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EQUATION DECOMPOSITION METHOD FOR SOLVING OF
PROBLEMS OF STATICS, VIBRATIONS AND STABILITY
OF THIN-WALLED CONSTRUCTIONS
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Abstract: The work suggests the effective equation decomposition method (EDM) for solving of statics, vibra-
tions and stability problems of thin-walled constructions. This method is based on the partition of the initial
problem on the consideration of more simple auxiliary problems. The additional unknown functions are intro-
duced for definition of the sought solutions. The paper shows the method’s advantages on the examples of the
boundary value problems for rectangular areas. The problem of anisotropic plate resting on an elastic subgrade
and subjected to an action of expanding forces acting in the middle surface and to transverse loads is under
study. The plate’s edges are elastically supported. Also free vibrations of the rectangular plates of variable thick-
ness with different boundary conditions were under consideration. The approximate analytical solutions with
high exactness are obtained.
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METO/ AEKOMIIO3UIINHA YPABHEHHIA J1/151 PEINEHMSI
3AJJAY CTATUKH, KOJJEBAHHUI ¥ YCTOMYUBOCTH
TOHKOCTEHHBIX KOHCTPYKLMIA

E.B. Kopenesa', B.P. I'pocman’
! MockoBckoe BhICIIEE 00IIEBOHCKOBOE KOMaH IHOE op/eHoB JKykoBa, Jlennna u OkTa6pbekoii Pesosmonyun
Kpacnosznamennoe yumnumie, r. Mocksa, POCCUA
2 MocKOBCKasi TOCYJapCTBEHHas aka[eMHsl BOJHOTO TpaHcnopTa, I. Mocksa, POCCU S

AnHoTauusi: [y penieHus 3a1a4d CTaTHKH, KOJIEOAHUH M yCTOMYMBOCTH TOHKOCTEHHBIX KOHCTPYKIIUI B padoTe
npennaraetcs 3QpPeKTUBHBIA MPUOIMKEHHBIN aHATUTHIECKUN METOJ] IeKOMIO3uInn ypaBHeHuit (MIY). Dot
METOJl OCHOBAH Ha PacuJICHCHUH MCXOJIHOM KpaeBoW 3aqaun Ha psz Oojiee MPOCTHIX BCIIOMOTATeNbHBIX 3a1a4. B
9THX 3aJadaxX BBOJATCA MOIISKAIINE OMNPEACICHHUIO JIOTONHUTEIbHBIE HWCKOMBIC (YHKIWH, MO3BOJIIIONINC
OTIpEeNIeNUTh pelieHrne. B paboTe JOCTOMHCTBAa METO/1a TIOKAa3aHbI Ha TIPIMEPax PacCMOTPEHUS CIEAYIONIHNX Kpa-
€BBIX 337124 ISl IPSMOYTOJILHBIX oOJyiacTed. Perraercst 3aiava o IiacTHHE, CICIaHHON U3 aHU30TPOITHOTO MaTe-
puana, Jie)Kaliei Ha ynpyroM OCHOBAaHMH M HAXOJISINCHCS MO JCHCTBUCM PACTSITUBAIOIIUX CHJI, ICHUCTBYIOIIUX
B CPEIUHHOM IJIOCKOCTH, W MONEpeuHOl Harpy3ku. KoHTyp miacTHHBI ynpyro omept. M3ydaroTcsi Takke CBO-
00/IHBIC KOJICOaHUS TIPSMOYTOJIHON TUIACTHHBI IEPEMCEHHON TOJIIMHBI C PA3IMYHBIMK YCIOBUSIMH 3aKPCIUICHUSL.
[Tonmy4yeHb!l npUOIUKCHHBIC aHATUTHYCCKHUE PEIICHUS, 00J1aJaf0INE BICOKOH TOUHOCTBIO.

KiroueBble c10Ba: MeTOA AEKOMITO3UINN YPABHEHUH, KpaeBas 3aa4a, IPHOIHKEHHbIC aHATNTHICCKUE
pelIeHus.

1. INTRODUCTION constructions computation can be solved by

means of EDM. At the first time this method
The equation decomposition method (EDM) was applied for solving of problems, containing
was for the first time suggested and justified in  variable parameters for rectangular areas in the
the works [1], [2]. Linear and nonlinear statics, works [3], [4]. This method is based on the fact
vibrations and stability problems of thin-walled that the stated problem is replaced by the con-
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sideration of more simple auxiliary problems
containing additional unknown functions. The
EDM has considerably high exactness. The pre-
sent work suggests the solutions of urgent prob-
lems of thin-walled constructions computation,
obtained by means of EDM.

2. SOLVING OF BENDING PROBLEM OF
THE RECTANGULAR ORTHOTROPIC
PLATE, RESTING ON AN ELASTIC
SUBGRADE AND SUBJECTED TO AN
ACTION OF EXPANDING FORCES

Let us consider the bending problem of the rec-
tangular orthotropic plate, resting on an elastic
subgrade, which properties are described by
Winkler’s model. The plate is subjected to an
action of expanding forces effective in its mid-
dle surface and by transverse loads. The plate’s
boundary is elastically supported (Fig.1). The
relevant resolving equation is:

where ¢ is the modulus of subgrade.
We have in the generally accepted notations [4]:

3 h3
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For isotropic plate we have:
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The boundary conditions for the problem under
examination have the following form:

ow
x=ia, WZO, Mx:il’ia,
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x=1b, w=0, My=irzg—w,
4

where 1, r, are the coefficients of the contour’s
elasticity.
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\ I

Fig.1. Rectangular plate with elastic contour

Taking into account the dimensionless elasticity
coefficients:

D D
kl_D-i-rla’ kZ_D+r2b' 3)

The conditions (2) can be represented in the fol-
lowing form:

when x =+a

82

w ow
= — — — =V
w=ka 2 +(1-k) e 0; 4)

when x=1b

0w ow
w=k,b—s=(1-k,)—=0. 5
2 ayz ( 2 8)/ ()

It was taken into account that in the formulae
(4), (5) the second terms in the expressions for
M, and M, [4] on the contour, where w=0,
are equal to zero. The values of 7, and 7, are
positive or equal to zero. Therefore, according
to the expressions (3), the coefficients k; and &,
can change in the following way: 0<k <1,
0<k, <1. The limiting values 0 and 1 corre-
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spond to the cases of rigid and simply support-
ing of the plate’s boundary.

We will solve the boundary value problem (1),
(4), (5) by means of the equation decomposition
method (EDM). For this aim three auxiliary
problems are introduced.

The first auxiliary problem (boundary) is to
solve the differential equation

*w, B *w,
ox?

= fi(x,») (6)

1

with the boundary conditions (4) when w=w;.

The second auxiliary problem (boundary) is to
solve the differential equation

o*w *w,
D, Z_p 82

= /(%) (7

with the boundary conditions (5) when w=w,.

The third auxiliary problem is to solve the fol-
lowing differential equation:

84
D(x,y) =2Dy— =5 +cwy + [ (x, ) +
ox 8y (])

+ /P x2) =g =0,

The solution of the initial problem (3), (4), (5) will
coincide with the solutions of the auxiliary prob-
lems when the following equality will fulfilled:

The mentioned conditions allow to determine
the functions 7"(x,y) and f@(x,y). We
solve the posed task approximately. Let us pre-
sent the FO(x, )

@ (x,y) in the form of power series. The cal-

culations and comparision of the received re-
sults for the deflections and the bending mo-
ments with the existing for certain boundary
conditions exact solution show that we can re-
tain two terms in these expansions:

sought functions and

O =200+ A0 ();

f(z)(x _ r(2 2 r(2) (10)
V)= () +y L7 (x).

Let us receive the solutions of the first and the
second boundary value problems using the con-
ditions (10). We obtain the following:

WD = w® = C, (X)L (¥) +

+ Gy (D (¥) + Gy (Ow, (v) +
+ Cys (DY, (),

(11

where y;(x) = ¢, (x,a,4,k),
w2 (») =01 (0,0, 25, k),
w3(x) =, (x,a,4, ki, Dy),
Wi(¥) =0, (y,b,4,ky, D),

,(z,d, k)=

1) dlhaz—siad) & 2
P {kdshfm(l k) hj_—d} : 2

1

¢)2(Zadalak9D) = Dﬂ,z X

{kd(dz/l +2)+(1- k){d s 2dﬂ

X

1
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here 4, =D£1, A =D£2, G, C,, G, Cy - are
the arbitrary constants.

The expression (11) is the approximate solution
of the initial problem with the exactness up to
four constants. Taking into account (11) and (9)
we can determine these constants from the con-
dition of the approximate solution of the differ-
ential equation (8) which takes the following
form:

D(x,y) = Cly (x) +y,(¥) +
+ey (Dy, (1) + 2Dy, " (), (1)) +

+ G A () + s (1) + cp (D () +
+ 2Dy, " ()" (V)] + Gy (x) +

+ X7y, (1) + ey (Dw, () +
12D (O, (D)]+ Cy [y 2w () +

+x21//4(y)+Cl//3(x)l,V4(y)+
+2Dyy5" ()" ()] -9 =0.

(12)

For receiving of the (12) approximate solution

the following conditions are used when
x=y=0:
o’ oo o'
C=—F=—"5=2-73->5=0. (13)
ox oy ox 0Oy

Thus the constants C;(i=12,3,4) are deter-

mined from the solution of the system of four
equations in four unknowns. Then we can write
the solution of the formulated problem by use
(11).

The example for the square plate when a =5
was fulfilled. It was assumed that k =k, =1

that is the all the edges are simply supported and
c¢=0. The solution received by the help of
EDM was compared with the existing for this
case exact solution. It was shown that the values
of the maximum deflection and bending mo-
ment in the plate’s center which were received
by the help of EDM differ from the exact solu-
tion respectively with 1,33% and 1,09%.
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3. VIBRATIONS OF RECTANGULAR
PLATES OF VARIABLE THICKNESS

Natural vibrations of the rectangular plate
(Fig.2) with the rigidity varying along one di-
rection according to the exponential law

D=Dye”, (14)

where D,, b are the constants, are under con-

sideration.
The resolving differential equation has the form:

D{VZVZW +2b, 9 v s bEVW —
» (1)
W\ sh W
b (-0 +- = =q,
i )8x2} eD o 1
where g 1s the mass of the unit volume, # is

the plate’s thickness.

After the separation of variables first we shall
examine the case of the simply supporting of all
the plate’s edges (Fig.2).

ve

A Y

Fig.2. Rectangular plate of variable thickness

82

— w:—ax? = 0; (16)
62

y=0,a, wzay—vfzo. (17)

Using the substitution (14) we obtain the equa-
tion:
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Dye™” (vzvzw +2b, aﬁ Viw+bIViw—

V

*w (18)

—bi(1- 0') j Aw=q,
ox’oy”

yhw?

gD~

Boundary value problem (16)-(18) will be
solved by use of the EDM. For this aim the
three auxiliary problems are introduced.

The first auxiliary problem (boundary): to re-
ceive the solution of the differential equation

where A, =

o*w

0*w
L+blo—L

5 =/ (xp),

(19)

satisfying the boundary conditions (16) when
w=w.

The second auxiliary problem (boundary): to
obtain the solution of the differential equation

Dye {54% YA IE ywz}:
‘ ox* oy’ dy* (20)
=2 (x,»),

satisfying the boundary conditions (17) when
W=W,.

The third auxiliary problem: to receive the solu-
tion of the following differential equation:

4
@(X,y):Doeb'y 2[ a2W32 b a % j
ox“oy x>0y (21)

+ O]+ P (x, ) = Awy —q =0.

The solution of the posed problem (16)-(18) will
coincide with the solution of the auxiliary prob-
lems when the conditions of their equality (9)
are fulfilled. These conditions allow to deter-

mine the auxiliary functions f®(x,y) and

' (x, ).
As well as in the previous example we solve the
formulated problem approximately. We repre-
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sent the functions /(x,y) and 7 (x,y) in
the form of power series. The calculations
showed that retaining of two members of power
series is unsufficiently. For the mentioned case
the comparision of the maximum values of the
bending moments and the deflections received
by the such way with the existing exact solution
shows the deviations are respectively with
7,59% and 10,10%. It was defined that for ob-
taining of the solution possessing high exactness
we must accept the following expansions, taking
into account the symmetry on the coordinate x:

O ="+ A0 (22)

200 = f37 )+ 37 (0 +

YA, >

Solving the first boundary value problem (19)
and (16) we receive:

w = (0L D+ @A (). (24)
where
2 2
COS ;X 1 ¢ X
) =o {——[—+—}+—},
i Wrfcosye Lyf 2] 2
COS VX 2
AGE 2{¢{c——2}—
V2 )1 CO8y € 71 (25)
2 P
EErE e
71 71
71:b1‘/g'

Solving the second boundary value problem
(20) and (17) we obtain:

wy =30 f32 () + () AP (x0) +

26
PO AP ), (26)

where
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A ) b b —ab 9 12 2( 5, 12
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12 - 6y> 18y 24
+2la*—= |+e™Wh| y + =+ 2L+ | 27
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3 2
+ Z[a3 —2 +eVh |yt + 8Z + 36;} + 963)/ + 12:) ,
b; | b; b; b
A=
0
Further using the equality (9) we receive: The expression (27) is the approximate solution
of the posed problem up to the exactness of six
wp =w, =y (Dw3(0) + Gy (0w, (y) + constants. We can find these constants, taking

+ Gy, (W5 (1) + Cows ()3 (v) + (28) into account the equality (9), by means of ap-

roximate solution of the differential equation
+ CS‘//2 ()C)l//4(y) + C6W2 (x)l//6 (y)a I()21) Wthh takeS the form: q

where C,(i =1,...,6) are the arbitrary constants.

D(x,y) = C{Dye™ 23, (w3 )+ by (] + w3 () + v (D= A ()]} +
+Cy{Dee™ 20" (D" () + by DT+ v, (D} + v (DL = 4w ()] +
+C{De™ 207" (s (1) + brs' D1+ s+ (0 = A4ws(n) ]+
+Cy{Doe™ 20, Oy (1) + bs' )]+ X3 () (D= A ()] +

+ Cs{De™ 20, (Owy" () + by D+ Xy, () v, (O = Awa ()] +
+ Co{Dye™ 207, (05" (9) + bs' D]+ 2ws(0) [+ v, (0 = Aws(0) - =0.

(29)

For the estimation of the coefficients y:% for the determination of the constants

Ci(i=1...,6) the Bubnov-Galerkin s. method C,(i =1...,6). Evidently that the residual func-
may b? used. Belovy thg another effectlve meth- tion in this section significantly affects on the
od which was applied in the previous example approximate solution exactness. Therefore we
will be used. Let us call @(x,y) as the residual PProxY . ' .

: 24 will write the conditions of the equality to zero

function. This function is equal to zero in the  ,f the function @(x,y) and a few of its lower
exact solution. We minimize the residual func-

. ) ) ) derivatives with respect to the arguments x and
tion in the plate’s midpoint when x=0, P &

y when x =0 and y=%:
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O o o o' o0
ot v ot ot axloy

=0. (30)

It is taken into account that because of sym-
metry with respect to the argument x the odd
derivatives on x are equal to zero. Further the
system of the six equations with six unknown
values is under consideration for the aim of the
constants C; determination. Then the deflec-
tions and the stresses are defined.

Let us examine the bending of the rectangular
plate with the rigidity (14) with another bounda-
ry conditions; the edges

y=0,a

are simply supported and the edges
xX=*a

are clamped, that is we have:

xX=%*c, w=—5-=
’ ox

0. 31)

Then the solution of the first boundary value
problem is to solve the differential equation (19)
with the boundary conditions (31). As a result
we obtain the following relations for the func-

tions ;(x) and ¥, (x):

2
c | cosyx cigyic c¢| x
(x)=— - —[ + —} +—1
i 7o (nsinyc 7 2] 2

2
c | cosyx (c 2

l//z(x)=—{—_ (___j_

7i lyisinye(3 ot

—ictg;/c i—i +c i—L + (32)
oo U3 )2y

The solution of the second boundary value prob-
lem remains unvariable and is represented by

Volume 16, Issue 2, 2020

the expression (24) where the functions (),

w4(»), ws(y) are defined by the relations (25).

Then the deflections and the stresses are deter-
mined in the same way as it was described
above.

6. CONCLUSION

The work stated the equation decomposition
method intended for solving of boundary value
problems of thin-walled structures computation.
This method is based on the fact that the consid-
eration of the original problem is replaced by
the examination of the auxiliary problems in-
cluding boundary value ones. For the considera-
tion of the mentioned problems the auxiliary
functions are introduced. The approximate ana-
lytical solutions possessing high exactness are
obtained.
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