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EXAMPLE OF GRAGUAL TRANSFORMATION  
OF STIFFNESS MATRIX AND MAIN SET OF EQUATIONS  

AT ADDITIONAL FINITE ELEMENT METHOD 

Anna V. Ermakova 
South Ural State University, Chelyabinsk, RUSSIA 

Abstract: The paper considers the example of gradual transformation of the stiffness matrix and the main set of 
equations at Additional Finite Element Method (AFEM). It is corresponded to the increase of load and the ideal 
failure model of structure. AFEM uses the additional design diagrams and additional finite elements (AFE) for 
this operation. This process is illustrated by the transformation of design diagram of bended concrete console from 
the beginning of its loading to the collapse. The structure reveals four physical nonlinear properties before the 
ultimate limit state. Every nonlinear property appears under the action of corresponded load. The stiffness matrix 
and the set of equations are changed under influence of the value of load and the presence of observed nonlinear 
properties at this moment. 
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ЖЕСТКОСТИ И ОСНОВНОЙ СИСТЕМЫ УРАВНЕНИЙ

МЕТОДА ДОПОЛНИТЕЛЬНЫХ КОНЕЧНЫХ ЭЛЕМЕНТОВ

А.В. Ермакова 
Южно-Уральский государственный университет, Челябинск, РОССИЯ

Аннотация: В статье рассматривается пример постепенного преобразования матрицы жесткости и 
основной системы уравнений метода дополнительных конечных элементов (МДКЭ). Это преобразование 
происходит в соответствии с ростом нагрузки и идеальной моделью разрушения конструкции. Для 
выполнения этой операции МДКЭ использует дополнительные расчетные схемы из дополнительных 
конечных элементов (ДКЭ). Для иллюстрации этого процесса рассмотрено изменение расчетной схемы 
изгибаемой бетонной консоли от начала нагружения до разрушения. Эта конструкция проявляет четыре 
физически нелинейных свойства к моменту достижения ею предельного состояния. Каждое нелинейное 
свойство появляется при действии соответствующей нагрузки. Матрица жесткости и система уравнений
меняются в зависимости от величины нагрузки и наличия тех нелинейных свойств, которые наблюдаются 
в этот момент.

Ключевые слова: метод дополнительных конечных элементов, метод конечных элементов, матрица 
жесткости, система уравнений, дополнительная расчетная схема, дополнительный конечный элемент,

идеальная модель разрушения

INTRODUCTION 

Some characteristics are necessary when Addi-
tional Finite Element Method (AFEM) is used 
for analysis at limit states of structures with sev-
eral physical nonlinear properties:

1)� The number of all nonlinear properties; 
2)� The sequence of its appearance before ulti-

mate limit state; 
3)� The way of taking into account for each non-

linear property;
4)� The stress-strain state when each nonlinear 

property is appeared.  
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These factors act at the initial design diagram, 
the stiffness matrix and the main set of algebraic 
equations. Also they determine of the way of 
nonlinear analysis. Thus, the problem of mathe-
matic description of this process is appeared. 
This description must correspond to the logic of 
AFEM and FEM, the character of observed non-
linear properties and the requirement of limit 
state analysis. The developed AFEM is destined 
for decision of this problem. The examples are 
necessary for verification and realization of its
algorithms. 

1. GENERAL INFORMATION OF AFEM 

Additional Finite Element Method (AFEM) [1] 
is suggested by author as the variant of the de-
velopment of Finite Element Method (FEM) [2, 
3]. It is destined for analysis of structures with 
several (n) nonlinear properties at ultimate limit 
state (state of ultimate equilibrium). It adds the 
some elements of the Method of Limit States 
(Ultimate Equilibrium) [4, 5] and the Method of 
Elastic Decisions [6, 7] to the usual sequence of 
solving problems by FEM. AFEM is numerical 
method for combination and development of 
three science directions:  
1)� The mathematic basis for several (n) trans-

formations of main set of equations and ex-
tension of possibilities of FEM for solving of 
n-nonlinear problems; 

2)� The decision of the problems of structural 
mechanics for analysis of structures at limit 
states as n-nonlinear systems; 

3)� The analysis of real structures at limit states 
as n-nonlinear systems. 

The example is given for application AFEM to 
nonlinear analysis of plane reinforced concrete 
structure with four nonlinear properties. It corre-
sponds to normative requirements [8 - 10].  

2. PROBLEM AND WAY OF DECISION 

The nonlinear analysis at limit state is consid-
ered for the bended console. 

This structure reaches its limit state under in-
creased load gradually.  
It gradually reveals four nonlinear properties: 
1)� The plasticity; 
2)� The partial unload due to the redistribution of 

stresses after the cracking; 
3)� The presence of the cracking; 
4)� The ultimate limit state before the collapse. 
The realization of nonlinear analysis at limit state 
demands one linear analysis and four nonlinear 
ones depending on the number of nonlinear prop-
erties at this step of loading. The way of these 
analyses is: 
1)� The initial linear analysis without any non-

linear properties; 
2)� The plastic analysis with one nonlinear prop-

erty; 
3)� The analysis with taking into account of two 

nonlinear properties: the plasticity and the 
partial unload due to redistribution of 
stresses after cracking; 

4)� The analysis with taking into account of three 
nonlinear properties: the plasticity, the par-
tial unload due to the redistribution of 
stresses and the presence of the cracking; 

5)� The analysis with taking into account of four 
nonlinear properties: the plasticity, the par-
tial unload due to the redistribution of 
stresses, the cracking and limit state. 

3. GROWTH OF LOAD AND FORM  
OF MAIN SET OF EQUATIONS 

The growth of load P and appearance of nonlin-
ear properties are the main factors for realization 
of analysis of structure at limit state. 
These factors influence over transformation of 
the design diagram, the stiffness matrix of struc-
ture and the main set of algebraic equations. 

3.1. Growth of load and nonlinear properties 
There is the condition of analysis at first limit state 
for guarantee the bearing capacity of structure: 

                         Pmax � Plim.               (1) 
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Where Pmax = maximal value of external static 
load which is equal to minimal kinematic one. 
Plim = minimal internal resistance of the structure 
to this external load. 
The external load P changes from 0 to Plim grad-
ually (P � Plim):

P1 = 0 < P2 = P3 < P4 = Pmax = Plim. (2) 

Where Pi  = the intermediate value of load P
when i-th nonlinear property is appeared (i
changes from 1 to n = 4). 
The first nonlinear property is plasticity (i = 1).
It is observed from load P = 0 to load P = Plim,
i.e. all time of loading. It is only nonlinear prop-
erty under load P1= 0<P<P2. The second nonlin-
ear property is the partial unload (i = 2) due to 
redistribution of stresses after the cracking. It is 
appeared under load P=P2=P3 together the crack 
simultaneously. It is manifested from load 
P=P2=P3 to load P=P4, i.e. interval of load 
P2=P3<P<P4=Plim. The third nonlinear property 
is the existence of crack (i = 3). It is observed 
during interval of load P3<P<P4=Plim. The last 
nonlinear property is ultimate limit state (i = n =
4). It is occurred under load P=P4=Pmax=Plim.
Thus, the way (2) of the growth of load P is: 

P1 = 0 � P2 = P3 � P4 = Pmax = Plim. (3) 

The condition (3) is the first for the formation of 
the main set of equations. 

3.2. Transformation of design diagram 
The condition (3) demands the gradual transfor-
mation of the design diagram of structure in the 
nest sequence: 
1)� The initial linear design diagram of structure 

without nonlinear properties (i = 0) under 
load P = P1 = 0; 

2)� The design diagram of structure with  plastic 
property (i=1) only under load P1=0<P< P2; 

3)� The design diagram of structure with two 
nonlinear properties under load P = P2 = P3:
plasticity (i = 1) and the partial unload (i= 2) 
due to redistribution of stresses after the 
cracking; 

4)� The design diagram of structure with three 
nonlinear properties under load P3 < P < P4:
plasticity (i = 1), the partial unload (i = 2) due 
to redistribution of  stresses and the 
cracking (i = 3); 

5)� The design diagram of structure with four 
nonlinear properties under load P = P4= Pmax 
= Plim: plasticity (i = 1), the partial unload (i
= 2) due to redistribution of stresses, the ex-
istence of crack (i = 3) and limit state (i = 4). 

In nonlinear analysis of structure at limit state the 
initial design diagram gradually takes the three 
intermediated forms and fifth at last: 1) � 2) �
3) � 4) � 5). The fifth last form is ideal failure 
model or design diagram of structure at limit 
state. It is necessary for realization of nonlinear 
analysis by AFEM [11].
Also, when AFEM is used for nonlinear analysis, 
all five forms of design diagram must have the 
identical characteristics, for example the same 
number of nodes points, view and number of fi-
nite elements (FE’s). It is necessary for the defi-
nition of stiffness matrixes of all forms of design 
diagram. 

3.3. Transformation of stiffness matrix 
The fulfillment of the condition (1) requires the 
definition of minimal value of internal resistance 
Plim. Usually this minimum corresponds to the 
minimum stiffness of structure due to negative 
influence of each i-th nonlinear property. For 
considered example i changes from 1 to n = 4.
The stiffness matrix is changed gradually from 
initial value K to its minimal value Kmin due to 
these defects: 

     K� K1� K2 � K3 � K4 = Kmin = Klim.    (4) 

 

Where K = stiffness matrix of structure without 

nonlinear properties (i = 0) under the load 

P = P1 = 0; 

K1 = stiffness matrix of structure with plastic 

property (i=1) under the load P1= 0<P<P2; 

K2 = stiffness matrix of structure with plastic 
property (i=1) and the partial unload (i=2) 
due to redistribution of stresses after crack-
ing under the load P = P2 = P3; 
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K3 = stiffness matrix of structure with plastic 
property (i = 1), the partial unload (i = 2) due
to redistribution of stresses and the cracking 
(i = 3) under the load P3<P<P4; 

K4 = stiffness matrix of structure with plastic 
property (i = 1), the partial unload (i = 2) due 
to redistribution of stresses, the existence of 
cracking (i = 3) and limit state (i = 4) under 
the load P = P4; 

Kmin = stiffness matrix of structure with n=4
nonlinear properties at moment of its mini-
mal internal resistance to external load 
P=P4=Pmax; 

Klim = stiffness matrix of structure at limit state 
under the load P=P4=Pmax=Plim, when its de-
sign diagram is ideal failure model. 

The condition (4) is the second for the formation 
of the main set of equations. All matrices K, K1,
K2, K3, K4 (Kmin, Klim) must have the equal di-
mensions and the same filling for computer real-
ization of analysis by AFEM. 

3.4. Required transformation of the set of al-
gebraic equations 
The main operation of analysis by FEM and 
AFEM is the solving of the set of equations: 

                            KnonlV = P . (5) 

Where P = matrix of external load;  
V = matrix of unknown node displacements;  
Knonl = stiffness matrix of structure with nonlin-

ear properties. This matrix is changed in accord-

ance with the degree of its influence. The stiff-

ness matrix Knonl is formed from coefficients of 

stiffness matrices of the separate finite elements 

(FE’s).  

The set of equations (5) solves one time in linear 
analysis because of matrix Knonl = K = const due 
to the absence of nonlinear properties. 
In nonlinear analysis this set of equation must be 

solved by iterative process because of Knonl ≠ K
≠ const. In this process matrix K turns into ma-

trix Knonl gradually. The transformation of the set 

of equation (5) is connected with difficulties in 

presence of several (n) of physical nonlinear 

properties due to its different causes. When n = 

4 this transformation must go under the condition 

(3) for right part and the condition (4) for the left 

one of the set of equations (5): 
Under the load P = P1 = 0 and i = 0 

                               KV = P .                 (6) 

Under the load P1  =  0 < P < P2 and i = 1: 

                          K1V = P.              (7) 

Under the load P = P2 = P3 and i = 2

                          K2V = P.              (8) 

Under the load P3 < P < P4 and i = 3

                          K3V = P .                (9) 

Under the load P = P4= Pmax = Plim and i = 4

                                K4V = P.              (10) 

Thus the initial form of the set equations (6) 
takes the requirement forms (7), (8), (9) and (10) 
gradually according to the value of load P. 
In limit state of structure (see (1)) the set of equa-
tions (10) must became 

                          KlimV = Plim .       (11) 

This description (11) corresponds to the next 
view of expression (1) 

                  Plim = Pmax .             (12) 

Method of Limit States guarantees the appear-
ance the equality (12) for formula (1) in one case 
from million ones (see s. 3.1). 

4. SET OF EQUATIONS AT AFEM

The Additional Finite Element Method (AFEM)
was suggested by author [1] as the variant of the 
Finite Element Method (FEM) for analysis of 
structures with several nonlinear properties at 
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limit states. It is numerical combination of the 
three effective methods of structural analysis: 
FEM, Method of Elastic Decisions and Limit 
State Method. It solves the problem of analysis 
of structure at limit states according to failure 
model, when nonlinear properties and defects 
are revealed due to increase of load. AFEM uses 
the additional finite elements and additional de-
sign diagrams for gradually transformation of 
main set of equations [12]. 

4.1. Transformation of design diagram by 
means of additional design diagrams 
The example is illustrated the action of addi-
tional design diagrams at the initial design dia-
gram for bending console in plane stress-state 
(see table 1). The initial design diagram consists 
of 8 triangular deep beam finite elements with 
liner properties (p.1 table 1). AFEM uses four 
additional design diagrams for transformation of 
the initial design diagram into ideal failure 
model of console (see s. 3.2): 
1)� The initial design diagram of structure with-

out nonlinear properties  (i = 0) under load P
= P1 = 0 transforms into the design diagram 
of structure with  first (i = 1) nonlinear prop-
erty (plasticity) by means of the first addi-
tional design diagram under load P1 = 0 < P
< P2 (p. 2 table 1); 

2)� The design diagram of structure with  one 
(i=1) nonlinear property (plasticity) under 
load P1 = 0 < P < P2 transforms into the de-
sign diagram of structure with two (i = 2) 
nonlinear properties (the plasticity (i = 1) and 
partial unload (i = 2) due to redistribution of 
stresses after cracking) by means of the sec-
ond additional design diagram under load P=
P2=P3 (p. 3 table 1); 

3)� The design diagram of structure with two 
(i=2) nonlinear properties (the plasticity 
(i=1) and the partial unload (i=2)) under load 
P=P2=P3 transforms into the design diagram 
of structure with three (i=3) nonlinear prop-
erties (the plasticity (i=1), the partial unload 
(i=2) and the cracking (i=3)) by means of 
the third additional design diagram  under 
load P3<P<P4 (p. 4 table 1); 

4)� The design diagram of structure with three 
(i=3) nonlinear properties (the plasticity 
(i=1), the partial (i=2) unload and the crack-
ing (i=3)) under load P3 < P < P4 transforms 
into the design diagram of structure with four 
nonlinear properties ((the plasticity (i=1), the 
partial (i=2) unload, the cracking (i=3) and 
limit state (i=4)) or ideal failure model by 
means of the fourth additional design dia-
gram under load P = P4= Pmax = Plim (p. 5 ta-
ble 1).

Every additional design diagram may be com-
pared with empty space imbedded in the initial 
design diagram. It is filled negative stiffness for 
taking into account of only one nonlinear prop-
erty. It consists of corresponding additional finite 
elements (AFE-s) (see s. 4.5). Additional design 
diagrams are basic for realization of nonlinear 
analysis at limit state due to fulfillment of condi-
tions (3) and (4). 

4.2. Transformation of initial stiffness matrix 
by means of stiffness matrices of additional 
design diagrams 
The condition (4) is realized due to using of stiff-
ness matrices of additional design diagrams. 
Under application of AFEM the next equation is 
correct at the moment of limit state of structure 
with four nonlinear properties:  

Klim= K+ΔK1+ ΔK2+ ΔK3 + ΔK4 . (13)

Where ΔK1, ΔK2, ΔK3, ΔK4 = stiffness matrices 
of the first, the second, the third and the fourth 
additional design diagrams consisting of addi-
tional finite elements (AFE’s) for taking into ac-
count the first, the second, the third and the 
fourth nonlinear property respectively.
The stiffness matrices of additional design dia-
grams are destined for fulfillment of condition 
(4) and may be defined according to next formu-
las (see s. 3.3): 

ΔK1 = K1 – K ,     (14)
ΔK2 = K2 – K1 ,       (15)

              ΔK3 = K3 – K2 ,      (16)
ΔK4 = K4 – K3. (17)
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The next way is used for the gradual transfor-
mation of the stiffness matrix K of initial design 
diagram of structure without nonlinear proper-
ties into stiffness matrix Klim = Kmin = K4 of ideal 
of failure model or design diagram of structure 
at limit state (see table 1): 
Under the load P1  =  0 < P < P2 and i = 1 

                            K1= K+ΔK1 .                  (18)

Under the load P = P2 = P3 and i = 2

K2 = K+ΔK1+ ΔK2. (19)

Under the load P3 < P < P4 and i = 3

             K3 = K+ΔK1+ ΔK2+ ΔK3. (20)

Under the load P = P4= Pmax = Plim and i = 4
K4  = K+ΔK1+ ΔK2+ ΔK3+ ΔK4 . (21)                          

The initial stiffness matrix K transforms gradu-
ally according to formulas (18) -– (21) by means 
of stiffness matrices of ΔK1, ΔK2, ΔK3, ΔK4. The 
main characteristics of matrices K, K1, K2, K3,
K4, ΔK1, ΔK2, ΔK3 and ΔK4 are: the same dimen-
sions; the same filling positions; the square; the 
symmetry; the linearity; the positivity of  matri-
ces K, K1, K2, K3, K4; the negativity of matrices 
ΔK1, ΔK2, ΔK3, ΔK4. These characteristics are 
necessary for application of matrix theory [13].
The fulfillment of the condition (4) demands 
these characteristics for mathematic realization. 
Thus steps (18) – (21) are developed on the base 
of Method Elastic Decisions when the nonlinear 
stiffness matrix is divided into linear and nonlin-
ear component [14].

4.3. Transformation of the set of algebraic 
equations 
AFEM suggests the using of additional design 
diagrams consisting of additional finite elements 
(AFE-s) (see s. 3.4 and s. 4.2). In this case the 
sets of equations (7) – (10) are formed according 
to the formulas (18) – (21) under conditions (3) 
and (4):
Under the load P1 < P < P2  and i = 1    

 

                          (K + ΔK1)V = P.              (22) 

 

Under the load P2 =P = P3 and i = 2 

 

              (K + ΔK1 + ΔK2)V = P .       (23) 

 

Under the load P3 < P < P4 and i = 3  
 

             (K + ΔK1 + ΔK2 +ΔK3)V = P .     (24)  

 

Under the load P = P4= Pmax = Plim and i = 4 

 

        (K + ΔK1 + ΔK2 +ΔK3 +ΔK4)V = P.    (25)  

 

Thus, the algebraic equations (22) – (25) are cor-

responded to requirement forms for numerical 

realization of analysis at limit state of structure 

with four nonlinear properties. 

Also the Method of Elastic Decision (Method of 

Additional loads) may used for the solving of 

these sets of equations. In this case the formulas 

(22)–(25) are formed according to the next way: 

Under the load P1 < P < P2  and i = 1:     

 

                         KV = P – ΔK1V.               (26) 

 

Under the load P2 =P = P3 and i = 2: 

 

              KV = P – ΔK1V – ΔK2V.        (27) 

 

Under P3 < P < P4 i = 3:  
 
             KV = P – ΔK1V – ΔK2 V –ΔK3V . (28)  

 

Under P = P4= Pmax = Plim and i = 4: 

 

    KV=P – ΔK1V – ΔK2V – ΔK3V – ΔK4V . (29)  
 
In relations (26)–(29) values (–ΔK1V), (–ΔK2V),
(–ΔK3V) and (–ΔK4V) determines the influence 
of the first, the second, the third and the fourth
nonlinear property respectively. For example the 
term (–�K1V) of the right-hand part of these 
equations is the additional load which with the 
main load P must be applied to linear structure to 



Anna V. Ermakova 

International Journal for Computational Civil and Structural Engineering20 

reach the displacements corresponding to its dis-
placements with the first nonlinear property un-
der the action of the only external load P.
In nonlinear analysis at limit state the sets of al-
gebraic equations (7) – (10) take the forms (22)
– (25) or (26) – (29). These forms provide the 
taking into account the influence of each of four 
nonlinear property of structure. This way allows 
the using of different theoretical data [15 – 17]
for nonlinear analysis [18 – 20] according to nor-
mative rules [8 – 10].  
Thus logic of AFEM is corresponded to FEM. 

4.4. Two ways for realization of iterative pro-
cess at AFEM 
Solution of the set of algebraic equations by it-
erative methods is the main step for nonlinear 
analysis of structures. AFEM suggests two ways 
for creation of this process [21]. Both ways are 
based on the decision of the set (6): 

                               V = K-1P              ,         (30) 

Where K-1= inverse stiffness matrix K. 
Operations connected with obtaining of this in-
verse matrix K-1are the most laborious. They 
take roughly three quarters of time for solving of 
the set of equations (1). In the first case iterative 
process is based on (21)–(25) and (30): 
Under the load P1 < P < P2  and i = 1     

 

                  V(k) = (K +ΔK1
(k-1))-1P .        (31) 

 
Under P2 = P = P3 and i = 2 

 

V(k) = (K +ΔK1
(k-1)

 + ΔK2
(k-1))-1P.     (32) 

 
Under P3 < P < P4 and i = 3  
 
 V(k) = (K +ΔK1

(k-1)
 + ΔK2

(k-1) +ΔK3
(k-1))-1P . (33)  

 
Under the load P = P4= Pmax = Plim and i = 4 

 

V(k)=(K+ΔK1
(k-1)+ΔK2

(k-1)+ΔK3
(k-1)+ΔK4

(k-1))-1P.      
(34)  

 

Where k, (k-1) = moving and previous iterations. This 

way is very laborious due to the obtaining of in-

verse matrix K-1 at everyone iteration. 

The second way for realization of iterative pro-
cess is based on the next views of the formulas 
(26) – (29):  
Under the load P1 < P < P2  and i = 1 

     

               KV(k) = P – ΔK1 
(k-1)V(k-1) .      (35) 

 

Under the load P2 = P = P3 and i = 2 

 

KV(k)= P – ΔK1
(k-1)V(k-1) – ΔK2

(k-1)V(k-1) .     (36) 

 

Under the load P3 < P < P4 and i = 3)  
 
KV(k)=P–ΔK1

(k-1)V(k-1)–ΔK2
(k-1)V(k-1)–ΔK3

(k-1)V(k-1).    

(37) 

 
Under the load P = P4= Pmax = Plim and i = 4 

 

KV(k)=P–ΔK1
(k-1)V(k-1)–ΔK2

(k-1)V(k-1)–ΔK3
(k-1)V(k-1) 

–ΔK4 
(k-1)V(k-1).  (38)  

 

The iterative process goes in accordance to for-

mulas (35) – (38) and (30): 

Under the load P1 < P < P2  and i = 1     

 

          V(k) = K-1(P – ΔK1 
(k-1)V(k-1)) .      (39) 

 

Under the P2 = P = P3 and i = 2: 

 

V(k)=  K-1(P–ΔK1 
(k-1)V(k-1)–ΔK2

(k-1)V(k-1)) .   (40) 

 

Under P3 < P < P4 and i = 3:  
 

V(k)=K-1(P–ΔK1
(k-1)V(k-1)–ΔK2

(k-1)V(k-1)– 

–ΔK3
(k-1)V(k-1)) .    (41) 

 

 Under the load P = P4= Pmax = Plim and i = 4 

 

V(k)=K-1(P–ΔK1
(k-1)V(k-1)–ΔK2

(k-1)V(k-1)– 

–ΔK3
(k-1)V(k-1) –ΔK4 

(k-1)V(k-1)) .    (42) 
 

The formulas (39) – (42) are the results of solu-

tion of the sets of equations (35) – (38). They al-

low the obtaining of inverse stiffness matrix K-
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1at the first iteration only when k = 1. This ad-

vantage is useful when set of equations is solved 

by means of Gauss Elimination. The second way 

for creation of iterative process of AFEM is less 

laborious then the first one. 

 

4.5. Additional finite elements 
The condition (4) requires the fulfillment analo-
gous one for every finite element. Due to nonlinear 
properties the its stiffness matrix gradually de-
creases from initial value Ke to its minimal value 
Ke,min. Usually this minimum corresponds to limit 
state, when the carrying capacity of finite element 
is lost and Ke,min=Ke,lim= 0 or close to 0. 
If the number of nonlinear properties i changes 
from 1 to n = 4, the next condition is correct 

Ke�Ke,1�Ke,2�Ke,3�Ke,4=Ke,min=Ke,lim=0
(43) 

Where Ke = stiffness matrix of finite element 

without nonlinear properties (i = 0); 

Ke,1 = stiffness matrix of finite element with plas-

tic property (i = 1); 

Ke,2 = stiffness matrix of finite element with 

plastic property (i = 1) and the partial un-

load (i = 2) due to redistribution of 

stresses after cracking; 

Ke,3 = stiffness matrix of finite element with 
plastic property (i = 1), the partial unload 
(i = 2) due to redistribution of stresses 
and the cracking (i = 3);

Ke,4 = stiffness matrix of finite element with 
plastic property (i = 1), the partial unload 
(i = 2) due to redistribution of stresses, 
the existence of cracking (i= 3) and limit 
state (i = n = 4); 

Ke,min = stiffness matrix of finite element with 
n=4 nonlinear properties at moment of 
its minimal value; 

Ke,lim = stiffness matrix of finite element at limit 
state, when its value is closed to 0. 

Four additional finite elements (AFE-s) are nec-
essary for fulfillment of the condition (43). They 
transform gradually the initial finite element 
with linear properties into the same finite ele-
ment with all nonlinear ones [1].  

The stiffness matrix �Ke,1 of the first additional 
finite element for taking into account the plastic 
property (i = 1) is equal

�Ke,1 = Ke,1 – Ke. (44)

The value �Ke,1 depends on the level of stress-
strain state under load P1 = 0<P< P4=Pmax=Plim.
These additional finite elements are formed the 
first additional design diagram for taking into ac-
count the plasticity in formulas (22) – (25). 
The stiffness matrix �Ke,2 of the second addi-
tional finite element for taking into account the
partial unload (i = 2) due to redistribution of 
stresses after cracking has next formula:

�Ke,2 = Ke,2 – Ke,1. (45)

The value �Ke,2 depends on the stress-strain state 
under load P=P2 when crack is appeared.
These additional finite elements are formed the 
second additional design diagram for taking into 
account the partial unload due to redistribution of 
stresses after cracking in formulas (23) – (25). 
The stiffness matrix �Ke,3 of the third additional 
finite element for taking into account the exist-
ence of cracking (i = 3) is defined

�Ke,3 = Ke,3 – Ke,2 . (46)

The value �Ke,3 depends on the level of stress-
strain state under load P3 < P < P4=Pmax=Plim.
These additional finite elements are consisted the 
third additional design diagram for taking into 
account the existence of cracking in formulas 
(24) and (25). 
The stiffness matrix �Ke,4 of the fourth addi-
tional finite element for taking into account the 
limit state (i = 4) is equal

�Ke,4 = Ke,4 – Ke,3. (47)

The value �Ke,4 depends on the level of limit 
stress-strain state under load P =P4=Pmax=Plim.
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If stiffness matrix of finite element at limit state 
Ke,4 = Ke,min = Ke,lim = 0 the stiffness matrix of its 
additional finite element �Ke,4 = – Ke,3.
These additional finite elements are consisted 
the fourth additional design diagram for taking 
into account the limit state in formula (25). 
The initial design diagram of bended console is 
transformed to its ideal failure model due to four 
additional finite elements (table 1). 

CONCLUSIONS

Considered example proves the possibility of re-
alization the nonlinear analysis at limit state for 
bended console according to its ideal failure 
model by means of Additional Finite Element 
Method (AFEM). 
Additional design diagrams and additional finite 
elements are used for gradual transformation of 
the stiffness matrix and the main set of equa-
tions.
Next conditions are fulfilled for this process:
1)� the correspondence to algorithmic logic of 

nonlinear analysis due to conservation of 
main mathematic characteristics of stiffness 
matrix of structure under the numerical var-
iation of its coefficients;

2)� the orientation at gradual achievement of cri-
terion of limit state before collapse;

3)� the guarantee the allowance for each of four 
nonlinear properties at stress-strain state;

4)� the creation of iterative process for solving 
of the main set of equations by two ways: 
usual manner and use the advantages of 
Method of Elastic Decisions. 
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