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Abstract: The scheme of a planar externally statically indeterminate truss with four supports is proposed. In analytical form, for 
several types of loads, the problem of forces in the rods and deflection of the structure is solved, depending on the number of 
panels, the size and intensity of the load. The solution uses the Maple computer mathematics system. The deflection at Midspan 
is determined using Maxwell – Mohr's formula, the forces in the rods – the method of cutting out nodes from the system of 
equilibrium equations for all nodes, which includes four reactions of the supports. By induction, a series of solutions for trusses 
with a consistently increasing number of panels is generalized to an arbitrary number of panels. For the elements of the sequences 
of coefficients are developed and are solved by homogeneous linear recurrence equations. The resulting formulas for the deflection 
of the structure under various loads have the form of polynomials in the number of panels. A linear asymptotic solution for the 
number of panels is found. The kinematic degeneration of the structure and the distribution of node speeds corresponding to 
this case were found. The dependences of the reaction of supports and forces in the most compressed and stretched rods on the 
number of panels are determined.
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Аннотация: Предлагается схема плоской внешне статически неопределимой фермы с четырьмя опорами. В аналитиче-
ской форме для нескольких видов нагрузок решается задача об усилиях в стержнях и прогибе конструкции в зависимости 
от числа панелей, размеров и интенсивности нагрузки. Для решения используется система компьютерной математики  
Maple. Прогиб в середине пролета определяется по формуле Максвелла – Мора, усилия в стержнях – методом вырезания 
узлов из системы уравнений равновесия всех узлов, в которую включаются и четыре реакции опор. Методом индукции 
серия решений для ферм с последовательно увеличивающимся числом панелей обобщается на произвольное число 
панелей. Для элементов последовательностей коэффициентов составляются и решаются однородные линейные рекур-
рентные уравнения. Полученные формулы для прогиба конструкции при различных нагружениях имеют вид полиномов 
по числу панелей. Найдена линейная  асимптотика решения по числу панелей. Обнаружено кинематическое вырождение 
конструкции и распределение скоростей узлов, соответствующее  этому случаю. Определены зависимости реакций опор 
и усилий в наиболее сжатых и растянутых стержнях от числа панелей.
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INTRODUCTION

The calculation of rod structures is usually performed in 
numerical packages based on the finite element method 
[1–4]. The usual solution of the mechanics problem, 
performed not in a numerical package, but in a system 

of symbolic mathematics, without changing the basic 
equations and calculation scheme, gives an analytical 
solution to the problem in the form of a formula. In 
the years when computer mathematics systems first 
appeared, this caused the optimism of calculators who 
know the importance of analytical solutions. However, 
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almost immediately, many on this path encountered two 
obstacles. First, most of the resulting formulas were so 
complex that it was not only impossible to use them, but 
even difficult to view them, since their listing took up 
several pages. The second disadvantage of the solutions 
obtained in this way is that the range of applicability of 
the obtained formulas (if they are obtained in a relatively 
compact form) is usually not wide. Among the parameters 
of formulas, you can easily enter the size of the calculated 
object, elastic or rheological properties of the material, 
and the intensity of a certain load. In order to use a formula 
with a different number of structural elements, such as 
rods or panels, if you are talking about trusses, you must 
output a formula that is intended for this number. If 
overcoming the first disadvantage of analytical solutions 
associated with their bulkiness is possible with some 
skill in working with simplification operators included in 
computer mathematics systems, the second disadvantage 
can be overcome using the induction method [5]. The 
induction method is applicable for regular constructions 
that have periodicity cells of the structure. Solutions are 
known for a number of planar [6–13] and spatial [14] 
statically definable trusses. The significance of regular 
statically definable schemes was first evaluated by 
Hutchinson R. G., Fleck N. A., Zok F. W., Latture R. M., 
Begley M. R. [15–17]. Monographs [18,19] are devoted 
to such schemes and methods of their calculation. The 
reference book [20] contains more than 70 schemes of 
planar trusses and formulas for calculating deflection and 
forces in rods critical to stability and strength. Tinkov D.V. 
[21] and Osadchenko N.V. [22] provides an overviews of 
some analytical solutions for planar trusses.

MATERIALS AND METHODS 

The geometry of the truss. The case of variability 
of the design

Let's consider a symmetrical lattice truss of beam type 
with 2n panels, counting the elements of the upper 
belt with length a (Fig. 1). In its middle part, the 
lower belt is slightly raised. Due to the four supports, 
the truss is externally statically indeterminate. The 
reactions of the supports of such a truss can only be 
calculated from the joint solution of the system of 
equilibrium equations of all nodes simultaneously 
with the forces in the rods. The truss contains m = 
8n + 24 rods, including six rods that model movable 
and fixed supports.
We will calculate the forces in the rods using the 
program [6-13], compiled in the language of the Maple 
system, which is close to the Pascal language. The 
program includes the coordinates of the joints and the 
structure of the connection of the rods. The matrix  of 
a system of equations consists of the guiding cosines 
of forces. The vector of the right part of the system of 
equilibrium equations includes loads on nodes. At the 
same time, in the first test calculations, it was noticed 
that for trusses with an even number of panels n in half 
the span, the matrix determinant degenerates, which 
indicates the instantaneous variability of the system 
[20, 23]. Note that calculations in numerical form 
hid the fact that the determinant turned to zero for the 
error of the calculation, and only analytical (or integer) 
calculation clearly gave out this dangerous feature of 
the construction under consideration. A picture of the 
distribution of possible velocities of nodes is obtained 
(Fig. 2), confirming the kinematic variability of the 
truss.
The following velocity ratios are obtained from 
considering the positions of the instantaneous 
velocity centers of individual rods: u'/h = v/a, 2u/c = 
v/a where                       . Most of the truss joints and 
supports remain stationary.

Figure 1. The load on the bottom belt, n = 5
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RESULTS

The Forces In The Rods

The distribution of forces in the truss rods at a = 4 
m, h = 3 m from the action of the load applied to the 
nodes of the lower belt, obtained from the numerical 
calculation data (Fig. 3), shows that the upper belt is 
partially compressed, the lower one is stretched in its 
central part . Compressed elements are highlighted 
in blue, stretched elements in red, and unloaded ones 
in black. The thickness of the lines is proportional 
to the modulus of force. The efforts are related to 
the value of force P. With an increase in the number 
of panels, the stretched zone in the lower zone 
naturally expands. It should be noted that the most 
compressed rods are not in the middle of the span. 
Using the induction method, one can obtain analytical 
expressions of the reactions of supports and forces in 
some rods of the truss (marked in Fig. 1). We have the 
following expressions for the reactions of supports:

 YA = 2P(k – 1), YB = P / 2,
XA = P(4k – 3)a / (2h).

Forces in the middle of the upper belt:
O1 = –P(4k2 – 2k(–1)k – 4k + (–1)k – 1)a / (4h),
O2 = –P(4k2 + 2k(–1)k – 4k + (–1)k + 1)a / (4h).

Forces in the lower belt: 
 U1 = P(4k2 + 2k(–1)k – 12k – (–1)k + 1)a / (4h),
U2 = P(4k2 – 2k(–1)k – 12k – (–1)k + 3)a / (4h)

Deflection

Truss deflection (vertical displacement of the middle 
node C from the lower belt) it is determined by the 

Maxwell-Mohr's formula                                                   , 

where the sum is calculated only for deformable truss 
rods. It is indicated:          – forces from the unit force 
applied to the lower belt,        – forces in the rods 
from a given load, li – the length of the rods, EF — 
their stiffness. 

Figure 2. Velocities distribution of an instantaneous variable truss, n =2

Figure 3. The distribution of forces in the truss, n =5
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Let's consider the case of a uniform load on the nodes 
of the upper belt (Fig. 1). Regardless of the number 
of panels, the deflection has the form:
               ∆ = P(C1a3 + C2c3 + C3h3) / (h2EF) .               (1)                        

Coefficients for size degrees depend only on the 
number of panels. We consider odd numbers for which 
the determinant of the system of linear equations 
of equilibrium of nodes does not turn to zero.  To 
determine these dependencies, you need to calculate 
a number of trusses with a consistently increasing 
number of panels and find common members of the 
sequences. To determine the coefficient C1, it was 
necessary to calculate 18 trusses with the number 
k =1,..., 18 and get the sequence 1/2, 19/2, 53/2, 
383/2,..., 292115/2.
First the rgf_findrecur operator returns a linear 
homogeneous recurrent equation for elements in the 
sequence:

C1,k = C1,k–1 + 4C1,k–2 – 4C1,k–3 – 6C1,k–4 + 
+ 6C1,k–5 + 4C1,k–6 – 4C1,k–7 – C1,k–8  + C1,k–9 .

Then the General term of this sequence, as a solution 
of the recurrent equation, gives the rsolve operator:

  C1 = (20k4 + 16k3(–1)k – 80k3 – 48k2(–1)k +
+ 130k2 + 50k(–1)k – 58k – 9(–1)k + 3) / 12 .

Other coefficients are obtained in the same way:

 C2 = (k2 + k(–1)k – (–1)k) / 2
C3 = (k – 1)(1 + (–1)k) .

Expression (1) with the found dependencies Ci = 
Ci(k), i = 1,2,3 is the solution to the problem. 
The used algorithm for output of calculation formulas 
can be easily adjusted to other loads. Consider the 
load on the upper belt of the truss (Fig. 4).

The coefficients in (1) in this case have the form:
C1 = (20k4 + 16k3(–1)k – 80k3 – 48k2(–1)k +

+ 130k2 + 50k(–1)k – 70k – 15(–1)k + 9) / 12 ,
C2 = k(k + (–1)k) / 2 ,

C3 = k(1 + (–1)k) .
In the case of loading the truss with a single force 
applied to the hinge C in the middle of the lower 
belt, the problem is solved somewhat easier. The 
coefficients in expression (1) have a lower degree:

 C1 = (4k3 + 6k2(–1)k – 12k2 – 12k(–1)k +
+ 20k + 9(–1)k – 6) / 6 ,

C2 = k + (–1)k / 2 ,
C3 = 1 + (–1)k .

Figure 4. The load on the upper belt, n = 3

Figure 5. Dependence of the deflection on the number 
of panels

1 — h = 2 m, 2 — h = 3 m, 3 — h = 3 m
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The proposed truss scheme has a number of features 
that are most conveniently traced by example. 
Consider a truss of a given length L = 2(n + 1)a loaded 
in the lower zone. We also fix the total load on the 
truss: Psum = (2n – 1)P. We introduce the dimensionless 
relative deflection: ∆' = ∆EF / (Psum · L). Figure 5 at 
L = 80m shows the dependence of the deflection 
on the number of panels at various values   of the 
height of the truss. Dependencies have a pronounced 
spasmodic character. The jumps are especially large 
at low altitudes and small numbers k. As k increases, 
the curves smooth out, tending to some oblique 
asymptote. Using Maple, the slope can be calculated:

lim ∆'/ k = h / (8L) .
    

 n→∞

The angle of inclination is positive, therefore, 
with an increase in the number of panels with a 
simultaneous decrease in their length, due to the 
accepted assumption that the total length of the 
truss is constant, the relative deflection increases on 
average (including jumps). 

CONCLUSIONS

Two main conclusions can be drawn. First, the 
analytical solution for the proposed truss scheme has 
a simple form. it is valid for an arbitrary number of 
panels, including a very large number, i.e. precisely 
in cases when numerical methods can accumulate 
rounding errors and require significant counting 
time. Second, the discovery of an unexpected case of 
kinematic variability should serve as a warning for 
designers of new schemes, where the degeneracy of 
the determinant of the system of equations of equality 
may be hidden behind rounding of intermediate data.
Noticeable jumps in the deflection dependence 
on the number of panels are the basis for optimal 
selection of the number of panels. Reducing or 
increasing the number of panels by one can change 
the stiffness from 10 % to 100% depending on 
the number of panels. The linear combination of 
solutions obtained for three types of loads allows 
us to solve a wide range of problems for truss of 
the considered type in analytical form.
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