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OPTIMIZATION PROBLEMS OF MATHEMATICAL 
MODELLING OF A BUILDING AS A UNIFIED HEAT AND 

POWER SYSTEM 
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Abstract: The mathematical model of a building as a single heat energy system by the decomposition method is 
represented by three interconnected mathematical models: the first is a mathematical model of the energy 
interaction of a building’s shell with an outdoor climate; the second is a mathematical model of energy flows 
through the shell of a building; the third is a mathematical model of optimal control of energy consumption to 
ensure the required microclimate. Optimization problems for three mathematical models with objective functions 
are formulated. Methods for solving these problems are determined on the basis of the calculus of variations and 
the Pontryagin maximum principle. A method for assessing the skill of an architect and engineer in the design of 
a building as a single heat energy system is proposed. 
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Аннотация: Математическая модель здания как единой теплоэнергетической системы методом 
декомпозиции представлена тремя взаимосвязанными математическими моделями: первая –
математическая модель энергетического взаимодействия оболочки здания с наружным климатом; вторая 
– математическая модель энергетических потоков через оболочку здания; третья – математическая модель 
оптимального управления расходом энергии на обеспечения требуемого микроклимата. Сформулированы 
оптимизационные задачи для трех математических моделей с целевыми функциями. Определены методы 
решения этих задач на основе вариационного исчисления и принципа максимума Понтрягина. Предложен 
метод оценки мастерства архитектора и инженера при проектировании здания как единой 
теплоэнергетической системы.

Ключевые слова: здание как единая теплоэнергетическая система, математическая модель, 
оптимизация теплопотребления, наружный климат, оболочка здания, принцип максимума

Thermal engineering design of the building is 
based on the tasks of determining the consump-
tion of thermal energy required to maintain opti-
mal or permissible thermal conditions in the 
room. This problem can be considered as optimi-
zation, if we take as the objective function the 
minimization of the energy expenditure spent on 

ensuring the optimal or permissible thermal re-
gime, i.e. as finding a minimum of the following 
equation: 
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where Qн, Qx are the consumption of thermal en-
ergy for heating and cooling buildings, W; Сн, Сx
are the cost of a unit of heat and a unit of cold, 
rubles/W; (τ2 – τ1), (τ4 – τ3) are building heating 
and cooling periods, hours.
When minimizing energy costs, it is necessary to 
understand that these costs are part of the reduced 
costs related to the operational component of the 
reduced costs. The criterion for choosing one or 
another technical solution can be only a mini-
mum of the costs presented. 
At the same time, minimizing operating costs is 
a critical energy challenge. A typical situation is 
this: organizing heating or cooling of a building 
and considering the building as a single energy 
system, we get that the required energy consump-
tion will vary greatly depending on the shape of 
the building, the indicators of heat and sun pro-
tection, the type of heating or cooling system, etc. 
Each option has some advantages and some dis-
advantages, and, due to the complexity of the sit-
uation, it is not immediately obvious which of 
them is preferable finally and why. In order to 
clarify the situation and help the decision maker, 
a series of mass calculations is carried out, which 
can be replaced by the solution of optimization 
problems. 
The mathematical model of the building as a sin-
gle heat energy system was considered in detail 
in [1]. In accordance with the principles of sys-
tem analysis and decomposition, we will present 
the mathematical model of the building as a sin-
gle heat energy system with the following three 
mathematical models. 
The first is a mathematical model of the energy 
interaction of the building envelope with the di-
rected energy impact of the outdoor climate. The 
heat and power characteristics of an external cli-
mate acting on a building can be expressed by the 
following equations: 

в н

в н

(2) 

where Qt, Qv, QI  are energy exposure to outside 
air, wind and solar radiation; сρ is volumetric 
heat capacity of outdoor air, kJ / (m3·°С); V is 
building volume, m3; Fi is area of i-th outer sur-
face, m2; tв, tн are temperatures of the internal and 
external air, °C; m is air exchange rate, 1/hour; vi
is air speed, m/s; Ji is the intensity of the solar 
radiation incident on the surface of the i-th fence, 
W/m2;
The second mathematical model is a mathemati-
cal model that describes heat flows through the 
shell of a building. 
The third mathematical model is a mathematical 
model that describes the energy contained in the 
volume of a building. 
In accordance with the presentation of the math-
ematical model of the building as a single energy 
system and its presentation by three intercon-
nected mathematical models, we formulate the 
following three optimization problems. 
Here we dwell in more detail on the solution of 
the first optimization problem; the solution of the 
second and third optimization problems can be 
found in [1]. 
The first task of optimally taking into account the 
energy impact of the external climate on the 
building envelope can be formulated as follows: 
to determine the shape of the building envelope 
so that the positive impact of the outdoor climate 
on it can be maximized and its negative impact 
can be neutralized as much as possible. 
The objective function is to optimize the account-
ing for the heat and energy impact of the external 
climate in the heat balance of the building. 
Optimization of the shape of the building can be 
performed for various climatic periods of the 
year: for the coldest five-day period in order to 
reduce the estimated capacity of the heating sys-
tem; for the heating period in order to reduce en-
ergy costs for heating; for the hottest month in 
order to reduce the installation capacity of the air 
conditioning system; for the cooling period of the 
building in order to reduce energy costs for cool-
ing; for the accounting year in order to reduce en-
ergy costs for heating and cooling the building. 
There may be other climatic periods, depending 
on the problem being solved. 
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The obtained optimization problem, which re-
duces to finding the equation of the directrix and 
the height of a curved cylindrical surface, relates 
to isoparametric problems of the calculus of var-
iations [2, 3]. In accordance with the methodol-
ogy of isoparametric problems [2], we need to 
determine the extremum of a function that de-
scribes the heat balance of a building with a 
curved surface: 

′

′

where we have  

(4) 

Q is the amount of heat required to maintain a 
given room temperature, W; qEnc(φ), qW(φ)  are  
specific heat fluxes passing respectively through 
the external vertical glazed and glazed enclosing 
structures, calculated taking into account the di-
rected influence of solar radiation and wind (air 
filtration) in polar coordinates, W/m2; qroof, qg

roof
are specific heat fluxes, respectively, through the 

unglazed and glazed parts of the coating, calcu-
lated taking into account the effect of solar radi-
ation, W/m2; qfl is specific heat flow through the 
building envelope of the first floor, W/m2; РW is
glazing coefficient of the vertical building enve-
lope; Рroof is glazing coefficient; F0 is total floor 
area of the building, m2; Н is floor height, m; Z is
the number of floors; r(φ) is radius (directrix 
equation), m; φ is angle.
We determine the extremum of function (3) from 
the equation: 

Here F0, Н, q1(φ), q are given values; r(φ), Z are 
unknown variables that need to be determined.
In order to determine the necessary initial condi-
tion in the isoparametric problem by finding the 
extremum of the function from the equation, we 
present an additional function [2]: 

where we have 

′

(7) 

λ is some constant to be defined.
For the additional function (6), we write the Eu-
ler equation for the variable r(φ):

′

and differential equation (6) through Z: 
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As a result, we get the system of equations: 

′

′′ ′ ′ ′′
′

′

′

(11) 

Therefore, to determine r (φ), Z, and λ, we have 
equations (10) and (11) and the isoparametric 
condition (5), and to determine the unknown var-
iables C1 and C2 in the general solution of the Eu-
ler equation, we have boundary conditions:

r(0) = r(2π), r’(0) = r’(2π) 

Let us take a special case of solving the optimi-
zation problem for q1(φ) = const. Then 

r(φ) = const, r’(φ) = 0.

Equation (10) will be as follows: 

ZHq1 + (q22λZ)r = 0. (12) 

Equations (5) and (11) lead to

F0 = πZr2; Hq1r + λr2 = 0. (13) 

The solution of system (12) and (13) gives 

Now we pass to the second optimization prob-
lem. Note that the second, as well as the third op-
timization task, can have different objective 
functions depending on the goal set by the re-
searcher - architect or engineer. 

The peculiarity of the second optimization prob-
lem of energy flows through the building enve-
lope is due to the fact that heat transfer in winter 
is determined by the stationary mode, and in the 
summer there is a significantly unsteady mode. 
One of our frequent decisions showed [4] that in 
this case the fencing material should have a min-
imum coefficient of thermal conductivity and the 
highest possible value of volumetric heat capac-
ity. 
It seems that to some extent this condition is sat-
isfied by wood structures. However, here there is 
an interesting technical problem of creating a ma-
terial with low thermal conductivity and high 
volumetric heat capacity. An optimization prob-
lem can also be posed on the optimal arrange-
ment of layers in a multilayer structure. 
You can also consider the optimization problem 
associated with the fact that in summer in a warm 
climate the temperature of the indoor air due to 
heat from solar radiation through the windows 
exceeds the temperature of the outdoor air. In this 
case, the heat flux is directed from the room and 
the excess of the role of thermal protection of the 
fence will increase the temperature of the indoor 
air. Here, the goal function is to minimize the 
temperature difference between the outdoor and 
indoor air and consists in finding such a ratio be-
tween the heat and sun protection of the building 
envelope and the air exchange rate at which the 
contribution of solar radiation to the room’s ther-
mal regime is minimized. It was found that the 
value of the heat transfer resistance of the exter-
nal building envelope does not affect the thermal 
regime of the room, if the following equation is 
fulfilled: 

,
(14) 

where R0,W, FW, ρw, αout,w are the resistance to 
heat transfer of the window, m2�BС/W; window 
area, m2; the absorption coefficient of solar radi-
ation and the heat transfer coefficient of the outer 
surface of the window, W/(m2�BС); ρwl, αout,wl are 
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the absorption coefficient of solar radiation and 
the heat-transfer coefficient of the outer surface 
of the wall, W/(m2�BС); CV, λV, VR are the volu-
metric heat capacity of the air (kJ / (m3�BС)), air 
exchange rate (h-1), volume of the room (m3); β
is the coefficient of penetration of solar radiation 
through a permeable fence, taking into account 
its shadowing by a sun-protection device; J is the 
average daily value of the intensity of the total 
solar radiation, W/m2.
Equation (14) corresponds to such an energy 
state at which the temperature inside the room is 
equal to the conditional temperature of the out-
door air. And consequently, the building enve-
lope separates two media with the same temper-
ature conditions. 
We now formulate the third optimization prob-
lem as follows: find such a control of energy con-
sumption Q(t) when heating or cooling a room 
from temperature t0 to temperature t1 and such a 
solution to the system of equations of thermal 
balance of a given building’s building as a single 
energy system that satisfies the initial conditions 
for τ = 0 T = t0, for which the functional takes the 
smallest possible value.

The solution to this problem was obtained by the 
method of Academician Pontryagin as a problem 
of optimal control and presented in [3, 5]. Based 
on the results of solving the problem of optimal 
control of the energy expenditure spent on heat-
ing or cooling the room, it was concluded: the 
minimization of energy costs for heating or cool-
ing the premises is achieved if the transition time 
from the initial room temperature to the desired 
end the room temperature is minimal (the princi-
ple of “maximum performance”).
As a result of solving optimization problems, it 
becomes possible to evaluate the skill of the ar-
chitect and engineer when designing a building 
as a single heat and power system using the fol-
lowing equation (for example, when choosing the 
shape and orientation of a building envelope): 

η = Qeff / Qacc,

where Qeff is building energy consumption with 
optimal consideration of the directed action of 
the outdoor climate; Qacc is energy consumption 
of the building accepted for design. 
If, for example, the value of η is 0.5, then we can 
assume that the architect did not choose the shape 
of the building well enough and did not use the 
positive directional energy impact of the outdoor 
climate. In the other case, if, for example, η=0.8, 
then things are much better. 
A similar estimate is possible for the second and 
third optimization problems. 
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