) . Equations
(21) and (22) are coupled with each other and with
Eq. (20) only via linear terms. Thus, the linearized
equations (18)-(22) are decoupled in two linear
subsystems.

3.1. Solution of the eigen value problem and
decoupling the equations of motion

To determine the natural frequencies of linear
vibrations @, (i = 1,2,3,4,5), it is a need to solve
the linear eigen value problem. The characteristic
equation of the linearized equations (18) and (19)
has the form

By — O (ST +S7 )+ SISy —Sp'Si =0, (25)
the solution of which gives the natural frequencies
of in-plane vibrations

o = (}112 +pint )

zm = 1_—2;'{:1'2 (m?' + ﬁfnz ),

(26)
which coincide with those obtained in [16,19].

The linearized set of equations (20)-(22) provides the
following frequency equation:
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The solution of equation (27) results in three sets
of natural frequencies, w, , ®, and w, ,and the

least of them, @, , corresponds to the frequency of
flexural vibrations. It is defined as

1
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The other two roots of equation (27) correspond to
the high frequency vibrations and have the form
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The natural frequencies correspond to mutually
orthogonal eigen vectors

Lim {Llinm} 4 L]in {L:Efm} (I =1 » 2)= (3 l)

L]f:fl;? {Lg}m } & LEM {Lﬁn } & L?m {L::nn

} (=3.4.5. (32)
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Following [20], let us expand the matrices S;’.’"
(i, j = 1,2), Sy (i,j = 3,4,5) and generalized

displacements x, ~entering in equations (18)-(22) in
terms of the eigen vectors (31) and (32)
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Now substituting expansions (33)-(35) in Egs. (18)-
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we are led to the following set of equations of motion:
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It should be emphasized that the left-hand side parts
of (37)-(41) are linear and independent of each other,
while equations (37)-(39) are coupled only by non-
linear terms in their right-hand sides.

Moreover, the set of equations (37)-(41) is decoupled
into three subsystems, namely: the first subset compiles
three nonlinear fractional derivative equations (37)-
(39), the second and the third subsystems involve
one linear fractional derivative equation each, i.e.
equations (40) and (41), respectively. Thus, in order to
find a solution, it is need to examine each subsystem.

3.2. Analysis of the reduced equations of motion

Equations (40) and (41) describe free damped
vibrations of a linear oscillator with a viscoelastic
resistance force modelled in terms of the fractional
derivative Kelvin-Voigt model [24]. For the case of
weak damping, i.e. when y, = e, or y, = &’& with
0 < & =1, approximate analytical solutions of
equations similar to (40) and (41) have been found in
[28,52] utilyzing the fractional derivative expansion
method [27], which is the extension of the multiple
time scales procedure [53]. The case of ¢ -order
damping and the half-derivative, i.e. when the order
of the fractional derivative is y = 1/2, was treated in
[54] using the averaging perturbation technique.
Free damped vibrations of a linear fractional derivative
Kelvin-Voigt oscillator in a medium with finite
viscosity, i.e. without any restrictions on the magnitude
of the damping coefficient y, have been studied
analytically in [24,52] utilizing the construction of the
Green function, which was proposed for the first time
for such fractional derivative equations by Professor
Yury Rossikhin in his PhD thesis [55] in 1970 and then
published in 1971 in the pioneer paper [56]. Further
this procedure was generalized for dynamics of linear
oscillators, beams, plates and shells using different
fractional operator models, and their overview could
be found in [24,28,29].

As for the first subsystem (37)-(39) involving three
nonlinear equations with fractional derivative terms,
then it has the similar structure as the set of three
governing equations considered previously but
ignoring the influence of the rotary inertia and shear
deformations [19].

Following [19,20] it could be shown that the solution
of'equations (37)-(39) could be constructed using the
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generalized method of multiple time scales suggested
in [27]. We will not repeat this procedure, since it is
described in detail in [20,57], and it could be easily
adopted to equations (37)-(39) within an accuracy
of coefficients.
Thus, it has been revealed that nonlinear vibrations of
the plate could be accompanied by different types of
the internal resonance when two or more modes could
be coupled, resulting in the energy exchange between
the coupled modes. Moreover, its type depends on
the order of smallness of the viscosity involved into
consideration. Thus, it has been found that at the ¢ —
order, damped vibrations could be accompanied by
the following types of the internal resonance:
the two-to-one internal resonance (2:1), when one
natural frequency is twice the other natural frequency,
0, =20, (0 0,20, #0,), (47)
0, =20, (0, 0,20, #0), (48)
the one-to-one-to-two internal resonance (1:1:2),
that is,

(49)

0 =0,=20,;

at the &’ -order, damped vibrations could be
accompanied by the following types of the internal
resonance:

the one-to-one internal resonance (1:1)

(50)

(1)

o, =o,(0, 70,0, 0,),

0, =0, (0,70, 0,#0,),

0,= 0, (0 # 0,0 F0,),
the one-to-one-to-one internal resonance (1:1:1)
(52)

the combinational resonance of the additive-
difference type

o, =0, +20,, (53)
o, =20,-0,,
w =0,-20,, (54)

where w, and o, are the frequencies of certain
modes of in-plane vibrations in the x- and y- axes,
respectively, and w, is the frequency of a certain mode
of out-of-plane vibrations.
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For each type of the resonance, the nonlinear sets
of resolving equations in terms of amplitudes and
phase differences could be obtained using the same
procedure as in [20]. The influence of viscosity on
the energy exchange mechanism is revealed by the
fact that each mode is characterized by its damping
coefficient connected with the natural frequency by
the exponential relationship with a negative fractional
exponent. Thus, during free vibrations of the plate
with internal resonances three regimes could be
observed: stationary (absence of damping at y = 0),
quasistationary (damping is defined by an ordinary
derivative at y = 1), and transient (damping is defined
by a fractional derivative at 0 <y <1).

4. ANALYSIS OF SPECTRA OF NATURAL
FREQUENCIES

In order to show that the phenomenon of internal
resonance could be very critical, since in the thin
plate under consideration the internal resonance is
always present, it is a need to analyze the spectra of
natural frequencies.
Thus, natural frequencies of vibrations @ _ (i =
1,2,...,5) calculated according to (26) and (28)-(30),
as well as frequency of vertical flexural vibrations
without shear deformations and rotary inertia
calculated via the formula [20]
2

@ = %ﬁ4 (mz + B’ )2 (55)
are given in Tables 1-3 for a square plate, i.e. at 8,
=a/b=1,at B, =h/a=0.1 and 0.025, respectively.
Reference to Tables 1-3 shows the influence of
the shear deformations and rotary inertia on the
frequencies of flexural vibrations, in so doing the
thicker the plate, the more difference between the
frequencies o, and w,. Thus, for example, for the
square plate the frequency of the fundamental mode
at m =1, n = 1 calculated by the classical theory at
B,=0.1, 0.05 and 0.025 is reduced, respectively, by
3.51, 1.05 and 0.7% as compared with that calculated
by the refined theory. This difference increases for
more high frequencies, what is evident from Table 4.
Natural frequencies for a rectangular plate at #, = 0.5
and 8, = 0.05 are presented in Table 5. The influence
of the ratio of the plate's dimensions on natural
frequencies is seen from Table 6, whence it follows
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that the difference between the frequencies according
to classical and refined theories increases with the
increase in plate's length.
From Tables 1-3 and 5 it is seen that the internal
resonances of all types (47)-(54) could take place,

Table 1. Natural frequencies of vibrations @,

mrn

and the occurrence of this or that case depends on
the dimensions of the plate, i.e. on magnitudes of the
coefficients 8, and f,.

As soon as the case of the internal resonance is
revealed, then the further treatment of nonlinear

(i=1,2,..,5) at f,=1 and S, =0.1.

m n a,,, @, @, o, @, @,
1 1 4.443 2.628 0.550/0.570 | 18.892 19.370
1 2 7.023 4.156 1.313/1.425 | 19.164 20.298
2 1 7.023 4.156 1.313/1.425 | 19.164 20.298
2 2 8.886 5.257 2.017/2.279 | 19.433 21.164
1 3 9.935 5.877 2.458/2.849 | 19.610 21.715
3 1 9.935 5.877 2.458/2.849 | 19.610 21.715
2 3 11.327 6.701 3.080/3.704 | 19.873 22.500
3 3 13.329 7.885 4.043/5.128 | 20.302 23.731
1 4 12.953 7.663 3.857/4.843 | 20.217 23.491
2 4 14.050 8.312 4.405/5.698 | 20.472 24.198
3 4 15.708 9.293 5.263/7.123 | 20.889 25.318
4 4 17.772 10.514 6.368/9.117 | 21.460 26.784
1 5 16.019 9.471 5.427/7.408 | 20.972 25.534
2 5 16.918 10.009 5.907/8.262 | 21.217 26.169
3 5 18.319 10.831 6.667/9.687 | 21.621 27.184
4 5 20.116 11.901 7.660/11.681 | 22.173 28.531
5 5 22214 13.142 8.838/14.246 | 23.510 30.155

Table 2. Natural frequencies of vibrations o,

mmn

(i=1,2,...,5) at =1 and f3,=0.05.

m n a,, @, @, o, @, a,,,
1 1 4.443 2.628 0.282/0.285 | 37.509 37.755
1 2 7.023 4.156 0.697/0.712 | 37.647 38.253
2 2 8.886 5.257 1.101/1.140 | 37.784 38.740
1 3 9.935 5.877 1.365/1.423 | 37915 39.060
2 3 11.327 6.701 1.753/1.852 | 38.012 39.530
3 3 13.329 7.885 2.381/2.564 | 38.238 40.296
1 4 12.953 7.663 2.257/2.422 | 38.193 40.145
2 4 14.050 8.312 2.627/2.849 | 38.329 40.596
3 4 15.708 9.293 3.224/3.561 | 38.553 41.332
4 4 17.772 10.514 4.030/4.559 | 38.866 42.329
1 5 16.019 9.471 3.341/3.704 | 38.598 41.476
2 5 16.918 10.009 3.689/4.131 | 38.732 41.906
3 5 18.319 10.831 4.253/4.843 | 38.954 42.607
4 5 20.116 11.901 5.017/5.841 | 39.264 43.560
5 5 22214 13.142 5.956/7.123 | 39.658 44.743
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Table 3. Natural frequencies of vibrations o,

mrn
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(i=1,2,..,5) at B =1 and S, =0.025.

m n A, @, a,. @, - @,,,
1 1 4.443 2.628 0.142/0.143 | 74.879 75.006
1 2 7.023 4.156 0.354/0.356 | 74.948 75.257
2 2 8.886 5.257 0.565/0.570 | 75.018 75.509
1 3 9.935 5.877 0.685/0.712 | 75.064 75.677
2 3 11.327 6.701 0.913/0.926 | 75.133 75.927
3 3 13.329 7.885 1.257/1.282 | 75.247 76.341
1 4 12.953 7.663 1.188/1.210 | 75.225 76.258
2 4 14.050 8.312 1.394/1.425 | 75.293 76.505
3 4 15.708 9.293 1.732/1.781 | 75.408 76.914
4 4 17.772 10.514 2.201/2.279 | 75.568 77.480
1 5 16.019 9.471 1.800/1.852 | 75.431 76.995
2 5 16.918 10.009 2.001/2.066 | 75.500 77.238
3 5 18.319 10.831 2.334/2.422 | 75.614 77.640
4 5 20.116 11.901 2.795/2.920 | 75.774 78.198
5 5 22214 13.142 3.378/3.561 | 75.979 78.905

Table 4. Difference in vertical frequencies of flexural vibrations 6 = [((93 -a,)/ @, ]100% at

B, =1 for plates of different thickness.

m=1, n=1 m=5, n=3
Jo 0.1 0.05 0.025 0.1 0.05 0.025
o, % 3.51 1.05 0.70 61.19 16.38 5.14

equations (37)-(39) could be carried out by the
procedure developed in [27] within an accuracy of
the coefficients.

CONCLUSION

In the present paper, the nonlinear free vibrations
of fractionally damped plates are studied, equations
of motion of which take the rotary inertia and shear
deformations into account and involve five coupled
nonlinear differential equations in terms of three
mutually orthogonal displacements and two angles
of rotation. The procedure resulting in decoupling
linear parts of equations has been adopted with further
utilization of the generalized method of multiple time
scales for solving nonlinear governing equations of
motion, in so doing the amplitude functions have
been expanded into power series in terms of the
small parameter and depend on different time scales.

70

Numerical analysis of the natural frequency spectra
reveals the possibility of the occurrence of different
internal and combinational resonances.
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