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A.A. ILYUSHIN'S FINAL RELATION, ALTERNATIVE
EQUIVALENT RELATIONS AND VERSIONS OF ITS
APPROXIMATION IN PROBLEMS OF PLASTIC
DEFORMATION OF PLATES AND SHELLS
PART 1: A.A. ILYUSHIN'S FINAL RELATION
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Abstract: The finite relationship between the forces and moments of plates and shells in the parametric form of
the theory of small elastoplastic deformations is investigated of A.A. Ilyushin, to determine the load-bearing ca-
pacity of structures from a material without hardening. A geometric image of the exact yield surface in the space
of generalized stresses is obtained. In the first part of the article the conclusion of the final relation is given. In
the second and third parts, by introducing other parameters, alternative equivalent dependences of the final rela-
tionship have been developed and variants of its approximation for application in computational practice are
considered. In the fourth part, additional properties of the final relationship are considered, the possibility and
necessity of its use in problems of plastic deformation of plates and shells is shown.
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KOHEYHOE COOTHOHIEHHUE A.A. WIBIOIINHA,
AJIBTEPHATHUBHBIE DKBUBAJIEHTHBIE 3ABUCUMOCTH
N BAPUAHTDBI EI'O AIIITPOKCUMALIUUA B 3ATAYAX
HJIACTUYECKOI'O JE®@OPMUPOBAHUA ITVTACTUH
N OBOJIOYEK
YACTbD 1: KOHEYHOE COOTHOIEHHUE
A.A. WIIBIOININHA

A.B. Cmapos, C.IO. Karawnuxoe

Bouarorpaackuil rocyjapcTBEHHbIN TEXHUUECKUI YHUBEPCUTET, I'. Bonrorpan, POCCUSA

AHHoOTanus: BrIMomHEHO McclenoBaHWE KOHEYHOTO COOTHONICHHS MEXAY CHIIAMH U MOMCHTaMH ITUIACTHH U
000JI0YCK B MAapaMETPUICCKOM BHIC TCOPHH MAaJBIX YIpyrolacTuieckux nedopmarmii A.A. WisrommHa, s
ompejieNieHus] Hecylel CocOOHOCTH KOHCTPYKIMKA M3 MaTepuana 0e3 ynpouHeHus. [lomydeH reomeTpuieckuit
00pa3 TOYHOW TMOBEPXHOCTH TEKYyYeCTH B MPOCTPAHCTBE 0OOOIIEHHBIX HANpPsHKCHWN. B mepBoil 4actu ctathu
MIPUBOJUTCS BBIBOJ KOHEYHOI'O COOTHONICHMS. BO BTOpOH M TpeTheil 4yacTsX BBEJCHHEM JPYTHX MapaMeTpoB
paspaboTaHbl albTepHATUBHBIC YKBUBAJICHTHBIC 3aBUCIMOCTH KOHEYHOT'O COOTHOIIEHUS U PACCMOTPEHBI BapH-
AHTBI €T0 aNMPOKCUMAIINH ISl TPUMEHEHHsI B PaCUETHOW MpakTHKe. B 4eTBepToil yacTH pacCMOTPEHBI JTOTOJ-
HUTEJIbHBIE CBOMICTBA KOHEYHOT'O COOTHOIIIEHUS, TOKa3aHa BO3MOYKHOCTh M HEOOXOIMMOCTh €TI0 MCIIOIb30BAHHMSI
B 3aj]a4aX IUIACTHYECKOTO e OpMUPOBAHNUS TIIACTHH M 000JIOUCK.

KiaroueBbie ciioBa: TCOPUs INIACTUIHOCTH, IIIACTUYCCKOC He(l)OpMI/IPOBaHI/IG IIAaCTHUH U O60J'IO‘I€K, MMOBECPXHOCTDH
TCKYYCCTH, YCIOBUA INTACTUIHOCTU

106



A.A. Ilyushin’s Final Relation, Alternative Equivalent Relations and Versions of Uts Approximation in Problems of
Plastic Deformation of Plates and Shells. Part 1: A.A. Ilyushin’s Final Relation

INTRODUCTION

Theory of small elastoplastic deformations II-
yushin was created in connection with the prob-
lem of the strength of the projectile while mov-
ing in the barrel of the gun. All calculations
were carried out by the methods of the theory of
elasticity, although a small residual plastic de-
formation was allowed by normative docu-
ments. Together with theorems on simple load-
ing, unloading, and the method of elastic solu-
tions, the theory of A.A. Ilyushin was a power-
ful apparatus for investigating the strength, de-
formability and stability of structural elements,
structures and machine parts beyond the elastic
limit. [1-8]

The theory of elastoplastic deformations of
plates and shells is presented by A.A. Ilyushin
in [9-14], where on the basis of the methods of
the theory of plasticity a finite relationship be-
tween forces and moments was obtained to de-
termine the load-bearing capacity of structures
from a material without hardening and the limit-
ing state is characterized by the propagation of
fluidity throughout the volume.

Since the equations of the theory of plates and
shells are formulated in generalized forces and
generalized displacements, the conditions of
strength and plasticity must also be represented
in generalized forces. The transformation of the
condition of strength and plasticity from the
stress space into the space of generalized stress-
es is one of the most important and complex
problems of the theory of limiting equilibrium
of plates and shells [15-16].

The parametric equation of the limiting hyper-
surface in generalized stresses for thin plates
and shells on the basis of the Mizes condition of
plasticity and the relations of the theory of small
elastoplastic deformations was first obtained by
A.A. llyushin [9,13]. The traditional Kirchhoff-
Love hypotheses and the incompressibility of
the material are used. Received A.A. Ilyushin’s
relations are not expressed in explicit form and
are complex for solving practical problems. The
geometrical image of the exact yield surface in
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the literature is absent.

Similar relations with the introduction of other
parameters were obtained in the works of V.V.
Rozhdestvensky [17], G.S. Shapiro [18], P.G.
Hodge [19-22], D.C. Drucker, H.G. Hopkins
[23], D.C. Drucker [24], D.C. Drucker, R.T.
Shield [25], E.T. Onat [26,28], E.T. Onat, W.
Prager [27] and other authors. Detailed reviews
of literature on this topic can be found in [15-
16], as well as in the works of N. Jones [29-30]
and Yu.V. Nemirovsky, TP Romanova [31].

In the works of M.I. Erhov [32-33], on the basis
of the two-layer cross section model and the
flow conditions of R. Mizes, a finite relationship
between the internal forces and the moments of
ideally plastic plates and shells is obtained on
the assumption that the strain intensity within
the layer is constant in the plastic region. Here
is a schematic model of the exact yield surface
and the proposed version of its approximation.
A similar model of the approximation of the
cross-section of a homogeneous shell by a two-
layered cross section was used by V.I. Rosen-
blum [34-37], Yu.N. Rabotnov [38]. This ap-
proach and its various variants were used by
other authors.

If the shell material is ideally plastic and satis-
fies to a condition of fluidity of Mizes, for a
plastic condition &, =c, =const. In this case in

purely plastic areas of a shell the right parts of
determining relations for the generalised pres-
sure will be uniform functions of a zero order
concerning six parametres €;, ;.

From this necessity of existence of a final rela-
tion which plays a role of a condition of fluidity
follows and connects values of efforts and the
moments in purely plastic areas of a shell
[9,39]. Owing to noted property of uniformity of
the equations in purely plastic areas €,, ¥, it 1S

possible to replace deformation components
€,, ¥, in the corresponding speeds €., ¥;.

The definition of the ultimate load reduces to
the construction of internal stress fields, mo-
ments, displacements, and velocities of dis-
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placements of the middle surface that satisty
equilibrium equations in the plastic regions, the
final relationship, the dependencies between the
velocities of displacements of the middle sur-
face and the deformation rates that determine
the relations for generalized stresses. In rigid
regions, the velocities must vanish or corre-
spond with the rigid displacement with joints,
and the forces and moments must satisfy the
equilibrium conditions and do not contradict the
final relation. The specified static and kinematic
boundary conditions must also be satisfied [9,
39].

The final relation corresponding to the defining
equations [9] has a very complex structure and
is not explicitly expressed. For an approximate
analysis, it is approximated by a quadratic de-
pendence [9-10,32-37], which corresponds to
the particular case [9], while the bilinear form

1 1
B, =gy +&X, +581X2 +582X1 +&%, =0

1

N?

(N; =N, N, +N; +3N}, )+

For the axisymmetric problem, the following
approximations are also used.

1. A semilinear final relation [19, 32-37], which
corresponds to the linearization of the previous
relation

n+m? =1, n:max{ﬂ, ﬁ, u},
S NY NY
m=maX{M1| M2| MI_MZ|}
M|\ M| | M,

2. The final relationship with a limited interac-
tion of forces and moments [19, 32-37], which
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does not take into account the interaction of
membrane and bending force factors, and oth-
ers. The degree of approximation of these rela-
tions to the exact one [9] depends on the ratio

0< Pj( <P, -P,. Meanwhile, elementary analy-

sis shows that in the center of a flexible circular
plate or a slender axisymmetric shell is always

satisfied P2 =P, -P, #0.

In the works of V.I. Korolev [40] and P.M.
Ogibalov [41] deduces the derivation of the fi-
nite relation AA. Ilyushin and solve the problem
for the simplest complex stress state of shells at
P #0, B#0, P, =0.

The purpose of this article is to investigate the
final relationship of AA. Ilyushin, obtaining a
geometric image of the exact yield surface, al-
ternative dependencies and variants of its ap-
proximation.

In the first part of the paper, with some abbrevi-
ations, the derivation of the final relation pre-
sented in §24-26 [9] is given. In contrast to [9],
the designations of stresses, forces and shear
forces in the shell sections have been changed
G,6,,0, T, T., 7T

xy? zx 2 zy

Nl’ N2’ NIZ’ nl’ n2’ an’ Ql’ QZ’ the

numbering of formulas, tables, graphs and ref-
erences to formulas are completely preserved. In
the second and third parts, alternative equivalent
dependencies of the final relationship are devel-
oped and variants of its approximation are con-
sidered for application in computational prac-
tice. In the fourth part, additional properties of
the final relationship are considered, the possi-
bility and necessity of its use in problems of
plastic deformation of plates and shells is
shown.

while

1.1. The connection between internal forces,
moments and deformations of the shell on the
basis of the theory of small elastoplastic de-
formations

Intensity of deformations, according to (4.7):
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2 2
3 _ﬁ\/g—zngﬁz P,
F, =812 +8182+8§+8122, P, :X12+X1X2+X§+X122’

1 1
I)sx =& TEX, +581X2 +582X1 +&1 X2

(4.19)
The stresses according to (4.2):
g - | o
x Gx _Ecy _e_i(gl _ZXI)’
1 c,
Syzcy—zcx =—L(g,—2x,), (4.20)
ei
20,
Sxy = Txy = 3€ (812 _ZXIZ)’

i

And o, there is a certain function e,, the volt-

age t_ t_ o_ is small in comparison with the

w, Uz, O
main ones. If the shell is thin enough and the
ratio of its thickness to the characteristic radius
of curvature can be neglected, we obtain the fol-
lowing five expressions for the forces:

h h h
2 2 2
N =|odz, Ny=|o,dz, N,= |1, dz,
1 _[l 2 J;l y 12 ,[l y
2 2 2
h h
2 2
O = J. 1,.dz, O, = I T,,dz
h h
2 2
(4.21)

The shearing forces O,, O,, despite the small

T_ , are not equal to zero, and are

zx? zy 2

stresses T

determined from the equilibrium equations.
Similarly, one can write formulas for bending
and twisting moments
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h

2
c.zdz, M, = Icyzdz, M,=\r,zdz.
h

Xy

e VS
s LA

M, =

N | =

N =

2

(4.22)

For simplification of calculations instead of
forces N,, N,, N,, it is convenient to enter

their linear combinations

h h
2 2
S =N —Ln, - [ 8.z, s, =N, Ly - [ 5,dz,
h h
2 2
h
2 2
350 =N = [ 8,dz,
h
2
(4.23)

And instead of the moments M,, M,, M,, of

their combination

h
! p
Hy=M,~=M, = [ Sz,
2 h
-
h
) P
Hy =M, =M, = jh S, zdz, (4.24)
-
h
5 p
SHi =M = [ 8,2
h
-
From (4.23) and (4.20) we have:
109



h h
2 2
S, =¢, j 2dz—x1 I szz,
h e: h el
2 2
h h
io PR
S, =¢, I —Ldz—y, I —L zdz, (4.23"
h ez h ei
2 2
h I
2 2
c c
S =& I —dz -y, I —* zdz,
n € n €
2 2
And from (4.24) we have:
h h
2 G 2 G
H, =81J‘—’zdz—xlj.—’zzdz,
n € h €
2 2
h h
io io
H,=¢, I —Lzdz -, I —L7°dz, (4.24"
h ez h ei
2 2
h h
25 i
H,=¢, j —zdz =, _[ —+z'dz.
n € h €
2 2

In formulas (4.23") and (4.24'), there are three
types of integrals that are common in shell
thickness:

&dz, J, =

1

G, »
—Lz°dz.

0 |

()

o |
0 |

J, = zdz, J, =

i
e.

1

(4.25)

i
ei

N | =
[SEE
(S

Through them the forces and moments are ex-
pressed:
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3 1 1
ZNI :(81 +582JJ1 _LXA +EX2JJ29

3
R

3
Ele =&,J, Ay

3 1 1
ZMI :(81 +582JJ2 _[Xl +§X2JJ3’

3 1 1
—M2 :(82 +58]j.]2 _(XZ +EX]JJ3,(427)

1 1
2(82 +58]jJ1 _(Xz +EX1]J2,(4.26)

4

3
EMIZ =&,J, A5

Since in (4.25) o, there is a given function of
e,, and its form for each material becomes

known in particular problems, it is natural to get
rid of integration with respect to z and proceed
from (4.19) to integrate over e, .

Multiplying J, by P, J, by =2F,, J; byJ,
P, and by adding the results, we get:

JP—-2J,P +J,P =" [cedz.  (4.28)

AW
o [

SRS

Differentiating (4.19) with respect to z, we
find:

%eidei = (pr - £, )dz. (4.29)

Multiply no J; by —2F, and J, on P, and add

the results, then we get:

~J\B, +J,P, = %J.Gidei. (4.30)

We find the expression z° by e,, for this it is
necessary to solve the quadratic equation (4.19)

International Journal for Computational Civil and Structural Engineering
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z°P —2zP_+P :ge?,
% ey € 4 i

Which root which is not contradicting a relation
(4.29), is

_P, NE) 4PP—P,

e

(4.31)

And it is always necessary to take a positive
value of the square root. Differentiating (4.31),
we obtain:

B e, de, -signde, . (4.32)
2J_ 4PP e
B

The value sign zP, —F,

ey

according to (4.29),

. . . de, .
coincides with a sign e and as in intervals
yA

interesting us dz always it is positive at change
z

h
from ——to +—
2 2
integration on de, should be executed so that
de, too increased, i.e. it is necessary to inte-
grate on de, -signde, .

Let's consider values of intensity of defor-
mations in three points on an axis z :

by (4.33)
z=+— =L (4.
P

, Z=2y, Z,

Let's designate them accordingly:
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sign (28, - 1, ),

e, = \/_\/P +hF,, + P, (Z:_Ej’
2 et
2 b

e == \[B P+ P,
lozﬁﬁm (Z:ZO)'

f

(4.34)

Apparently from (4.29), the point z=z, is a

minimum point e,. Hence, inequalities always

take place

e,=>e,.

e e, e,

05 (4.34")
We shall say that the deformations of the
stretching and the shift of the middle surface
€, &, €, are commensurable or small in com-

parison with deformations of the bending of the
shell

h h

X1 iEXza iEXn

[+
N |

or that the latter are dominant if the point z,
does not exceed the thickness of the shell

E,
L <2 (4.35)

Deformations of the middle surface will be
called large or dominant as compared with de-
formation of the bend if the point is located out-
side the thickness of the shell, that is, if one of
the inequalities holds

(4.36)

=

In case of commensurable tensile deformations
and a bending, the integral from any positive
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value R on a thickness of a shell is necessary
for calculating under the formula:

Rdz

e—e

1

[l % T

N\&'—.N‘:‘

o

(4.35"

In case of incommensurable or large tensile de-
formations such integral should be calculated
under the formula:

h
_h 2\/]73(« €1 eiz _eiZ() |
2
(4.36")

We introduce the notation of the principal quan-
tities in the theory of shells:

A=4, B=B, C=C, (_ﬁgzosﬁj,
, (4.37)
A=A, B=B,C=C, (|Z°|>§j’

Where the values 4,, B,, C, refer to the case

of the dominant deformation of the bending and
are equal to:

J.Gde +J0de —che

c,de, c,de,

JA\/e —e I\/e —e
_ 2 2 2 2

C, = J‘Gi«/ei —eiodei+jci e’ —e;,de
%io €io

(4.37)

And 4,, B,, C, concern to a case of a dominat-
ing stretching of a median surface and are equal:
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A, =4 = che B = st1gn ),
C = T G,\¢ —ede,sign(e, e, ).

(4.37")

J, Jy, Jy (423", (4.24), (4.26) and (4.27), it
is possible to express the integrals J,, J,, J,

entering in the formulas through the basic val-
ues A, B, C depending on the basic quadratic

forms P, P P

., » according to formulas (4.37).
For this purpose we notice that the integral J,

on the basis of formulas (4.25) and (4.35")-
(4.36") is directly expressed through function B
then from (4.30) it is found J, through 4 and

B, after from (4.28) is received J,
A, B, C. Thus we find following formulas:

through

J3 3R, L3

Jy=——B, J,=—LB+—4,
2P? 2P? 5 438)
. :
J3:3\/-:_’ IS"B 2};’; A
81:;5 szz x

Values 4, B, C need to attribute an index «0»

and to calculate them under formulas (4.37') if
bending strain dominates or to attribute an index
«1» and to calculate according to (4.37 ") if the
stretching-compression of a middle surface
dominates.

The formula (4.32) and all subsequent calcula-
tions lose their meaning when the momentless
state is stressful, when the quantities e, and o,

are constant in thickness. In this case

2
B=F,=0.¢="7|P.

(4.39)
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A.A. Ilyushin’s Final Relation, Alternative Equivalent Relations and Versions of Uts Approximation in Problems of
Plastic Deformation of Plates and Shells. Part 1: A.A. Ilyushin’s Final Relation

And the integrals J,, J,, J,can be calculated
directly. From the formulas (4.25) we have:

(4.40)

is possible only at
Xi =X =% =0

all bending moments are equal to zero.

The relations (4.23"), (4.24") or (4.26), (4.27)
give the expressions for the forces and moments
acting on the shell element through three quad-
ratic forms P, P, P, :

2 2, .2 2 2, .2
F =g +eg,+e,+€,, P =0+ +%2+ Xizs

1 1
P, =& +&%, +551X2 +582X1 TEpXn

(4.43)

And six components of deformations and distor-
tions €, €,, €,, A;» A2» X, hence through

the three components of the displacement vector
of the point of the middle surface, since defor-
mations and curvatures have differential expres-
sions through u, v, w.

We show that all deformations and curvatures
can be expressed in terms of forces and mo-
ments. To do this, we find the expressions for
the quadratic forms (4.43) in terms of analogous
quadratic forms of forces and moments. Accord-
ing to the expressions S, H, through 7, M

(4.23)-(4.24) we have the identities:
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P, =S+5,8,+8>+3S% =
3 2 2 2
=2(N?=N,N, +N?+3N2),
4( 1 14V2 2 12)

P,=H!+H H,+H,+3H}, =

3
:Z(Mf—M1M2+M22+3M122),

P, =S H +S,H, +%S1H2 +%SZH1 +
+38,H,, =
=§ N, M, +N,M, —%NI M, —%NZMl + .
4 +3N,,M,,
(4.44)

We form the quadratic forms F;, P,, P, ac-
cording to relations (4.23") and (4.24"), replacing

the integrals entering them by the notation
(4.25) by J,, J,, J;.
From the group of equations (4.23") we have:

P, =J{R -2J,J,P, +J;P, (4.45")

Similarly, from the group of equations (4.24")
we find:

B, =J;P.—2J,J,F +J;P, (4.45")

Constructing from both groups of equations
(4.23"), (4.24") a bilinear form £, and collect-
ing the coefficients of the products J,, J,
andJ,, J,, we obtain:

Py =J,J,P.~(J,J, +J1 )P, +J,J,P,.(4.45")

As the left parts of relation (4.45) are known
functions (4.44) forces and the moments, and

right depend only from P, P, F, as J,, J,, J;

)
are expressed under formulas (4.38), (4.37),
(4.34) relation (4.45) represent three algebraic
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equations from which it is possible to express
forms B, P,, P, through P, P, Py, :

Ps:fl(Rw Py, RS‘H)’ szfz(Pw Py, RSH)’

ng :fs(B?a Py, PSH)
(4.46)

Actually it can be executed after the particular
characteristic of a material of a shell is given,

i.e. the function kind is set o, = ®(e,).
Assuming that expressions (4.46) are found, we
can find expressions of deformations g,y
through forces 7, M or S, H . For this purpose
it is necessary to substitute (4.46) in (4.38), to
express J,, J,, J; through P, P,, P, and to
decide the equations (4.23"), (4.24") rather ¢, .
Thus, we receive definitive formulas:

€ :i(S1J3 _Hl']z)o X :i(SlJZ —-H,J, )a
€, :i(S2J3 _Hsz)a X2 :i(Ssz —H,J, )’

€ :i(S12J3 _le']z)a X2 :i(Squ —H,,J, )a
A=(J,J,=J3).
(4.47)

1.2. The final relationship between forces and
moments and the formulation of the problem
of the load-carrying capacity of shells

If intensity of deformations e, (4.19) any lay-
ers of a shell is great enough in comparison with
yield strength e, i.e.

%\/PS ~2zP +2°P =¢;>>e,  (4.56)

and its material does not possess hardening the
law o, = CD(ei)coincides with a condition of
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plasticity of Mizes:

G, =G, =const., (4.57)

Or can be approximately replaced by a condi-
tion of plasticity of Sen-Venan-Kulon:

S

(o)
= = const.

B

We show that in this case there exists a finite
(not differential) relation between the forces and
the moments. Using formulas (4.37), taking the
integral sign as a constant c,, we can calculate
the values of the functions 4, B, C.

In the case of dominant bending deformations,
the formulas (4.37") take the form:

(4.58)

max

4,=0, (ei2 _eil)’
2 2 2 2
(eil €1~ € )(ei2 T4/€1 € )
B,=0c In > ,
€o
(O 2 2 2 2 1,
— S

G = 7(91'1\/@11 ~Co +ei2'\/ei2 ~Co _EeiOBO’

(4.59"

and in case of dominating lengthening of a mid-
dle surface from formulas (4.37 ") it is found:

/ 2 2

(eiZ T4/€, — € )
/ 2 2

(eil €1~ € )

2 2
€2\€r ~ €0 ~€1\€1 ~ €

4 :Gs(eiZ _en)a B =0 |In

b

)

2
Cl_ s _e’_OBl
2 2

(4.59")

In both cases of value ¢,, e,, e, are expressed
by formulas (4.34). Considering the last as the
equations concerning three quadratic forms
P, P, , P, wecopy them in akind:

ey’
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S n

Foahby+— B =7¢ ¢

B—hby+ b=

i1
PP f)2 —_ 2f)
e.o 1

Solving them with respect to quadratic forms
leads to the following results:

hF,, zg(eizl ~¢y). P :g(ele +e"22)_%zp°"
£ -2 Ve
(4.60)

To determine the sign in the last formula, we
use inequalities (4.35) and (4.36). In the case of
the dominant bending strain from (4.35), we
have:

W W
2P <hR, 2P,

This inequality will take place, if in the formula
(4.60) for P, in brackets to take a sign (+) The

inequality (4.36) will take place, if for P, in
brackets to take a sign (—) .

Below, in all formulas with two signs, the upper
sign will refer to the case of the dominant bend-
ing of the shell, and the lower sign to the case of
the dominant extension-compression.

We introduce two basic parameters A and p:

(4.61)

These parameters satisfy the following condi-
tions:

0<iA>p<l, (4.61"

Since e,, - is the minimum value of the strain
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intensity at a given point of the shell. Then the
formulas (4.60) can be rewritten in the form:

2 2 2
36 2 p 23 an =3 (4 e aY),
s 16

P 1> Ty
(4.62)

L 4R

where A, and A designate following functions:

1-A°

A =NI-7 1] A= 463)

1

The kind of the formula (4.62) for P, becomes
clear if to take into consideration identity:

4% + A =1+x2+2u2¢2\/(1—u2)(x2 ).

Using the notation A, u and the established rule

for applying two-valued formulas, we can re-
write the expressions for the functions 4, B, C

(4.59) in the form:

A=0c.e,0(A, n), B=oy (A, n),

(4.64)
C= %eﬁ [ n) -1y (h p)],

Functions ¢, y also y are determined so:

1n1+«/1—u2 ih}?wr«/kz—uz
B H

(P=}\’_17 \V:

2

x=‘\/l—u2 ik\/Xz—uzl

(4.65)

Using formulas (4.62) and (4.64), we can be
convinced that quadratic forms P, P,, P,

according to formulas (4.45) and (4.38), do not
depend on value e, and are functions only par-

ametres A, L.
In this connection it is natural to introduce the
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notation for the characteristic value of forces
N,, N,, N,, and moments M,, M,, M,:

(4.66)

The quantities N, M,
momentless deformations of shells and prob-
lems of purely moment deformations play the
same role as the yield stress o, in the plane

in the problems of

stress problem. Therefore, it is useful to intro-
duce the notation for dimensionless forces and
moments:

N, N, Ny,
(S R
: : ’ (4.67)
M, M, M,
m=—, m,= > My, = 5
MS MS MS

and instead of quadratic forms (4.44), consider
quadratic forms of dimensionless forces and
moments:
2 2 2
Qn =ny =y + 1, + 30,
_ 2 2 2
Q,=m; —mm,+m, +3m,,
B 1 1
Qnm =nmm +n,m, _Enl m, _5n2ml +3”12m12-

(4.68)

The last are connected with 7, P,, P, obvi-
ous relation:

— 41)5 _ 4PH _ 41)SH
Qn 3N3 s Qm 3M3 > Qnm 3NSMS °
(4.69)

Performing rather cumbersome transformations
of the right-hand sides of equations (4.45),
namely squaring polynomials and multiplying,
and then collecting the coefficients for

v, 05, oy, YV, @Y, ¥, we obtain the follow-
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ing equations:

0, = Ailz(uz\v2 +97),
0,, = %(HZAWZ +AQ’ + oy + o),
1

0 _i uz(u2+A2)W2+(4u2+A2)(p2+
AT 20 Apy - 2uPyy + 280y +

(4.70"

Since the right-hand sides of equations (4.70"),
according to (4.63) and (4.65), are functions of
two parameters A, p, in a three-dimensional

space with variables O, O , O, they repre-
sent a surface

F(Q,, 0, 0,,)=0, (4.70)

and (4.70") is the parametric equation of this sur-
face. The relation between the quadratic forms
(4.68) obtained in this way is called the final
relation between the forces and moments acting
in the shells. The final relationship was obtained
from the Mizes hypothesis 6, =c, and there-

fore it is a generalization of the Mizes condition.
The final relation derived from the equations of
the theory of small elastic-plastic deformations
will have the same form, according to the theory
of flow the Sen-Venan- Mizes.

Existence of a final relation between forces N

and the moments M in case of ideal plasticity,
i.e. under condition of Mizes and at small elastic
deformations, follows and is direct from formu-
las (4.23") and (4.24") as thus they are uniform

zero  degree  concerning  six  values
€ €35 €55 A Xas Az -
The surface (4.70) represents a three-

dimensional image of the indicated surface of
the six-measurement space.

We pass to more in-depth study of a final rela-
tion (4.70"). We note three special cases of a fi-
nal relation.
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A.A. Ilyushin’s Final Relation, Alternative Equivalent Relations and Versions of Uts Approximation in Problems of
Plastic Deformation of Plates and Shells. Part 1: A.A. Ilyushin’s Final Relation

1. The momentless state of stress takes place at
X1 =%2 =%, =0, with P, =0 (4.68).

The final relation is obtained from (4.70") if we
assume that the deformations of the fibers along
the thickness of the shell are the same

€ =€, =€y, h=p=1
In formulas (4.63), (4.65), one should take the
lower sign and then uncover the uncertainties in
formulas (4.70"). Then we find, obviously, the
Mizes condition:

Qm = an = 0’ Qn :1’ (471')
Or in expanded form:
N} =N,N, + N; +3N} = N_. (4.71)

2. Purely moments the tension takes place in
the absence of lengthening of a middle surface.
The quadratic form

P =0,

that is why

P =0.

€%

As appears from the formula (4.19), intensity of
deformations e, is even function z and, accord-

ing to (4.34), we have

e

i1 =€

s €,=0, A=1, n=0.
In formulas (4.63), (4.65) it is necessary to take

the upper sign as from (4.33) it is had z, =0,
thus we receive

A =2, A=0, =0, ny =0, ¢ =2.

Volume 16, Issue 1, 2020

The final relation (4.70") becomes:

0,=90,=0, 0,=1 (4.72")
Or in expanded form:
M} =M M, +M; +3M =M. (4.72)

3. The elementary difficult tension of shells at

P #0, P,#0

takes place, if the bilinear form P, addresses

in zero:

1 1
Rsx =% (81 +582J+X2 (82 +§81J+X12812 =0.
(4.73)

It can take place in cases

1
a) %, #0, %, =%, =0, 81"'582:05

b) € #0, g,=¢,=0, xl+%x2:0

And many other things. From (4.60) it is thus
had ¢, =¢, > ¢,, A=1, n<1, ie. dominating
bending strain is available. We find:

A=¢=0, A =y=21-1°,
—21nlJr “I_HZ

V= E—
1)

and after simple transformations the final rela-
tion becomes:
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: 1+«/1—u2
Qn_ u b Qnm:()a

= 2ln2
b " (4.74)
2 .
0 - u’ 1n1+‘/1_“2— 1
SRR u J-w )

It gives a line of interception of a surface (4.70)
withaplane O =0.As O, O, are essentially
positive, all surface is disposed between planes
0,=0and 0, =0,

and a line (4.74) between positive directions of
axes Q,, O, ,1.e.in the first quadrant of a plane

Qnm :0

The point
0,=0, 0,=1

corresponding to a non-propulsive condition of
a shell, is received from (4.74) at u=1, and the

point
Qn = 0’ Qm = 1

corresponding purely moment to a condition of
a shell, is received at

p=0,as plnu=0 at p=0.

The curve Q,, O, can be constructed on the
points which coordinates are introduced in table
4 [9] (the expanded version of the table it is re-
sulted in 2 parts of the article). On Figure 53 [9]
coordinates (it is resulted in 2 parts of the arti-
cle) the curve (4.74) and a straight line is repre-
sented

0,+0,=1 (4.75)

which well enough approximates it. The maxi-
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mum deviation of a straight line makes about 9
%. The surface (4.70) is symmetric concerning a
plane

Qnm :O

Thus, it is enough to know about a surface
(4.70), only in the first octant of co-ordinate
system O, O, , O . It is possible to be con-

vinced that on a line A=1 in a value plane
(0, 0,) O,, O, have a maximum. If to use

Schwarz's inequality concerning quadratic
forms Q,, 0, O, 0. <0, -Q,, it is possi-
ble to conclude that the value O  on the module

also is limited.

Table 5 [9] (the expanded version of the table is
resulted in 2 parts of the article) gives coordi-
nates of some points of a surface on lines
A = const, and against each value A are given:
in the first line - Q, in the second - O, and in

the third-Q

nm *

The greatest values @, ~ will be, when
Schwarz's inequality is transformed into equali-
ty

and it is possible only when values » and m
are proportional:

Aol Mo (4.77)

mm, Iy,

Let's show that the hyperbolic paraboloid (4.77)
is crossed with a surface (4.70) on a line p=0.

From (4.65) at u=0 it s had:

Qo=A—1, x=1%1% py=0,

2
A =140, A=A
e

4.77")
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Introducing these values to the equations (4.70),
we receive:

2
0=

2¢
==2(A
A12’ Qnm Al3( (P+X)7 Qm

-
(4.78)

From here in case of a dominating stretching of
a shell at the lower sign in (4.77 ") it is had:

Qn = 1’ Qnm :Qm = 0’
Le. the line p=0 degenerates in a point.

In case of a dominating bending of a shell it is
received:

C(1=AY R NS (7%
Q”_(H?J $ 0" (1+2) Q’"_(1+x)“’
(4.79)

whence follows (4.77). Besides, from last equa-
tions it is found other relation

0,=(1-9,), (4.79)
Combining it with (4.77), we find:
0,.|=(1-0,)J0,. (4.80)

From here we conclude that the line u=0 de-
termining greatest on the module of value of the
bilinear form @, , represents a line of intercep-

tion of two parabolic cylinders from which the
cylinder (4.79) passes through points:

0,=19,=0,90,=0,
0,=0,0,=1 0,,=0,

Having forming, parallel to co-ordinate Q, , the

cylinder (4.80) has forming, parallel to co-
ordinate (, , and passes through the same
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4
——(A(p+x)2.

points. The line u=0 limiting a piece of a sur-
face (4.70) for dominating bending on which
values O, O, ., O, have mechanical sense, is

shown on fig. 54 (it is resulted in 2 parts of the
article).

The maximum value of ordinate O, on the
module will be at

4
s Qm_§

W | —

and

2
Q"mmax_}\/g'

The final relation between forces and the mo-
ments in case of a dominating bending matters

Qnm

2
max 3\/?'
can be approximately presented, as pair of the

planes passing through a line (4.75) and through
points

They have the equation:

g+%+%

Qnm -

(4.81)

As six components of deformations and bend-
ings are expressed by means of differential op-
erations on curvilinear coordinates through three
components of a displacement vector u, v, w
of a middle surface, they should satisfy to the
equations of compatibility of deformations.

Generally it is possible to express the compati-
bility equations through forces N and the mo-
ments M , but they will contain one more func-
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tion of coordinates e,. The differential equa-

tions of equilibrium and conditions of compati-
bility of deformations will be insufficiently for
definition of forces N,, N,, N,,, the moments

M,, M,, M, and unknown function e, .

The final relation (4.70") between forces and the
moments will be the missing equation also. In a
kind of that this relation not differential and
from it follows that forces and the moments and

their quadratic forms Q,, O, O, are limited

on value, at any external forces equilibrium of a
shell is impossible.

As lift capability of a shell is called limiting
value of external forces at which internal forces
N and the moments M satisfy to a final rela-
tion (4.70"), to the equilibrium equations, condi-
tions of compatibility of deformations and
boundary conditions.

In special cases thanks to a final relation the
problem about equilibrium becomes statically
definable and does not demand conditions of
compatibility of deformations. Then the ques-
tion on lift capability of a shell is decided rather
simply.

It more becomes simpler, if forces and the mo-
ments can be expressed through external forces
only by means of the equilibrium equations that
takes place, for example, in the non-propulsive
theory of shells, in that case the final relation
(4.70") determines lift capability.

Conditions of compatibility of deformations do
a problem about definition of lift capability ra-
ther difficult and consequently the approximate
methods of its solution have great value.

The energy method of the solution consists in
the following: are set by the suitable form of the
deformed surface of shells and, making expres-
sions of a variation of activity of internal forces
and activity of external forces on variations of
movings, compare them. Approximate limiting
value of external forces can be received, if ma-
terial hardening to put equal to zero, and defor-
mations beyond all bounds to increase or saving
constants yield strength
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c, =3Ge,,

G to aim to infinity, and e, - to zero.
On Figures 2.1-2.4 the fluidity surface

F(Q,. 0, 0,,)=0

in three-dimensional space with variables is pre-
sented O, O,, O, . A black line — section of a

surface a plane
0,,=0,

formulas (4.74), a red line - a line of a maxi-
mum |Q,,|(4.79)-4.80).

1.3. The relationship between internal forces,
moments and deformations of the shell on the
basis of flow theory for an ideal plastic mate-
rial

We show that the relations (4.26-4.27) remain
valid also in the framework of the flow theory.
Specific power dissipation of energy per unit
volume:

D=c ¢, +0,€,+0.€ +T ¥V, +T V., 7,7,
(1.3.1)

The plasticity condition of R. Mizes:

(1.3.2)

On the basis of the associate law of flow and a
postulate of Druker for true fields of speeds of
movings power of a dissipation of energy re-
ceives the maximum value, speeds of defor-
mations are determined from a condition of a
maximum of function
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MO
AAOOOANANN
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Figure 2.1. A fluidity surface F(Qn,
with variables

Qn9 m?o Qnm'

Figure 2.2. A fluidity surface F (Qn, 0., Qnm) =0in three-dimensional space
with variables Q,, O,, O, .
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0 in three-dimensional space

. O)

Figure 2.3. A fluidity surface F(Qn, 0

Qn9 Q > Qnm'

with variables
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Figure 2.4. A fluidity surface F
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DO=D-\F,
where D and F according to (1.3.1)-(1.3.2):

&, =6M(c, ~0,), &, =6h(c, ~0,),

X

. 1. 1.
¢, =6M(0.—0,), ST = 6AT,,., ST = 6AT .,
G,+G,+0,

1.
Eyzy =6AT,,, G, = 3

(1.3.3)

Excluding A by means of (1.3.2), we receive
relation of flow of Sen-Venan-Mizes-Levi-

Ishlinsky
. 26, .
G, —GC,= , ‘€, 0 —0)= 3 o
0—60220‘ , ,220‘ 1 -
: 3¢, TV 3e 27
26, 1 26, 1

T c— , T_. -— s
= 3¢, 27 ¥ 3e'l. 2 Vo
(1.3.4)

where intensity of speeds of deformations

5 (6, -¢,) +(&, —e.) +(5,~&.) +
e =—— .
g i)
(13.5)

For a flat tension and problems of a bending of
plates and shells it agree hypotheses of Kirhgof-
fa-Ljava

and a condition of an incompressibility of a ma-
terial

e, +€,+¢,=0:
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€, =8 =12, €, =8, = X,%, nyy =8, ~ %1%,
) 1.
o B2 _Eyw

)
z=0

(1.3.6)

zgy

The equations (1.3.4) and (1.3.5) taking into ac-
count (1.3.5) become

4o (. 1.
o, =—>|& +—¢ |=
36(' 2 yJ

1

4o |(. 1. S
= 3¢, 81"'582 - X1+§X2 zZ,

4o 1
— 3éi(y2xj (13.7)
4o |(. 1. o1
:¥ 82+§81 - Xz+2X1 z|,
20, 1. ) .

Ty = 3 'nyy:(glz_Xlzz)s

. 2 . L., 1,

ei:ﬁ 8x+8x8y+8y+zyxy. (1.3.8)

Longitudinal and shearing forces, bending and
twisting moments according to (4.21)-(4.22)

3 . 1. N
ZNI :(81 +582]J1 _[Xl +5X2JJ2’

3 ) 1. . 1.
—N, 2[82 +581jJ] _(Xz +5xljJ2,(1.3.9)

3 . ;
EMIZ =€,J, =

3
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where integrals J,, J,, J;:

()
—.—SdZ, Jz =
ei

J, =

0 |
—o [ >
0 |

c o, ,
—zdz, J,= | —z7dz,
é, é,

SRS

N

SR

(1.3.11)

and intensity of speeds of deformations:

2

el.:ﬁ\/Pa—2zPsx+Z P,

E2é12+é1é2+é§+é122, Q:X12+X1X2+X§+X1223

: S I, . .. ..

F;x =& % TEX +§81X2 +582X1 TE€1 %12
(1.3.12)

Thus the final relation remains fair and within
the limits of the flow theory if in all formulas of
sections 1.1-1.2  to replace deformations

€, &, €, and changes of curvature of a medi-
an surface y,, X,, X, With speeds of defor-
mations €,, €,, €, and speed of change of cur-

vature of a median surface %, %,, %;,. For the

hardening account in formulas it is necessary to
consider (1.3.11) yield strength as function of
intensity of deformations and intensity of speeds

of deformations o, =o,(e,,¢,).

CONCLUSIONS

The geometrical image of an exact surface of
fluidity in space of the generalised pressure
which A.A. Ilyushin in the works and in refer-
ences is absent that allows to execute its approx-
imation for the solution of practical problems is
received. It is shown that a final relation remain
fair and within the limits of the theory of flow
for ideally plastic material.
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