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Abstract: There are known methods for optimizing the flange width of I-shaped cross-section rods with stability
constraints or the constraints for the value of the first natural frequency. Corresponding objective function has
the form of the volume of the flange material for the case when only the flange width varies and the cross-
section height, wall thickness and flange thickness are specified. Special criterion for assessment of proximity of
corresponding an optimal solution to the design of minimal material capacity was formulated for the considering
problem. In this case, the resulting solution may not meet some other unaccounted constraints, for example,
strength requirements. Modification of solution in order to meet previously unaccounted constraints does not al-
low researcher to consider such design as optimal. In the distinctive paper allowance for strength requirements,
stability constraints or constraints for the value of the first natural frequency are proposed within considering
problem of optimization. Special approach is formulated, which proposes to assess proximity to the design of
minimum of material capacity obtained as a result of optimization. Increment of the objective function and crite-
ria corresponding to constrains and restrictions are under consideration within computational process.

Keywords: criterion, optimization, limitations, strength conditions, minimum material capacity, stability,
frequency, critical force, forms of stability loss, forms of natural vibrations, reduced stresses

OLIEHKA BJIM30CTHU K TIPOEKTY MUHUMAJIbHO
MATEPUAJIOEMKOCTHU PEIHEHUSA Ob OIITUMU3ALIUU
IUPUHBI MTOJIOK CTEPKHEN IBYTABPOBOI'O CEUEHUSI
MMPU OTPAHUYEHUSAX 1O YCTOMYNUBOCTHU WIN
BEJIMUMHBI NEPBOM YACTOTbI COGCTBEHHBIX
KOJIEBAHUH C YYETOM TPEBOBAHU MPOYHOCTHU.
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AHHOTanMs: 3BeCTHBI METO/Ibl ONTUMU3ALUU LIMPUHBI [I0JIOK CTEPKHEN JBYTaBPOBOrO IIONEPEUYHOr0 CEUEHUS
IIPU OrPaHUYEHHSX 110 YCTOWYHMBOCTH MJIM BEJIMUMHE IIEPBOI 4acTOThl COOCTBEHHBIX KOJIEOAHUM, QYHKIIMN LETH
B BHJE 00beMa Marepuaia MOJIOK, AUl Cliydas, KOrja BapbHpyeTCsl TOJbKO IIMPUHA MOJIOK, a BHICOTA CEYEHUS,
TOJII[MHA CTEHKW W TOJIIMHA HOJIKM 3ajaHbl. Il 9TOro BapuaHTa MOCTaHOBKM 3aaud ObUT CHOPMYIHPOBaH
KpUTEpHUH OIEHKH OJIN30CTH TaKOrO0 ONTUMAIBHOTO PEIICHHs] K MPOEKTy MHHHUMAJIbHOW MaTepHalOeMKOCTH.
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IIpu 5TOM B MOJYYEHHOM pEIICHHH MOTYT HE BBIMOJHATHCS HEKOTOPBIC APYrHe HEYYTEHHbBIC OTpaHUYCHUS,
HampuMep, M0 MPOYHOCTH. M3MEHEHHE MOITY4YEeHHOTO PEelICHHUs C LENbI0 YIOBICTBOPEHHS HEYUYTEHHBIM paHee
OTPAHUYEHUSM HE MO3BOJSET CYMTATh TAKOH MPOEKT ONTUMAIBHBIM. B JaHHOM cTaThe mpejuiaraeTcs B paccMar-
pHUBaeMoil 3aa4e YYMTBHIBATH B MPOLECCE ONTHMU3ALUKN IPU OTPAHUYEHHUSAX MO YCTOMYHMBOCTH MM BEJINYMHE
TIEPBON 4AaCTOTHI COOCTBEHHBIX KOJIEOAHMH €mé W yCIOBUH MPOYHOCTH. POpMyIHMpyeTcst TOAX0A, B KOTOPOM
TIpe/IaraeTcs JUIsl OLEHKH OJM30CTH K MPOEKTY MHHMMAIbHON MaTepHaIOeMKOCTH PEIICHHS, MOIyYCHHOTO B
pe3yabTaTe ONTUMU3ALMY, HApsIy C aHAIM30M B MPOLECCE BBIYMCICHHN M3MEHEHHH BEIMYMHBI MPUPAIICHUSL
(YHKIMY 1IeIH, NCTIONIB30BATh €MIE M KPUTEPHH, XapaKTepPHU3YIOIINe KaXKI0€ N3 TIPUHSATHIX OTPaHNICHHH.

KiroueBble cjioBa: KpUTEpHii, ONTUMU3ALNS, OTPAHUYCHHUS, YCIOBHUS TPOYHOCTH,
MUHHMAaJbHas MaTepUaIOeMKOCTh, YCTOHUMBOCTE, YaCTOTA; KPUTHYECKAs CHIIa, OPMBI TOTEPH YCTOHUUBOCTH,
(opMBI COOCTBEHHBIX KOJIeOaHNH, IPUBEICHHBIC HAIPSKECHHS

Earlier [1], the problem of the optimal outline of
the flange width of the I-shaped cross-section
rod [2], [3] was considered with allowance for
stability constraints or constraints for the value
of the first natural frequency. Corresponding
objective function was the volume of the mate-
rial of the flanges for the case when only the
flange width varies and the section height, wall
thickness and flange thickness are specified. Be-
sides, special criterion was formulated for the
proximity of such a solution to the minimal ma-
terial capacity solution [1]. Criteria of assess-
ment of proximity of the optimized design to
corresponding minimum material capacity solu-
tion have also been formulated in many papers
dealing with structural design [6, 9] and
strengthening of structures [4, 5, 7, 8]. Some
specific theoretical problems dealing with for-
mulation of the criteria [10, 11, 12, 13] were
also considered. At the same time, other con-
straints (for example, strength conditions) were
not taken into account normally. Therefore, so-
lutions obtained in such cases might not satisfy
these constraints. However, if the obtained de-
sign (project) is modified so that restrictions not
previously considered are fulfilled, then the
modified design (project) cannot be considered
as optimal. In the distinctive paper allowance
for strength requirements, stability constraints
or constraints for the value of the first natural
frequency are proposed within considering
problem of optimization of the flange width of
I-shaped cross-section rods.

As is known, analysis of changes in the incre-
ments of the objective function is normally used
within optimization methods [14]. However,

there are cases when the objective function
changes slightly at the computational stages but
the optimal solution has not yet been obtained
and the corresponding design (project) is no-
ticeably different from the minimum material
capacity solution.

We recommend application of criteria corre-
sponding to considering constraints and analysis
of changes in the increments of the objective
function within optimization process for as-
sessment of proximity of design to minimum
material capacity solution.

Thus, the I-shaped cross-section rod is under
consideration. The cross-section height b, wall

thickness J,, and flange thickness &, are speci-

fied. Flange width along the length of the rod
(x axis) b,(x) or b,[i] within discrete model of
the rod varies (Figure 1).

It is necessary to find a function b,(x) that, to-

gether with the given parameters (b,,0,,,5,),

determines a rod that satisfies the stability con-
straints or constraints for the value of the first
natural frequency (as well as the strength re-
quirements and structural constraints) and at the
same time provide a minimum volume of mate-
rial of flanges.

The objective function within considering for-
mulation of the problem has the form

Vy =2[by(x)3,dx. (1)

For discrete model including » sections we
have
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3, by 3, b,
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T | b,(x) _T_ b,[i]
Figure 1. Considering cross-section of rods.
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n4 r ¢ “TT20 “ 20, (6)

where V), is the volume of material of flanges; /

is the length of the rod.
Stability constraints have the form

P<P 3)

=Ly

where P is the acting force, P, is the corre-

sponding critical force.
Constraint for the value of the first natural fre-
quency has the form

w, <ol , 4)

where o, is the given value, wl is the value of

the first natural frequency of the system.

Special criterion for assessments of results of
optimization of flange width with allowance for
stability constraints or constraints for the value
of the first natural frequency is also formulated
by the authors for the case when the flange
width varies continuously along the length of
the rod. This criterion can be presented in the
form of three variants (versions, options):

Gl ()=l ()b, — o, (x)(b, —25,)~
—3E(w,)’ p-26,v, (x) = const;
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p

-3-E-(w,)* v} (x)- p = const;

where o,,(x) and o,,(x) are respectively

normal stresses in the extreme fibers of the I-
shaped cross-section and in the fibers at the
boundary of the wall and the flange, created by
bending moments arising from loss of stability
or natural vibrations; v, (x) are the coordinates

of the form of loss of stability or natural vibra-
tions.

The variant (7) of the formulation of criterion
was introduced only in order to emphasize its
association with the previously formulated crite-
ria. Application of this variant of the criterion
with allowance for constraints for the value of
the lowest natural frequency can lead to nega-
tive values of sub-root expressions and to corre-
sponding problems dealing with computational
process at the initial stages of optimization.

In this connection one of the equivalent variants
(5) or (6) will be used in the distinctive paper.
Criteria (5), (6), (7) can be used in combination
with stability constraints or constraints for the
value of the first natural frequency. In case of
stability constraints we should assume that
®, = 0 in the expressions of the criterion.

Three strength conditions must be fulfilled for
rods of I-shape cross-section [14].

Strength condition for normal stresses in ex-
treme fibers has the following form:
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o(x)<R, (8)

where o is normal stresses from the load in the
extreme fibers of the rod; R is design strength
of the material of construction.

The condition for the fourth theory of strength
at the junction of the flange with the wall has
the following form:

0, ()= /o2 () +32 () <R, (9)

where o, (x), o,(x), 7,(x) are respectively

equivalent, normal, and shear stresses from the
load at the junction of the flange with the wall.
The condition for the fourth theory of strength
at the center of gravity of the section has the fol-
lowing form:

() =02 () 4302 (x) <R,  (10)

where o,,(x), o,(x), 7,(x) are respectively

equivalent, normal, and shear stresses from the
load at the center of gravity of the cross section.
Let us rewrite expressions (8), (9) and (10) in
expanded form, reflecting in them the internal
forces of the rod and the parameters of its cross
section. Besides, let us introduce the following
notation system: M(x), O(x), N(x) are respec-
tively, bending moments, transverse and longi-
tudinal forces in the corresponding cross-
sections of the rod.

Condition (8) will take the following form:

) N )
b, -b,(x)—(b, =26,)-(b,(x)=0,,)

N 6M(x)-b, <R
b,(x)- b|3 —(by(x)—0,,)(b, — 25,; )’

o(x)

(1)

Condition (9) will take the form:

0, (X) =

N () .
b by ()~ (b, 26,)- (b, (1) ~3,,)
. 12M(x) )
b,()-B] — (b, (x)— 8, (b, ~25,)]
X (ﬁ -0 )
L 2 ! .
+3.[ 6-0b,(x)3,(5,~6,) ” e
(b2 (b — (b, (¥) =5, (b, - 25,3,
(12)

| =

Condition (10) will take the form:

ﬂ N(x) ]
o, = +
“ bb, —(b, - 25p )b, =0,,)

r 12

3b, (x)bl2 ~
2 2
—6(@@)—&»[”21—6,7)

(b, (x)b13 =(b,(x) =6, )(b, - 25,7 )3 19,

0(x)-

b | —

+3-

(13)

Design restrictions have the following form:

b,(x) = bb, (14)
where bb is minimum flange width.

Within a discrete model of the rod, the corre-
sponding coordinates of considering cross-
section ((x)) are replaced by the corresponding

number of the model section ([7]).

In order to ensure uniformity of the use of crite-
ria and restrictions for assessing the proximity
of the resultant optimized design (project) to
design of minimum of material capacity we
should normalize criterion (4) (or (5)) and con-
ditions (8), (9), (10) and (13) so that if per-
formed in the form of equalities, they would
take a value equal to unity.
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When normalizing criterion (5) (or (6)), bending
moments (which, like mode shapes (natural
modes) are determined with accuracy to a con-
stant factor) are revealed by the form of loss of
stability or the first natural mode. Stresses
0,,(x), 0,(x) and 5., (x) are computed in

accordance with these moments in cross-
sections. Then, the maximum value is selected
among &, (x) and the values of expression (5)

(or (6)) are divided into it. Now, if the design
(project) obtained as a result of optimization is
the design of minimum material capacity, then
the criterion takes the form

o, (x)=1.

. (15)
If constraints (8), (9) and (10) are also used
within optimization process, then the criterion
(15) must be applied only to those parts of the
rod in which dependencies (8), (9) and (10) are
fulfilled in the form strict inequalities.

Let us normalize constraint (7).

Dividing both sides of expression (7) by R we
obtain

(16)

We can similarly normalize constraints (8) and
(9) and get

2 3 2
R2(x) = 03"1; @ _ /e, (x); 20 g
R0 - cra,;(x) _i W3 1 g

In order to normalize the constraint (14), we
should divide put both parts of the expression
(13) by b,(x) and rewrite this constraint in the
form

bby () =22 <1,

b,(x)

(19)

Volume 16, Issue 2, 2020

Let us explain that &’ (x), Rl(x), R2(x),
R3(x) un bb,(x) in (15), (16), (17), (18) are in-
dicators of fulfillment of restrictions ((2) or (3)),
(8), (9) (10) and (14).

Now, after normalizing all the restrictions used,
the proximity to the design (project) of mini-
mum material capacity of the design (project),
obtained as a result of optimization with allow-
ance for stability constraints (or constraints for
the value of the first natural frequency), strength
and structural constraints is determined by the
proximity of at least one of indicators (15), (16),
(17), (18) and (19) to unity in each cross-
section.

Let us give an illustration of the assessment of
the proximity of the solution of the considering
problem to the project of minimal material con-
sumption by an example.

Sample.

A rigidly restrained rod of an I-shape cross-
section is under consideration (Figure 2). The
span of the rod is equal to /=12m. The height

of the cross-section of the rod is equal to

b, =0.16m. Wall thickness 1is equal to
bst=0.01m. Flange thickness is equal to
b,=0.014m. Flange width is equal to

b, =0.12m. Besides, flange width is constant

along the entire length of the rod. The modulus
of elasticity of the material of the rod is equal to

E =2060000000 00 N /m”. Its specific gravity is
equal to 7850 kg/m’. Volumetric weight is
equal to 77008 .5N/m’. Design strength is

equal to R =240000000 N /m”.

The rod carries a uniformly distributed mass of
intensity m=400kg/m. The same mass is an

external load with intensity ¢ =3924N/m.

Own weight of the rod are taken into account in
optimization process with allowance for
strength conditions.

The critical force (ultimate load) of the rod
(without taking into account possible vibrational
effects) is equal to Pcr=1118457N .
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A 4

F N

Figure 1. Considering sample.

The first natural frequency (without taking into

account the influence of the longitudinal force

on the frequency) is equal to @ =18.5773 sec™.

Let the compressive force be P =300000 N .
The flange width is equal to b, =0.12m (it is
the same along its entire length of the rod). The
first natural frequency of the rod with allowance
for the influence of the longitudinal force on the

frequency is equal to @=12.9291sec”’. It

should be noted that strength conditions were
not considered within determination of the criti-
cal force and frequency.

Thus, in the considering sample it is required to
optimize the shape of the width of the flanges of
the considering rod loaded by P =300000 N ,
provide special value of the first natural fre-

quency (@l > @, =13sec™) and minimum vol-

ume of the material of the flanges. Constraints
for the value of the first natural frequency (4),
strength constraints (8), (9), (10) and structural
constraints (10) must be taken into account
within optimization process. Let bb=0.01m be

the smallest possible flange width.

Discrete model of the rod including 30 sections
(elements) is used for corresponding analysis.
Evenly distributed mass and load are reduced to
nodes. Besides, we have nodal masses
(m[i]=160kg) and loads (q[i]=1569.6N)
within this discrete model. The mass and weight
of the structure are taken into account within the
optimization process.

Generally optimization can be performed by one
of the well-known methods (various modifica-
tions of method of descent, random search
method and so on) [16, 17]. The random search
method is used in the considering sample.

After completion of the optimization process,
we will evaluate the proximity of the obtained
solution to the corresponding minimal material
capacity solution.

First of all, in order to compare the design of
minimum material consumption with other pos-
sible solutions, several options should be con-
sidered.

The first variant. Conventional solution is con-
sidered in which the minimum value for the
flange width (b, ) is determined, provided that it
is the same along the entire length of the rod,
but restrictions (4), (8), (9), (10) and (14) are
accepted.

Table 1. Results of analysis.

1 Flange width b,[i] G [i]
i 2 3 4 5
1| 0.2070 0.1649 0.2070 | 0.9967
2 | 0.1800 0.1421 0.1800 | 0.9970
3 | 0.1515 0.1196 0.1514 | 0.9969
4 | 0.1215 0.0975 0.1215 | 0.9969
5 | 0.0903 0.0755 0.0903 | 0.9969
6 | 0.0582 0.0534 | 0.0582 | 0.9976
7 | 0.0300 0.0300 | 0.0254 | 1.0000
8 | 0.0100 0.0100 0.0100 | 0.0339
9 | 0.0279 0.0279 | 0.0131 | 0.9911
10 | 0.0460 0.0460 0.0403 | 0.9968
11| 0.0633 0.0599 | 0.0633 | 0.9971
12 | 0.0818 0.0707 0.0818 | 0.9972
13| 0.0958 0.0785 0.0958 | 0.9965
14| 0.1052 0.0837 | 0.1052 | 0.9966
15| 0.1098 0.0863 0.1098 | 0.9972
16 | 0.1098 0.0863 0.1098 | 0.9972
17 | 0.1052 0.0837 0.1052 | 0.9966
18 | 0.0958 0.0785 0.0958 | 0.9965
19 | 0.0818 0.0707 0.0818 | 0.9972
20| 0.0633 0.0599 0.0633 | 0.9971
21 | 0.0460 0.0460 | 0.0403 | 0.9968
22| 0.0279 0.0279 0.0131 | 0.9911
23| 0.0100 0.0100 | 0.0100 | 0.0339
24 | 0.0300 0.0300 0.0254 | 1.0000
25| 0.0584 0.0534 | 0.0582 | 0.9976
26 | 0.0903 0.0755 0.0903 | 0.9969
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i 2 3 4 5
271 0.1215 0.0975 | 0.1215 | 0.9969
28 | 0.1515 0.1196 | 0.1514 | 0.9969
29| 0.1800 0.1421 | 0.1800 | 0.9970
30| 0.2070 0.1649 | 0.2070 | 0.9967

This solution implements the flange width,
which is equal to b, =0.1542m. Moreover, re-
striction (7) in sections 1 and 30 is fulfilled in
the form of an equality, and in all other sections
it 1s fulfilled in the form of inequalities. Con-
straints (9), (10) and (14) in all sections of the
rod are fulfilled in the form of inequalities. Con-
straint (3) is fulfilled in the form of inequality as
well.

In this connection the first natural frequency of

the rod is equal to @l =14.89sec™ >13sec”.
Thus, the minimum value of flange width
b, =0.1542m (it is constant along the entire

length of the rod) is determined by the active
fulfillment of the strength constraint (8) for sec-
tions 1 and 30 and the passive fulfillment of all
other constraints. The volume of material of the
flanges in the considering variant is equal to

V, =0.05181 m".

The second variant. Let us optimize the values
b,[i](i=1,2,...,30), that vary in each section,
but without taking into account the strength
constraints (i.e. constraints (4) and (14)). The
results of this optimization are shown in the
fourth column of Table 1. The volume of mate-
rial of the flanges in the considering variant is
equal to V, =0.030309 m’. The fifth column

shows the indicators (15) of the fulfillment of
the constraint (4). In all sections except section
number 8 and section number 23, they differ
only by a fraction of a percent from unity. In
section number 8 and section number 23 we
have b,[i]=0.01m. Therefor in these sections

the restriction (14) is fulfilled in the form of
equality and corresponding indicators are equal
to bb,[8]1=1, bb[23]=1. Thus, in all sections of
the rod we have indicator, which is fairly close
to unity. This circumstance allows researcher to
consider the resultant design quite close to the
design of minimum material capacity but only

Volume 16, Issue 2, 2020

with allowance for corresponding constraints.
Otherwise, with the constraints taken into ac-
count, the objective function is minimal within
the limits of errors and the proximity of the in-
dicators & [i] to unity.

The third variant. In order to verify the fulfill-
ment of the strength conditions for the design
obtained in the second variant with the values
b,[i] bending moments and shear forces were

determined in accordance with the deformed
pattern taking into account applied load
q=3924N/m, dead weight and the influence

of the longitudinal force P =300000 N .

Then, using formulas (11), (12), (13), a value of
b,[i] was determined for each section under
which one of the conditions (11), (12), (13) is
satisfied as equality, and remaining as inequali-
ties. They determine the minimum permissible
flange width (b,[7]), satisfying the strength con-
ditions. These values of b,[i] are shown in the
third column of Table 1. Comparison of the val-
ues of b,[i] in the third column with the corre-

sponding values in the fourth column 4 shows
that strengths constraints are not fulfilled in sec-
tions with the following numbers: 7, 9, 10, 21,
22, 24. If in these sections the dimensions of the
flange width are increased to the minimum per-
missible dimensions under the strength condi-
tions, leaving the dimensions in the remaining
sections unchanged, then we get the design pre-
sented in the second column of Table 1. The ob-
jective function for this design is equal to

V, =0.030874 m’, the value of the first natural

frequency is equal to @=13.1103sec” (con-
straint (4) is fulfilled in the form of an inequali-
ty). In this connection, the subsequent fulfill-
ment of constraints not taken into account with-
in optimization process does not allow research-
er to consider the solution as a design of mini-
mal material capacity.

The fourth variant. Let us now optimize the val-
ues b,[i](i=1,2,..,30) with allowance for con-
straints (4), (8), (9), (10) and (14) (including
strength constraints). The results of this analysis
are presented in Table 2.
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Table 2. Results of analysis.

i b, [i] G 2[i] RI[7] R[] R3[1] bb,[i]
1 0.1995 0.9986 0.8276 0.7238 0.2218 0,050
2 0.1727 0.9994 0.8249 0.7247 0.2387 0,058
3 0.1444 0.9991 0.8308 0.7340 0.2635 0,069
4 0.1147 0.9992 0.8500 0.7564 0.3012 0,087
5 0.0837 0.9992 0.8905 0.8000 0.3614 0,119
6 0.0518 1.0000 0.9701 0.8834 0.4668 0,193
7 0.0254 0.7037 1.0000 0.9351 0.6276 0,394
8 0.0100 -0.0239 0.9243 0.9002 0.7920 1

9 0.0321 0.4443 1.0000 0.9256 0.5726 0,312
10 0.0498 0.8364 1.0000 0.9074 0.4679 0,201
11 0.0675 0.9999 0.9571 0.8592 0.3948 0,148
12 0.0859 0.9993 0.8933 0.7967 0.3391 0,116
13 0.0998 0.9993 0.8560 0.7599 0.3058 0,100
14 0.1091 0.9993 0.8349 0.7390 0.2865 0,092
15 0.1138 0.9991 0.8251 0.7293 0.2775 0,088
16 0.1138 0.9991 0.8251 0.7293 0.2775 0,088
17 0.1091 0.9993 0.8349 0.7390 0.2865 0,092
18 0.0998 0.9993 0.8560 0.7599 0.3058 0,100
19 0.0859 0.9993 0.8933 0.7967 0.3391 0,116
20 0.0675 0.9999 0.9571 0.8592 0.3948 0,148
21 0.0498 0.8364 1.0000 0.9074 0.4679 0,201
22 0.0321 0.4443 1.0000 0.9256 0.5726 0,312
23 0.0100 -0.0239 0.9243 0.9002 0.7920 1

24 0.0254 0.7037 1.0000 0.9351 0.6276 0,394
25 0.0518 1.0000 0.9701 0.8834 0.4668 0,193
26 0.0837 0.9992 0.8905 0.8000 0.3614 0,119
27 0.1147 0.9992 0.8500 0.7564 0.3012 0,087
28 0.1444 0.9991 0.8308 0.7340 0.2635 0,069
29 0.1727 0.9994 0.8249 0.7247 0.2387 0,058
30 0.1995 0.9986 0.8276 0.7238 0.2218 0,050

The second column shows the values of the
flange width b,[i] within optimization process

with allowance for considering constraints. The
third column contains indicators (15) of the ful-
fillment of the constraint (4). In all sections (ex-
cept sections with the following numbers: 7, 8§,
9,10, 21, 22, 23, 24) they differ only by a small
fraction of a percent from unity. In sections with
numbers 7 and 23 we have b,[8]=0.01m (i.e. in
these sections, constraint (13) is fulfilled in the
form of equality and indicators (15) are equal to
bb,[8]1=1 and bH,[23]=1. In sections with

numbers 7, 9, 10, 21, 22, 24, indicators (16) of

constraint (7) are equal to unity up to rounding.
The remaining indicators (16) and (17) of
strength constraints (9) and (10) are fulfilled in
the form of inequalities (the sixth column and
the seventh column). So, in each section, we re-
vealed indicator which is quite close to unity in
terms of the adopted set of constraints. This cir-
cumstance allows to consider resultant design
(after corresponding optimization process with
allowance for constraints for the value of the
first natural frequency, strength constraints and
structural constraints) as close, within the ac-
cepted errors, to the design of minimum material
capacity (the second column of Table 2.
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Table 3. Comparison of variants.

Variants
Number 1 2 3 4
Vs, m> 0.05181 0.030309 0.030874 0.030468
%% 0 41.50 40.41 41.20
wl,sec” 14.89 13 13.1103 13

In this variant the objective function is equal to
V, =0.030468 m’ .

A decrease in the value of the objective function
is performed in comparison with the first variant.
In the first and third variants, the constraint

ol =13sec™ is not reached, while the values of

the objective function are greater than in the
fourth variant, in which all constraints are ful-
filled. In the second variant the objective func-
tion is less than in the fourth variant, but strength
conditions are not fulfilled. A comparison of the
variants confirms the feasibility of taking into
account all the necessary constraints within op-
timization process (the fourth variant), and not
after its completion (the third variant).

The solution closest to the design of minimal ma-
terial capacity can be used in real design practice.
We should note that normally it is impossible to
formalize the full set of various constraints of
the problem within the design of optimal sys-
tems. These are, for example, constraints dealing
with technological requirements in the manufac-
ture, transportation, installation, operation and
disposal of an object, as well as many others.

An optimal design can perform various func-
tions in real design practice. For example, a de-
sign of minimal material capacity can be con-
sidered as an idealized object. This function of
such a design makes it possible to evaluate a
real design solution by the criterion of its prox-
imity to the limit (for example, by material ca-
pacity).

In addition, the optimal design can be used as a
guideline for real design. Within this approach
real design is considered as a phased process of
moving away from an ideal object in order to
fulfill the requirements (constraints) not consid-
ered in the optimal design.

In the distinctive paper we propose to use spe-
cial criteria for assessment proximity of result-

Volume 16, Issue 2, 2020

ant design after optimization process (compu-
ting flange with of I-shape cross-section of rod)
with allowance for stability constraints, con-
straints for the value of the first natural frequen-
cy and structural constraints.
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