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Abstract: In the present paper, the nonlinear free vibrations of fractionally damped plates are studied, equations of motion of 
which take the rotary inertia and shear deformations into account and involve five coupled nonlinear differential equations in 
terms of three mutually orthogonal displacements and two angles of rotation. The procedure resulting in decoupling linear parts 
of equations has been proposed with further utilization of the generalized method of multiple time scales for solving nonlinear 
governing equations of motion, in so doing the amplitude functions have been expanded into power series in terms of the small 
parameter and depend on different time scales. The occurrence of the internal or combinational resonances in Uflyand-Mindlin 
plates has been revealed and classified.
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Аннотация: В данной работе изучаются нелинейные колебания пластинок на основе моделирования сил внешнего 
демпфирования с помощь производных дробного порядка. При этом используется система пяти нелиненйых уравнений 
движения, учитывающая деформации сдвига и силы инерции, относиельно трех перемещений  в трех взаимно орто-
гональных направлениях и двух углов поворота. В  качестве метода решения используется обобщенный метод многих 
временных масштабов. Выявлены возможные типы внутренних и комбинационных резонансов, которые могут возникать 
в платинках Уфлянда-Миндлина, и дана их классификация.    

Ключевые слова: нелинейно упругая пластинка Уфлянда-Миндлина, демпфирование с помощью дробной произво-
дной, модель Кельвина-Фойгта с дробной производной, обобщенный метод многих временных масштабов

1. INTRODUCTION

Recently the interest to nonlinear dynamic response 
of viscoelastic plates or elastic plates vibrating in a 
viscoelastic surrounding medium has been greatly 
renewed due to the appearance of advanced materials 
exhibiting nonlinear behavior, and a comprehensive 
review in the field, including experimental results, 
could be found in [1–7]. In so doing the damping 
forces are usually taken into account according to the 

Rayleigh's hypothesis [2,8], resulting in the modal 
damping [9],  i.e. it is assumed that each natural mode 
of vibrations possesses its own damping coefficient 
dependent on its natural frequency. For describing the 
viscoelastic features of plates, the Kelvin-Voigt model 
[5] or standard linear solid model [6] are of frequent 
use in engineering practice considering either linear 
or nonlinear springs in viscoelastic elements [10].
The analysis of free undamped [11] and damped [5] 
vibrations of nonlinear systems is of great importance 
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for defining the dynamic system's characteristics 
dependent on the amplitude-phase relationships and 
modes of vibration. Moreover, nonlinear vibrations 
could be accompanied by such a phenomenon as 
the internal resonance, resulting in strong coupling 
between the modes of vibrations involved [11–16] 
and hence in the energy exchange between the 
interacting modes.
The internal resonance could be observed in the case 
of some combination of natural frequencies of one 
and the same type of vibrations. Thus, nonlinear 
vibrations of rectangular plates, dynamic behavior of 
which is described by von Karman equations in terms 
of the plate's deflection and stress function, have 
been considered in [13] by reducing the governing 
equations to a set of two modal equations applying 
the Galerkin procedure.The case of the one-to-
one internal resonance (when frequencies of two 
modes of flexural vibration are equal to each other) 
accompanied by the external resonance (when the 
frequency of the harmonic force is close to one of 
the natural frequency) has been studied.
The one-to-one internal resonance has been 
investigated also in [14] and [15] for nonlinear 
vertical vibrations of rectangular plates under 
the action of harmonic forces acting in the plate's 
plane [14] and out of the plate's plane [14,15], in 
so doing a set of three equations in terms of two in-
plane displacements and deflection and a set of five 
equations considering the shear deformations have 
been used in [14] and [15], respectively. However, 
considering the inertia forces only for vertical 
vibrations and utilizing the Galerkin procedure, 
in both papers a set of two nonlinear equations 
has been obtained in terms of two flexural modes, 
which are assumed to be coupled via the one-to-one 
internal resonance. For the first two natural modes 
of flexural vibrations, the cases of the 1:2 and 1:3 
internal resonances have been also studied in [15].
Another type of the internal resonance has been 
investigated by Rossikhin and Shitikova [16–20], 
when one frequency of in-plane vibrations is equal 
(the 1:1 internal resonance [18,20]) or two times 
larger (the 1:2 internal resonance [16,19]) than a 
certain frequency of out-of-plane vibrations. As 
this takes place, a set of three nonlinear differential 
equations in terms of three mutually orthogonal 
displacements has been used considering inertia 

of all types of vibrations, what allows the authors 
to study the combinational resonances of the 
additive and difference types as well [17, 20–22]. 
Combinational types of the internal resonance 
result in the energy exchange between three 
or more subsystems. It should be noted that 
investigations in this direction were initiated 
by Witt and Gorelik [23], who pioneered in the 
theoretical and experimental analysis of the energy 
transfer from one subsystem to another using 
the simplest two-degree-of-freedom mechanical 
system, as an example.
Moreover, in order to study nonlinear free damped 
vibrations of a thin plate, the viscoelastic Kelvin-
Voigt model involving fractional derivative [24] 
has been utilized, since this model possesses the 
advantage over the conventional Kelvin-Voigt model 
[11–15], because it provides the results matching the 
experimental data. Thus, for example, experimental 
data on ambient vibrations study for the Vincent-
Thomas [25] and Golden Gate [26] suspension 
bridges have shown that different modes of vibrations 
possess different magnitudes of damping coefficients. 
Besides, the increase in the natural frequency results 
in the decrease in the damping ratio. In order to lead 
the theoretical investigation in the agreement with the 
experiment, in 1998 it was suggested in [27] to utilize 
the fractional derivatives to describe the processes of 
internal friction occurring in suspension combined 
systems, what allowed the authors in a natural way to 
obtain the damping ratios, which depend on natural 
frequencies.
Nowadays fractional calculus is widely used for 
solving linear and nonlinear dynamic problems of 
structural mechanics, what is evident from numerous 
studies in the field, the overview of which could be 
found in the state-of-the-art articles by Rossikhin 
and Shitikova [28,29], wherein the examples of 
adopting the fractional derivative Kelvin-Voigt, 
Maxwell and standard linear solid models are 
provided for single-mass oscillators, rods, beams, 
plates, and shells.
In particular, linear vibrations of Kirchhoff-Love 
plates with Kelvin-Voigt fractional damping were 
considered for rectangular and circular plates, 
respectively, in [30] and [31] using one equation 
for vertical vibrations, while utilizing three 
equations of in-plane and transverse vibrations in 
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[8,32], and later multiplate systems were analyzed 
in [28,33]. It has been proved [29,34] that if 
viscoelastic properties of plates are described by 
the Kelvin-Voigt model assuming the Poisson’s 
ratio as the time-independent value (though for real 
viscoelastic materials the Poisson's ratio is always 
a time-dependent function [35]), then this case 
coincides with the case of the dynamic behavior 
of elastic bodies in a viscoelastic medium. Thus, 
the authors of [30,31], and not only them, replaced 
one problem with another, namely: a problem of the 
dynamic response of viscoelastic Kirchhoff-Love 
plates in a conventional medium with a problem 
of dynamic response of elastic Kirchhoff-Love 
plates in a viscoelastic medium, damping features 
of which are governed by the fractional derivative 
Kelvin-Voigt model. The vibration suppression 
of fractionally damped thin rectangular simply 
supported plates subjected to a concentrated 
harmonic loading has been studied recently in 
[36] in order to minimize the plate deflection at 
the natural frequencies of the plate, in so doing 
the vibration suppression is accomplished by 
attaching multiple absorbers modelled as Kelvin-
Voigt fractional oscillators,  i.e. generalizing the 
approach suggested in [28,33].
As for the analysis of nonlinear vibrations of plates, 
then except the above mentioned papers [16,18–21], 
the fractional derivative Kelvin-Voigt model was used 
in [37–42] and fractional derivative standard linear 
solid model in [7,43,44] but without considering the 
phenomena of the internal resonance.
Thus, free and forced vertical vibrations of 
an orthotropic plate have been studied in [37] 
considering first four modes of flexural vibrations, 
and during the analysis of force driven vibrations 
the frequency of a harmonic force was assumed 
to be equal to one of natural frequencies. The von 
Karman plate equation with fractional derivative 
damping was utilized in [38] for analyzing the 
cases of primary, subharmonic and superharmonic 
resonance conditions, when the harmonic force 
frequency, respectively, is approximately equal, 
three times less or larger than the first or second 
natural frequency of vertical vibrations. Nonlinear 
random vibrations of the same plate was studied 
in [41]. Dynamic nonlinear response to random 
excitation of a simply supported rectangular plate 

based on a foundation, damping features of which are 
described by the fractional derivative Kelvin-Voigt 
model, has been considered in [40]. The analysis 
of chaotic vibrations of simply supported nonlinear 
viscoelastic plate with fractional derivative Kelvin-
Voigt model has been carried out in [42] for the case 
when the plate is subjected to an in-plane harmonic 
force in one direction and a transverse harmonic 
force. The Galerkin decomposition has been used to 
obtain the modal equation of the system, in so doing 
the authors restricted themselves only by the first 
mode. The fractional derivative standard linear solid 
model has been utilized in [44] for a viscoelastic 
layer for active damping of geometrically nonlinear 
vibrations of smart composite plates using the higher 
order plate theory and finite element method with 
discretizing the plate by eight-node isoparametric 
quadrilateral elements.
Recently the approaches suggested in [19,20] for 
solving the problem on free nonlinear vibrations 
of elastic plates in a viscoelastic medium, damping 
features of which are governed by the Riemann-
Liouville derivatives of the fractional order, and 
in [45] for studying the dynamic response of the 
fractional Duffing oscillator subjected to harmonic 
loading have been generalized for the case of 
forced vibrations of a simply-supported nonlinear 
thin elastic plate under the conditions of different 
internal resonances, when two or three natural modes 
corresponding to mutually orthogonal displacements 
are coupled [46–49].
In the present paper, the procedure proposed in [20] 
for solving the problem of free nonlinear vibrations 
of elastic plates in a fractional derivative viscoelastic 
medium, when the damped motion is described by a 
set of three nonlinear equations, has been extended 
for the case of free vibrations of a simply-supported 
fractionally damped nonlinear thin elastic plate, 
the motion of which is described by five equations 
involving shear deformations and rotary inertia.

2. PROBLEM FORMULATION

In order to consider free damped vibrations of a 
nonlinear simply-supported rectangular plate, first we 
recall the equations of motion of a nonlinear elastic 
rectangular plate, which take into account shear 
deformations and rotary inertia [50]
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subjected to the initial

 

as well as the boundary conditions (a) along the 
y-axis direction 

and (b) along the x-axis direction 

where u = u(x, y, t), v = v(x, y, t) and w = w(x, 
y, t) are the displacements of points located 
in the plate's middle surface in the x-, y-, and 
z-directions, respectively, ψx(x, y, t) and ψy(x, y, 
t) are the angles of rotation of the normal to the 
middle surface and in the plane tangent to the lines 
z and x, k is the shear coefficient, μ is the Poisson's 
ratio, a and b are the plate's dimensions along the 
x- and y-axes, respectively, h is its thickness, and 
t is the time.
Let us rewrite equations (1)-(8) in the dimensionless 
form introducing the following dimensionless values: 
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Substituting then (9) in (1)-(8), omitting asterisks for 
ease of presentation, and introducing the forces of 
resistance of the surrounding medium, resulting in 
damped vibrations, as it was suggested in [16,18], yield 

where β1 = a/b and β2 = h/a are the parameters defining 
the dimensions of the plate, χi (i = 1, 2, ..., 5) are damping 
coefficients, overdots denote time-derivatives, lower 
indices after a comma label the derivatives with 
respect to the corresponding coordinates, and Dy 

is the Riemann-Liouville fractional derivative [51] 
defined as 

3. METHOD OG SOLUTION

Let us seek the solution of equations (10)–(14) in 
the form of expansions in terms of eigen modes of 
vibration 

where ximn(t) (i = 1, 2, ..., 5) are the generalized 
displacements corresponding to the plate's in-plane 
displacements, its deflection and angels of rotation, 
while the eigen forms satisfying the boundary 
conditions (7)-(8) have the form 

Substituting (16) and (17) in equations (10)-(14), 
multiplying then (10)-(14) by nimn(x,y), respectively, 
integrating over x and y, and applying the condition of 
orthogonality of the eigen modes within the domains 
0 ≤ x,y ≤ 1, we are led to a set of coupled nonlinear 
second-order differential equations in ximn(t)
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where 

Nonlinear parts of equations (18)-(20) have the form 

where 
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The analysis of the structure of equations (18)-(22) 
shows that equations (18) and (19) are coupled with 
each other via linear terms and with equation (20) in 
terms of nonlinear terms Fjmn(j = 1,2,3) . Equations 
(21) and (22) are coupled with each other and with 
Eq. (20) only via linear terms. Thus, the linearized 
equations (18)-(22) are decoupled in two linear 
subsystems.

3.1. Solution of the eigen value problem and 
decoupling the equations of motion

To determine the natural frequencies of linear 
vibrations ωimn (i = 1,2,3,4,5), it is a need to solve 
the linear eigen value problem. The characteristic 
equation of the linearized equations (18) and (19) 
has the form 

the solution of which gives the natural frequencies 
of in-plane vibrations 

which coincide with those obtained in [16,19].
The linearized set of equations (20)-(22) provides the 
following frequency equation: 

where 

The solution of equation (27) results in three sets 
of natural frequencies, ω3mn, ω4mn and ω5mn, and the 
least of them, ω3mn, corresponds to the frequency of 
flexural vibrations. It is defined as 

The other two roots of equation (27) correspond to 
the high frequency vibrations and have the form 

The natural frequencies correspond to mutually 
orthogonal eigen vectors 
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Following [20], let us expand the matrices Smn
						                   ij
(i, j = 1,2), Smn (i,j = 3,4,5) and generalized 	                        ij

displacements ximn entering in equations (18)-(22) in 
terms of the eigen vectors (31) and (32) 

Now substituting expansions (33)-(35) in Eqs. (18)-
(22) and then multiplying (18)-(19) successively by 
LI    , LII  , and (20)-(22) successively by LIII  , LIV , and   imn    imn                                                   imn    imn
finally by LV   with due account for the conditions of                  imn
orthogonality of the eigen vectors 

we are led to the following set of equations of motion:

in terms of new generalized displacements Xjmn 

It should be emphasized that the left-hand side parts 
of (37)-(41) are linear and independent of each other, 
while equations (37)-(39) are coupled only by non-
linear terms in their right-hand sides.
Moreover, the set of equations (37)-(41) is decoupled 
into three subsystems, namely: the first subset compiles 
three nonlinear fractional derivative equations (37)-
(39), the second and the third subsystems involve 
one linear fractional derivative equation each, i.e. 
equations (40) and (41), respectively. Thus, in order to 
find a solution, it is need to examine each subsystem.

3.2. Analysis of the reduced equations of motion

Equations (40) and (41) describe free damped 
vibrations of a linear oscillator with a viscoelastic 
resistance force modelled in terms of the fractional 
derivative Kelvin-Voigt model [24]. For the case of 
weak damping, i.e. when χi = εæi or χi = ε2æ with
0 < ε = 1, approximate analytical solutions of 
equations similar to (40) and (41) have been found in 
[28,52] utilyzing the fractional derivative expansion 
method [27], which is the extension of the multiple 
time scales procedure [53]. The case of ε -order 
damping and the half-derivative, i.e. when the order 
of the fractional derivative is γ = 1/2, was treated in 
[54] using the averaging perturbation technique.
Free damped vibrations of a linear fractional derivative 
Kelvin-Voigt oscillator in a medium with finite 
viscosity, i.e. without any restrictions on the magnitude 
of the damping coefficient χi, have been studied 
analytically in [24,52] utilizing the construction of the 
Green function, which was proposed for the first time 
for such fractional derivative equations by Professor 
Yury Rossikhin in his PhD thesis [55] in 1970 and then 
published in 1971 in the pioneer paper [56]. Further 
this procedure was generalized for dynamics of linear 
oscillators, beams, plates and shells using different 
fractional operator models, and their overview could 
be found in [24,28,29].
As for the first subsystem (37)-(39) involving three 
nonlinear equations with fractional derivative terms, 
then it has the similar structure as the set of three 
governing equations considered previously but 
ignoring the influence of the rotary inertia and shear 
deformations [19].
Following [19,20] it could be shown that the solution 
of equations (37)-(39) could be constructed using the 
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generalized method of multiple time scales suggested 
in [27]. We will not repeat this procedure, since it is 
described in detail in [20,57], and it could be easily 
adopted to equations (37)-(39) within an accuracy 
of coefficients.
Thus, it has been revealed that nonlinear vibrations of 
the plate could be accompanied by different types of 
the internal resonance when two or more modes could 
be coupled, resulting in the energy exchange between 
the coupled modes. Moreover, its type depends on 
the order of smallness of the viscosity involved into 
consideration. Thus, it has been found that at the ε – 
order, damped vibrations could be accompanied by 
the following types of the internal resonance: 
the two-to-one internal resonance (2:1), when one 
natural frequency is twice the other natural frequency,
 
                  ω1 = 2ω3 (ω1 ≠ ω2, 2ω3 ≠ ω2),	     (47)
                  ω2 = 2ω3 (ω1 ≠ ω2, 2ω3 ≠ ω1),	     (48)

the one-to-one-to-two internal resonance (1:1:2), 
that is, 
                             ω1 = ω2 = 2ω3 ;	                 (49)

at the ε2 -order, damped vibrations could be 
accompanied by the following types of the internal 
resonance: 
the one-to-one internal resonance (1:1) 

                    ω1 = ω2 (ω3 ≠ ω1, ω3 ≠ ω2),	      (50)
                    ω1 = ω3 (ω2 ≠ ω1, ω2 ≠ ω3),
                    ω2 = ω3 (ω1 ≠ ω2, ω1 ≠ ω3),	      (51)

the one-to-one-to-one internal resonance (1:1:1) 

	                  ω1 = ω2 = ω3  ,                        (52)

the combinational resonance of the additive-
difference type 

	                   ω1 = ω2 + 2ω3 ,                      (53)
	                   ω1 = 2ω3 – ω2 ,
                              ω1 = ω2 – 2ω3 ,                                        

(54)

where ω1 and ω2 are the frequencies of certain 
modes of in-plane vibrations in the x- and y- axes, 
respectively, and ω3 is the frequency of a certain mode 
of out-of-plane vibrations.

For each type of the resonance, the nonlinear sets 
of resolving equations in terms of amplitudes and 
phase differences could be obtained using the same 
procedure as in [20]. The influence of viscosity on 
the energy exchange mechanism is revealed by the 
fact that each mode is characterized by its damping 
coefficient connected with the natural frequency by 
the exponential relationship with a negative fractional 
exponent. Thus, during free vibrations of the plate 
with internal resonances three regimes could be 
observed: stationary (absence of damping at γ = 0), 
quasistationary (damping is defined by an ordinary 
derivative at γ = 1), and transient (damping is defined 
by a fractional derivative at 0 < γ < 1).

4. ANALYSIS OF SPECTRA OF NATURAL 
FREQUENCIES

In order to show that the phenomenon of internal 
resonance could be very critical, since in the thin 
plate under consideration the internal resonance is 
always present, it is a need to analyze the spectra of 
natural frequencies.
Thus, natural frequencies of vibrations ωimn (i = 
1,2,...,5) calculated according to (26) and (28)-(30), 
as well as frequency of vertical flexural vibrations 
without shear deformations and rotary inertia 
calculated via the formula [20]

are given in Tables 1-3 for a square plate, i.e. at β1 
= a/b = 1, at β2 = h/a = 0.1 and 0.025, respectively.
Reference to Tables 1-3 shows the influence of 
the shear deformations and rotary inertia on the 
frequencies of flexural vibrations, in so doing the 
thicker the plate, the more difference between the 
frequencies ω3 and ω̅3. Thus, for example, for the 
square plate the frequency of the fundamental mode 
at m = 1, n = 1 calculated by the classical theory at 
β2 = 0.1,  0.05 and 0.025 is reduced, respectively, by 
3.51, 1.05 and 0.7% as compared with that calculated 
by the refined theory. This difference increases for 
more high frequencies, what is evident from Table 4.
Natural frequencies for a rectangular plate at β1 = 0.5 
and β2 = 0.05 are presented in Table 5. The influence 
of the ratio of the plate's dimensions on natural 
frequencies is seen from Table 6, whence it follows 
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that the difference between the frequencies according 
to classical and refined theories increases with the 
increase in plate's length.
From Tables 1-3 and 5 it is seen that the internal 
resonances of all types (47)-(54) could take place, 

and the occurrence of this or that case depends on 
the dimensions of the plate, i.e. on magnitudes of the 
coefficients β1 and β2.
As soon as the case of the internal resonance is 
revealed, then the further treatment of nonlinear 
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equations (37)-(39) could be carried out by the 
procedure developed in [27] within an accuracy of 
the coefficients.

CONCLUSION

In the present paper, the nonlinear free vibrations 
of fractionally damped plates are studied, equations 
of motion of which take the rotary inertia and shear 
deformations into account and involve five coupled 
nonlinear differential equations in terms of three 
mutually orthogonal displacements and two angles 
of rotation. The procedure resulting in decoupling 
linear parts of equations has been adopted with further 
utilization of the generalized method of multiple time 
scales for solving nonlinear governing equations of 
motion, in so doing the amplitude functions have 
been expanded into power series in terms of the 
small parameter and depend on different time scales. 

Numerical analysis of the natural frequency spectra 
reveals the possibility of the occurrence of different 
internal and combinational resonances. 
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