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FINITE ELEMENTS OF THE PLANE PROBLEM
OF THE THEORY OF ELASTICITY WITH DRILLING DEGREES
OF FREEDOM

Viktor S. Karpilovskyi
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Abstract: Twelve new finite elements with drilling degrees of freedom have been developed: triangular and
quadrangular elements based on a modified hypothesis about the value of approximating functions on the sides
of the element, which made it possible to avoid dimensional instability when all rotation angles are zero;
incompatible and compatible triangular and quadrangular elements which can have additional nodes on the sides.
Approximating functions satisfy the following condition: the value of the rotational degree of freedom of a node
is nonzero and equal to one only for one of them. Numerical examples illustrate estimated minimum orders of
convergence for displacements and stresses. All created elements retain the existing symmetry of the design
models.
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KOHEYHBIE 3JIEMEHTHI IIJIOCKOH 3AJIAUU TEOPUU
YIIPYT'OCTHU C BPAIHATEJBbHBIMU CTEHEHAMUAU
CBOBO/bI

B.C. Kapnunoeckuii
000 ScadGroup, r. Kues, YKPAUHA

AnHoTanust: [TocTpoeHO 1BEHaANaTh HOBBIX KOHEUHBIX 3JIEMEHTOB C BPAIIATEIbHBIMU CTEIICHSIMH CBOOOMBI:
TPEyroJIbHble W YeTBIPEXYroJbHBIE JJIEMEHTHl HA OCHOBE MOJIU(DUIMPOBAHHOW TUIOTE3bl O 3HAYCHUH
anMpoKCUMHUpYIOMMX (QYHKIMH Ha CTOpPOHAX »JJIEMEHTa, MO3BOJMBIICH HCKIIOYHTh TI'€OMETPUYECKYIO
HU3MEHSIEMOCTh IIPU PABEHCTBE HYJIO0 BCEX YIJIOB IIOBOPOTA; HECOBMECTHBIE U COBMECTHBIE TPEYTOJIBHBIE U
YEeTBIPEXYTOJbHBIE 3JIEMEHTHI, KOTOpPbIE MOTIYT HMETh JIONOJHUTENbHBIE Y3/l Ha CTOpoHax. llpu sToM
anMpoKCUMHUpYIOmKe (YHKIMH yJIOBICTBOPSIOT YCIOBHIO: 3HAYCHHE BpPAIIATEIbHOW CTENEHH CBOOOABI y3ia
TOJIBKO Ul OJJHOW U3 HUX OTJIMYHO OT HyJsA U paBHO eauHuie. IlpuBeaeHbl OLIEHKH MUHUMAIBHBIX MOPSAKOB
CXOOVMOCTH TI0 TIEPEMEIICHMSAM M HANpsDKEHHSM, HWUIIOCTPHPOBAHHBIC YHCICHHBIMH mpuMepaMu. Bce
TIOCTPOCHHBIE 3JIEMEHTHI COXPAHSIOT CYIIECTBYIONLYI0 CHMMETPHIO PACUETHBIX CXEM.

Ki1roueBble c10Ba: KOHEUHBIC 3JIEMEHTBI, BPAIIATENIbHBIC CTENICHN CBOOOIBI, IIIOCKAs 3a/1a1a,
TPEYTOJBHBIN IEMEHT, IPSIMOYTONBHBIIN 3IEMEHT, YEThIPEXYTOJIbHBINA 3JIEMEHT

1. INTRODUCTION where: Q — plate of thickness h: solid body with

a midplane XOY;
Let us consider the Lagrange functional of the

plane problem of the theory of elasticity: {u ( x)}

() =1 [ (Au) DAWQ - [ fTudy (1)

20 Q . :
— displacements of the point,

48



Finite Elements of the Plane Problem of the Theory of Elasticity with Drilling Degrees of Freedom

— area load.
The geometry operator 4 and the elasticity
matrix D (for an isotropic material) are:

9 4 9 1 v 0
AT =| O ay' D= Ezv 1 0 ()

0 & 9 I=vilo o 1zv

gy Ox 2

E — Young’s modulus, v— Poisson’s ratio.
Classic finite elements have two degrees of
freedom in each node: nodal displacements u;
vi, i=1,2,...,N, where N is the number of element
nodes. There are also more complex elements
with three degrees of freedom in a node, when
the following values can be taken into account
in addition to the displacement values:

e averaged rotation angle:

w; =, (x;), a)z:l(av ou

it BENC)

According to [1] the value @. characterizes the

rotation of an infinitesimal volume surrounding

a point. This value is invariant with respect to

orthogonal transformations of coordinate

systems.

e the paper [2] proposes and the papers [3-5 et
al.] develop the approach when the degrees
of freedom ¢ with the following hypotheses
are introduced at the nodes:

a) tangential displacement u. varies linearly on

the side ij;

b) normal displacement u, varies according to

the law:

Uy = (1= Oy + &y + 16~ O)E-E), (@)

x=xi+§(xj -X;), T, :(Xj _Xi)/aij

aj :|xj -X; |
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— side length,

e in order to avoid dimensional instability
which can occur when all degrees of
freedom are equal & according to the
hypothesis (4), we will assume that the
normal displacement u, varies according to
the law proposed in [6]:

u,=(1-%)n,, +§unj +

% e1-&)(6,-6,+£(6,+0)(1-28)) )
2 Joi J i

g=const.

Degrees of freedom &, created according to the
hypothesis (5) will be called quasi-rotational.
And for the function ¢i(x), corresponding to the
degree of freedom 6

0.5(l-¢), i=},
o, (g;(x)) X, = —0.25(1+¢), i#j, side (6)
‘ 0, 1 # J, diagonal

If we substitute £=—1 into (6), we obtain:

u, =(1=8u,,; +(1=S)u,, +
a;&(1=8)(0,5 - 6,(1-S))
and @, (¢;(x))1, =5/, ij=12,....N.

(7)

The direction of the normal vector to the side n;;
for (4) and (5) is selected in such a way so that
the system nj, 7;j and OZ is right-hand. The
compatibility of the respective system of
approximating functions is provided in both
cases.

However, (4) has the following disadvantages:
a) since the degrees of freedom & in (4) are
included only as a difference between the values
on the sides, it is necessary to create additional
constraints in order to avoid degeneracy of the
system or to introduce fictitious rigidities;

b) the calculated values & can be quite far from
the actual rotation angles.

Additional constraints are not required for (5).
As shown by numerical experiments we obtain
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good accuracy of the results for small values of
€, which almost coincides with that of the
results for displacements and stresses with the
elements according to the hypothesis (4). The
values of the “rotation angles” & are more
realistic.

For hypotheses (4) and (5):

a) moment loads are incorrect,

b) when creating elements with intermediate
nodes on the sides, it is almost impossible to
agree the physical meaning of & at the vertices
and on the sides. Therefore, § are either not
determined on the sides as in [7], or are
determined artificially as in [8].

The degrees of freedom & for (4) and (5) no
longer have an exact physical meaning. They
can hardly be interpreted as “rotation angles”.
However, the corresponding approximating
functions do not contradict the ideology of the
FEM as a projection-grid method and show
good results in shell analysis.

A large number of elements with rotational
degrees of freedom based on formulations other
than the Lagrange functional were created:
hybrid elements based on a mixed functional
[9], elements based on the Trefftz method [10],
on the expansion by displacement modes [11]
etc. [12,13,14 at al.]. The list of publications on
this subject is obviously not complete. The
elements considered in this paper are based on
the Lagrange functional.

As confirmed by numerical experiments, the
load can be given as moments: both nodal and
distributed over an element (for example, along
the side), for elements which have degrees of
freedom @. and ensure convergence of the
method. The reduced nodal moments are
calculated according to a standard formula:

M;=[M(x,y)o,(@;)d (8)
Q

When there are three degrees of freedom in a
node, finite elements have 3N unknowns, which
are arranged in the following order during the
generation of a stiffness matrix of the element:
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{u,,v,,@...,uy,vy,0y} and, accordingly,
{up V0 uy,Vy.0n ), 9)

which have a corresponding
approximating functions:

system of

{w(x,y), ®; = {Z’} i=1+N, j=1,2,3 } (10)

/8%

For example, the displacement field for the
degrees of freedom 4 is represented as:

N
u(x,y) =X (u;0,; + v, +0p;3) =
il

, 11
%{ui(oil,u + vi§0i2,u + 0i¢i3,u } ( )
i Uiy +Vi®iay + 0033,
Functions satisfying (5) will be represented as
follows:

@;3(x)=x;(x)+&¢,(x), =12,....N, (12)
where — y; functions obtained from hypothesis
(4), & — correction functions.

Let us introduce the notation L;; for operators of
degrees of freedom:

Li(@(x) =@,(x;), Li(e(x)=p,(x;),

L5 (p(x)) = o, (ep(x)) lxi , i=1,2,...,N. (13)

For i=1,2 — these are nodal displacements in the
respective directions.
The following condition has to be satisfied:

L@, ) =5", =1,2,...N,  (14)

j=1,2 for (4) and (5) and j=1,2,3 for w,.

Convergence criteria

Criteria for proving the convergence of both
compatible and incompatible finite elements for
problems with elliptic differential equilibrium
equations of arbitrary order were proposed in
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[15-17] and were used in [15] to create new
elements.

Let us formulate them for the plane problem of
the theory of elasticity. Equalities of the
completeness criterion of the minimum order
for the degrees of freedom u;, v, ®;:

N 1 N X

i=1

%%2()‘)5{?}, %yi¢i2(x) E{O},
i=1 i=1 Yy

g(yi(Pn(X) + ¢,~3(X)) = {g},
(15)

N
Zl(xi(”iz (X)— ;3 (X)) = {g}
Conditions (15) must be satisfied for the
approximations according to (4) and (5), if we
assume that ¢,= 0. Adding independent
approximations can only increase the order of
the completeness criterion.

When (15) is satisfied, it guarantees the
displacement of a finite element as a rigid body,
and for compatible approximations according to
[15,16], the method will converge in
displacements with the 2-nd order, and in
stresses with the 1-st order.

An incompatibility criterion is introduced for
incompatible approximating functions. For the
considered problem it lies in finding such a
compatible system of functions

{W;(xy), i=12,.N, j=1,23},(16)

that must guarantee the displacement of the
finite element as a rigid body (or the fulfillment
of all equalities (14), which are more strict
conditions) and satisfy the equations

o 2 0 of 0
[{ax oy o O (‘Pij_(pij)dQ: 0 (17)
Q0 0 o Oy 0

i=1,2,...,N, j=1,2.,3.
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When performing (15) and (17) for
incompatible approximations, according to
[15,16], the method will converge in

displacements with the 2-nd order, and in
stresses with the 1-st order. When analyzing
incompatible approximations for elements with
rotational degrees of freedom, approximations
of classic elements with two degrees of freedom
of a node can be used as a compatible system of
functions (16). The incompatibility criterion
enables to analyze the approximations for one
finite element unlike the piecewise testing
[18,19,20], which requires the analysis of all
possible stars of elements.
Functions for some nodes corresponding to the
rotational degrees of freedom w, will be
determined as follows for some elements:
@;3(%) = p; (%) + A,(x) (18)
where ui(x) and Aix) are compatible and
incompatible approximations, respectively.
It follows from the incompatibility criterion (17)
that A;(x) must satisfy the equations:

0 T

o 2 0
[l ox &dby o O
Q0 0 ox

0
A, (x)dQ =101 (19)
oy 0

The aim of the work is to build 12 new finite
elements with rotational degrees of freedom
using the above convergence criteria, ensuring
the convergence of the finite element method.

2. FINITE ELEMENTS

2.1. Finite Elements with Quasi-rotational
Degrees of Freedom

a) Three-node Element

Let us consider a triangle in the local coordinate
system shown in Figure la. After changing the
coordinates (20), it is transformed into a right
triangle with unit legs shown in Figure 1b.
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Figure 1. Triangular element.

§=l(x—§yj, 77=%y (20)

a

We will determine the degrees of freedom only
at the vertices of the triangle.
Normal’s to the element sides:

The following approximation of displacements
in the form (12) satisfies the conditions (5):

T

@1 (x)={v;, O}Tr e (x)={0,v;} @D

y=1-8-n, w,=¢, y3=n,i=1,23

_1-&-n)-cn _&l-en
L= ag+by" 2272 —all- &)+ by

_nlel=n)

X3_§{a§—b(l—n)} (22)
¢ :1—5—71{—c77(é+2f7—1)] }
1 2 |mac(-28—n)—bn(1-<—2n))
¢ zé{c’?(f—’?] }
27 2\bn(n—=<S)—a(H=&)f

_nlcH=n)

52 {af(é —n)—b(H—n)}' @)

H(E,n)=1-2E-2n+2&E% +2En+2n°

Functions (22) — approximations [2].

b) Four-node Isoparametric Element
Let us consider a convex quadrangular finite
element in the local coordinate system shown in
Figure 2a. After an isoparametric transformation
of the coordinate system (24), it is transformed
into a unit square shown in Figure 2b.

x=al(l-n)+b(l-En+dén,

y=c(l-Em+ecn 24)

Normals to the sides:

n _[0 ny, =1

oo Lfe=el 1 [
34 = g ld—=b” ™3 T b

We will determine the degrees of freedom only
at the vertices of the quadrangle.

The following approximation of displacements
in the form (12) satisfies the conditions (5):

<p,.1(x)={0 } (piz(x):{l/(/)i},ZI,Z,3,4, (25)

v =01-80-n), w,=&1-n),
ws=(1-S)n, Wy =<&n
_(I=)(1=¢) |—cn
13 2 bn+a&|’
_&(l=n)|-en
O =T al= &) +(d—a)n|’
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(@ (b) (c)

Figure 2. Quadrangular element.

_ (=8 |cll=n)+(c—e)d

=7 {(d—b)é—b(l—n)}’

énfell-n)+e—)1-£)
5= {(b—d)(1—§)+(a—d)(l—r7)} (26)

Functions (26) — approximations [4].

_(1=&)1=n))en(1—2n)

Ga="—3 {—bna—zn)—aéa—zf)}'
¢ (x)zé(l—n){en(l—m }
2 2 |alE—1)(1-28)-(d—-a)n(l-27)]"
7.0 = {c(l —)1-21)— (e —e)E(1 - 28) }

3 2 |(b-d)E(1-28) - bll—n)(1-27))]’

ell—)(1-2n) +
0= (e—c)1-&)1-2£) 27)

2 |(b=d)(1-8)(1-28)+
(a—d)(1-n)(1-2n)

Two more functions are sometimes added which
correspond to some internal degrees of freedom
with their subsequent condensation:

W, ={&(1-&ml-n), 0},
w, ={0, £1-&ni-n)"

1—277—§2+772,
_ B |1-2p- A 417,

xeQ),

xeQ)
4 2

1-2n-&*+B’n?, xeQ,
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-2 1-2n— A& + B2, er3’

¢) Four-node Element with a Piecewise
Polynomial Approximation

Let us consider a quadrangular finite element in
the local coordinate system shown in Figure 2a.
It is transformed into a quadrangle shown in
Figure 2c¢ by replacing the coordinate system
(28). A 1is the intersection point of the diagonals
of the element.

y=yal=&)+(e=y,)n

{§=P11x+l912)’
nN=pyx+tppy+p

{XZXA +(a_xA)§+(d_xA)n, (28)

1 d _c _a=b
Pn—ar Pn= P le—A' Pn= A’
_eb—dc _ac
a= 2 'B__X' A=c(d—a)(a—b)e,

A=1/a, B=1/p,

A, :1/(1—0!), B, :1/(1_18)

If the quadrangle is a rectangle, then a=£=1.
Let us consider functions (29) y;, i=1+8, which
are second-degree polynomials in each of the
subareas Q;, =1,2,3,4 and are continuous
together with their first derivatives on the
diagonals of the element:

—a+2E—al* +an?,
_4 —a+2E-AET +an®, xeQ,
2 —a+2&E - AE* +aB’n?, xeQ,

—a+2§—a§2+aB2 2, xeQ,

xeQ),
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1-26+& %, xeQ —B+2n+ P -pn’,  xeQ

AN -2E+ AP, xeQ, B |-B+n+ APE-pn’, xeQ,
T2 1-2&+ A2E* — B*n?, er3’W4_ 2 |-B+2n+ A2 BE - Bn?, xeQ,
1-2&+&% - B*n?, xeQ, —B+2n+ E* - By?, xeQ,

20 —4PE—4an+ 22 —a) +4En+2a(2—- Bn?, xeQ,
Vo= AB 20 -4PE —dan+2ABE* +4En+2a(2- B, xeQ,
> N 2B —apE —dan +2ABE +4En + 2a.Bn, xeQ,
2a,6’—4ﬂ§—4a77+2ﬂ(2—a)§2+4§77+2aB772, xeQ,
2B +APE+An-2E° —4n— (428", xeQ
v = A B | 2BTABE AN APA-2A 4y —(4-2B)", xe
O TN 284488 + 40— AP —2A)E* —4En - 2B, xeQ,
2B +4ABE+4n -2 BE* —4En —4En—2Bn?, xeQ,
2 —4E —4n+2E% +4En+ 217, xeQ
Vo= AB D —4E—An 247 (1-2a)E* +4&n+ 217, xeQ,
TN o mag—an—247(1-2a)E% +4En - 2B (1-28)0%, xeQ,
D—AE—An+2E% +4En-2B*(1-28)n°, xeQ,
2o +4E +dan—(4-2a)E? —4En—2an?, xeQ,
Do +4E +dan —2A4E% —4En—2an?, xeQ
l//g — AlBl (:Z n 52 577 n 5 2 (29)
2a+4E+4an—-245° —4En—aB(4-2B)y”7, xeQ,
Do +4E+dan—(4-2a)E* —4En—aB4—-2B)y*, xeQ,
Since ¢,.(xj)=5,:" , ,j=1,2,3,4, we can assign X :l cyy +(c-eyg }
37 8\(d—-bywe—by,|’
7 _)0 - _ljeys+(e—clye
(pll( ) {0 }' ‘piZ(x)_{l//i}’ =1,2,3,4 (30) X4_8 (b—d)l//6+(a—d)l//5 (31)
. . . { :l CW7(A§_B77)
The functions y;, i=5,6,7,8 at the vertices of the 173 bl//7( AE - Bn)- ayg (Bn-&)[’
quadrangle are equal to zero. They are nonzero
at the middle of the sides and equal to one only _1leys (&—n)
at the node with a number matching that of the 6= —ayg(Bn—&)—(d—-a)ys(E—n)|’

8
function. The following expression is obtained
& eXp 1{—0%(%15—377 +(C_e)l//6(77_Aéj)}
8

in (12) for functions corresponding to quasi- &
rotational degrees of freedom and satisfying (d =Dl (nn— AZ) + by, (AS - B)

conditions (5): {el//s(é‘ n)—(e—clyq(n— AS)

(b—dys(n—AZ)+ (32)
_ L=y _1)-ews
= 8{1)1//7 + at//g}' X2 = 8{—0{//8 +(d —a) l//s}'

—

(a—dys(c—n)
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2.2. Incompatible Finite Elements (®z)

d) Triangle with Nodes at Vertices

Let us consider a triangle shown in Fig. la,
which is transformed into a triangle in Fig. 1b
by replacing the coordinates (20). The system of
approximating functions of an element will be
sought as third-degree polynomials in the finite
element area. We will determine the degrees of
freedom only at the vertices of the triangle.
Consider auxiliary functions corresponding to
the rotational degrees of freedom obtained from
Ji(x) in (27) and satistying (14):

A (x)=—-4,(x)+(x), i=1,2,3,
{(x) =4, (x)+ T, (x) + {5(x)

(33)

We adjust the functions (21) corresponding to
the linear degrees of freedom of the classic
element, so that the equalities (14) are satisfied:

‘P11(X):{})_§_77}—c;—;cb“x),

«plz(x)={f_ . n}*ﬁ“""

1

0
¢2l(x)={§}—%z(x), cpzz(x)={ gg}—zzo«),

«p31<x):{g}+2icz<x>, (p32(x):{g} (34)

The obtained approximations are incompatible
now, because the equality of displacements on
the sides of the element when it is connected to
other elements of the design model is not
provided. If in (18) we assume that

@i3(X)=Ai(x), i=1,2,3,

then the resulting system of functions already
ensures the convergence of the method, since
the equations (17) of the incompatibility
criterion will be satisfied if we take the
functions (21) of the classic element without
rotational degrees of freedom (assuming they
are zero) as the system of functions (16). But, as

Volume 16, Issue 1, 2020

shown by numerical experiments, there is no
significant increase in calculation accuracy.
Since the element with quasi-rotational degrees
of freedom shows good accuracy, then in (18)
we take pi(x), which are proportional to
functions (22), as compatible functions, and {(x)
— as incompatible ones. We obtain the only
possible combination where the equalities of the
completeness  criterion  (15) and  the
incompatibility criterion (17) are satisfied (If we
use functions {i(x), there can be alternative ways
of representing functions ¢;3(x), but (35) has
shown the best results in the tests):

@, (%) :%(4xi(x)+((x)), i=1,2.3. (35)

To increase calculation accuracy, it is
reasonable to add five “internal” degrees of
freedom with their subsequent condensation.
They have corresponding approximations,
which satisfy the conditions (19):

3
W;(x)=@;(x) - kZ_ll/\k (X)L (@;(x)),

i 7 i,u}T'w4 :{I_I’ O}TIWS :{O' H}T
H=én(l-&—n), =1.2.3

@, ={4,, -4

e) Six-node Triangle

Let us consider an element in the local
coordinate system, shown in Fig. la. After
changing the coordinates (20), it is transformed
into a triangle shown in Fig. 1b.

We will use fourth-degree polynomials.

Let us determine functions corresponding to the
following degrees of freedom:

o rotation angles on the sides:

_ 2acp(x)elg—1)+(1—q)E+(e—q)n) |b
BT apd(-dy)e(l-g)Hg-e)d) |cJ’

_ep)dg+(1—g—d)S—qn) |2
37 e(l-e)dg+(1—g—d)e) |0 |
_ 2acp(x)(ed —d& —en) {a—b
6 = apq(i—g)ed—dq—eli—q)) |c

},(36)
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= En(l—&— -
pO0 =1 =& 1) q0=n Sy s a0+

e displacements on the sides: {0 } H(x) (40)
‘ng(x):H;‘,‘(X)_(Pi_;(x)Lﬁ(Hly(X))a (37) 3
i=4,5,6, j=1,2, 0.5¢n(( —n), q=0.5
IO 1Y P (O | o /L Hy(x)=128n((1- )¢ ~qn)
Hll ’ Hi2 ’ })1 2 P
0 B d*(1-d) ((5¢-2)¢ +(3-5¢)n), ¢#0.5
_& 1-¢- n' o, & Hy(x)=2(1=& = 1)(-d +dE +17)
A-ef 7 Fl-g) ((3-5d)+(10d - 5)7)
- , Hj(x)=2{(1-C—n)(e—S—en)
o rotation angles at the vertices of the ((3 -5e)+(10e-5)¢)
triangle, similarly to (35):
6 The incompatible function {(x) in (40) satisfies
@;(X)=@.(x)— > @ ;L ..(@;(x)), the equations (19), and the coefficients #;,
= j=1,2,3, are found from the system of equations:
@,(x)=3(4x:x +00). %) Lygx)=1, i=12,3. (41)
1&g cen(—dy(1=&—mn)
Xi="75 aé(l-¢&(1-&-n))- e nodal displacements of the element:
bn(1—d,(1-&— 77)77
£ |~egnti=aén) 0,0 =0, (X 3 0 L (@,),  (42)
=51 asl=g-nl-esl-&=n)-, k=4
(a—b)en(l—q,&n)

6
D, (x)=W,;(x) - katpkg (X)L (W)

c&(l—qén)—c(l=&—n)(1-d,|(1-&—n)n)
=2 a=b)Eli-g,én)+ ,

2
b(l-&-n)l-d|(1-&—nn) i=1,2,3, j=1,2, W;(x) are linear functions (21).
d = 1 1 1 The completeness criterion (15) and the
' di-d)’ = e(l—e)’ = q(1—¢q) incompatibility criterion (17) are satisfied.

The calculation accuracy can be increased by
adding functions corresponding to the internal

Compatible functions xi(x) are obtained from the
degrees of freedom:

condition that the tangential displacement . on
the side ij varies quadratically, and the normal .
displacement u, varies with &; according to the W.(x)=Z,(x)— Y @ ;L,(Z,(x), i=1,2
law: ' ' 2 ' T

B 2={H, 0}, 2,={0, H}', H=énl=¢-1)
ij

f) Rectangle with Nodes at Vertices

Let us consider a rectangular finite element in

the local coordinate system: aio=a, aiz=c. The

system of approximating functions of an

element will be sought as fifth-degree

k —node on the side ij.
Formula (39) is an extension of the formula (4)
taking into account the intermediate node.
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polynomials. Assuming &x/a, n=y/c we will
display the element on that shown in Fig. 2b:
Determine the compatible functions @, i=1,2,3
in (12) with the help of (26) and (27) for &=1:

—en(l-n)*(1-¢&)

o _{af(l—é)z(l—n) }

I b G

P —agu-a0-n)’

0. = {cnz(l—n)(l—é)}’
aé(l-&)’n

on {cnz(l—n)f }
et 1-6m

We adjust the functions of the linear degrees of
freedom:

(43)

Py :‘Dn_zic(/\l +A),
P =D +2—1a(/\1 +4,),
@ =@,y —%(/\2 +Ay),
Py =Dy _2_1a(A1 +4,),
@3 =5 "‘%(Al +4;),
@3, =Ds, +%(/\3 +4,),
Py =Dy +2LC(A2 +4y),

1
(P42 = a’42 - %(A3 + A4 ): (44)

where: @;i(x) is a bilinear system of functions
(25);
A (X) =5 (x)+H(x),
Az(x) = ‘P23(X)_H(x)r
/\3(X) = ¢p33(x)—H(x),
A (X) = 3(x)+H(x), (45)
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_5Jelt=28m* (-1’
H(X)—Z 2 2
—a(l=2n)¢*(& 1)
Functions A;, satisfy the equations (19) and
ensure the fulfillment of the completeness
criterion (15) and the incompatibility criterion

(17).

2) Quadrangle

Let us consider a quadrangle shown in Figure 2a
and perform the transformation of the
coordinate system (28) into a quadrangle shown
in Figure 2c. The system of approximating
functions of an element will be sought as fourth-
degree polynomials in each of the subareas €;
of the finite element.

Determine the compatible functions @s,
i=1,2,3,4 in (12) with the help of (31) and (32)
for &=1. Functions Ai(x) for adjusting linear
approximations can be represented as follows:

A(X) = @15 () - ér,-kzkm (46)
Z, ={y;(x), O}T' Z,,,=10, 7i(x)}T’ i=1,2,

- {aziznz, (&meq UQ,
-

_62772’ (5177) € Qz UQ3 '
. {ﬂzéznz, (meUQ,
et EmensUa,

Coefficients r; in (46) are obtained as solutions
of the systems of equations (19).
Functions corresponding to displacements:

3
@;(x)=W;(x) —Elilk (X)L (Wy;(x),  (47)
i=1,2,3,4, j=12,

where W;(x) are approximations (30) of an
element without rotational degrees of freedom.
The completeness criterion (15) is satisfied for
the obtained approximations, since it follows
from the properties of functions (31) and (32)
that:
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S (@0~ A4,() = z 53 Z,(x) (48)

i=1 ik=l1

Functions {i(x) (32) satisfy the equations (19)
and, therefore, we obtain a system of equations
(19) in (48) for determining the coefficients si
with zero right-hand side.

h) Eight-node Quadrangle

Let us consider a quadrangle shown in Figure 2a
and perform the transformation of the
coordinate system (28) into a quadrangle shown
in Figure 2c.

1Lpavpavpaup J(49)
lla(:z 2167] 1285 228

The system of approximating functions will be
sought as incomplete sixth-degree polynomials
in the finite element subareas.

Determine functions for the nodes on the sides:

@ = i ;(x){ } i=5,6,78,  (50)
{nxi' nyi}T
—normal to the side for the node i;
fra =l 5y 206 40 =
—((I’Z i1 +nyzr12)a§
(nxlr21 nylr22) ); (X) le.j
(l_g_ﬂ)p(er:LB): XEQI
o | AE == A5+ (2-3B)), xeQ,
V- 4s- By, xeQ,
(1-&=Bnf(1+(2-34)E - B), xeQ,
(I-&-n)(1-E+(2-3B)y),  XxeQy
‘- (1- 45 -n)p(4.1,1,B), xeQ,
21— 4E-Bn)(1+(24-3)E - By) x e Q,
(1-&-Bn), xeQ,
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(1-&-n), xeQ)
£ U= AE=nP (14 (24-3)5 - 1), x €,

P (- a8 - By)pl(4.1,B)), xeQ,
(1-&=Bn)P(1-£+(2B-3)n), xeQ,
(1—§—n)2(1+(2—3A)§—n),xEQ
(1-A4E-n), :

£y =4(1—AE=Bp)’ xeth (51)
(1-AE+(2B-3)y), X<
(1-&—-Bn)p(l,4,B,), xeQ,
plzy,25,25,24) =14+ (2) =32,)& + (23 =324 )7 +
(32, —22,)E% + + (32, —223)1°
(22,23 =3z, =3z, +62,24)én

Let us determine functions corresponding to the
rotational degrees of freedom in the nodes:

~

@5 (X)=@;(x)— X r, X, (x), (52)

k=1

8 -
@,(x)=H,(x)- X @,;L,;(H;), =1,2,3,4,
k=5

where r; are solutions of the systems of
equations (19),

H;(x) =5 (x)T;(x)
Y, (x) are compatible functions of a
quadrangular element  with  piecewise

polynomial approximation (29-31) for e=1;

T,="Pyg, T, =Py, I;=F3, Ty = Py, (53)
(%)= (é:_gi)(nj_771')_(77_771')(5]'_51‘)
T —é)mj—m)—( -, )& - &)

X(0)=2,- 3 X 0yLy(Z) (54)

j=1k=5

s =1{7:(x), O} , 7l.(x)}T, =12,

1+2_{
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B xeQ,
3

B, er2’
3

-a”, xel),

B, xeQ,

a’,

71 253773

7/2253773

xeQ,

Adjust functions (29), y;, i=1+8:

200=p 0= X l)z,00,. (59
. V/k(x)
Xk(X)_—l//k(Xk)

i=1,2,3,4, k=5,6,7,8.

Functions corresponding to displacements are
obtained using (55):

8
@;(x)=W;(x)— El ®3(X)L,5(W), (56)

wil(x) = {(/’%/i}' wiz(x) = {OZ}; 1':1+8, ]:1:2

The obtained system of functions satisfies the
completeness  criterion  (15) and  the
incompatibility criterion (17).

2.3. Compatible Elements (®z)

i) Triangle with Nodes at Vertices

Let us consider a triangle shown in Fig. 1a, and
perform the transformation of the coordinate
system (57) into a triangle shown in Fig. lc,
where point A is the intersection point of the
medians of the triangle:

E=ppxtppy—1

(57)
n=pyx+ppy-1
=g =a—2b =l =2a—b
P11 a’ P “ac ' Pai a’ P» ac

Volume 16, Issue 1, 2020

Let us write the functions Ai(x), i=1,2,3, which
are second-degree polynomials in each of the
subareas, are zero on the sides of the triangle,
continuous within Q and satisfy the conditions
(14). We obtain the unique solution:

%W=9%ﬁﬁﬂ>

(58)
nx)=01-&-n),

72(x)=(1-&+2n)J,
73(X)=(1+2&-n)C,

=3[ o w3l

Ao = g{;a_ b}yz (x)

1-&-n, xe
=41+25-n, x€Q),,
1-8+2n, xeQ,

Functions A;, i=1,2,3 have discontinuities ®, at
the boundaries €; (sides of connected elements,
segments of medians), but o, (A(x)) are
continuous at the nodes of the element.
Compatible functions corresponding to the
rotational degrees of freedom and satisfying the
conditions (14), similarly to (35), can be
represented as follows:

0= 14,00 +M),  (59)
200 =4, 00+ A, 00) + A5 (4

where yx; are functions (22) in the coordinate
system (57).

The functions corresponding to displacements
are obtained by substituting the functions {i(x)
from (59) and linear functions into (34):

1 1
vilx)=3(1=&=1), vl =3(1+2£ ),
1
w30 =5(1-& +27)
The calculation accuracy can be increased by
adding functions equal to zero on the sides of

the element as those corresponding to internal
degrees of freedom:
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w,(x)={R, 0}, w,(x)=1{0, R},
(1—§—ﬂ)2, xeQ

R(x)=1(1+2&-7), xeQ,
(1-&+27), xeQ,

J) Six-node Triangle

Let us consider a triangle shown in Figure la,
and perform the transformation of the
coordinate system (57) into a triangle shown in
Fig. 1c. The functions are sought as third-degree
polynomials in each of the subareas.

Functions corresponding to the rotational
degrees of freedom at the nodes are given by
adjusting (58) (functions (36) can be applied,
which will result in fourth-degree polynomials):

@1500= 4,1~ X @500, (4, ). =1.23, (60)

a5 o)

®s3(x)

A
3a38s (55 _775) ¢
ac a—>b
‘Pes(x)—{ }Hs
3a§3§6’76 ¢
o =& (1-&+2n), xe Oy
700, xeQ UQ, ’

o _JEE-m(1+25-n), xeQ,
2700, xeQ,UQ, ’

H. = 577(1_5_77):)‘691
3700, xeQ,UQ,

Functions corresponding to displacements are
obtained from approximations of a classic
element ¢;(x) without rotational degrees of
freedom:

@, ()=, (x) - é%(x)Lkg(%(x», (61)

i=1+6, j=1,2

Viktor S. Karpilovskyi

The calculation accuracy can be increased by
adding functions equal to zero on the sides of
the element as those corresponding to eleven
internal degrees of freedom:

W 0=20~ % WL, (2,(0), =123,

T
zi(X)={§0i+3,3,v' —(0i+3,3,u} )

o -t -] v

Wy =SW,, W,=3W;, W, =n¥,, ¥, =n¥s
0, xeQ)
Ri(x)=18(1+25—n)(1-n), xeQ,
n=&+2n)(1-34), xey

k) Quadrangle with Nodes at Vertices

Let us consider a convex quadrangle shown in
Figure 2a and perform the transformation of the
coordinate system (28) into a quadrangle shown
in Figure 2c.

The functions are sought as second-degree
polynomials in each of the subareas.

Let us write the functions A«(x), i=1,2,3,4, which
are second-degree polynomials in each of the
subareas, are zero on the sides of the
quadrangle, continuous within QQ and satisfy the
conditions (14). We obtain the unique solution:

2 pll} 2{p21}
Ax)== , AXx)=—= ,
1( ) p{pIZ 7/1 2( ) P \P» 7/2

_ 2Py __2)ry
"3"‘"p{p22}73' A x) p{pu}m )

P=P1Prp —P12P2 >

n(l—A4&—-Bn), xel)y

71 =yn(l-& - Bn), xeQ,
0, xeQ,UQ,
‘5(1_5_77)' XEQI

72 =150-&-Bn), xeQ,
0, xeQ, Uy,
77(1—145—77)' X EQZ

v =4n11-AE-Bn), xeQ;
0, xeQ, UQ,
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5(1_5_77)' XEQI
V4=15(-45-7), xeQ,
0, xeQ,UQ,

Similarly to a triangular element, functions A;,
i=1,2,3,4 have discontinuities ®, at the
boundaries €2; (sides of connected elements,
segments of diagonals), but w,(Ai(x)) 1is
continuous at its nodes.

Compatible functions which correspond to
rotational degrees of freedom, preserve
equalities (15) and satisfy the equations of the
incompatibility criterion (17) are given in the

following form, taking into account the
experience of creating triangular elements:
1 o
@3 (x) =3 (4x; ()= X0, /)A; (x)), (63)
j=1

K(l ) , lj - Side
/ 0, ij —diagonal

where xi(x), i=1,2,3,4 are functions (31).
Functions corresponding to displacements are
obtained from approximations (29) of an
element without rotational degrees of freedom
by adjusting them with the help of functions
Ai(x) to satisty the conditions (14):

0,0 =, () é/\k MLaW,),  (64)

The calculation accuracy can be increased by
adding functions equal to zero on the sides of
the element as those corresponding to internal
degrees of freedom:

W, ={R,0}", Wix)={0, R\, (65)
(1-&-n),  xeQ

R |1 A=), xeQ,
(1— AE — Bn)*, xel),
(1-&-Bnp)  xeQ,
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) Eight-node Quadrangle

Let us consider a convex quadrangle shown in
Fig. 2a and perform the transformation of the
coordinate system (28) into a quadrangle shown
in Fig. 2c. The functions are sought as third-
degree polynomials in each of the subareas.
Functions corresponding to the rotational
degrees of freedom can be given as follows:

04X~ A0~ X @isLs ALK, (66)

(pk3 (X) = lka (X) s i:152,3:45 k:53657,8:

where ¢i3(x) are functions (50), A(x) are
functions (62).

Functions corresponding to displacements are
obtained according to formula (56) by
substituting functions (66).

The calculation accuracy can be increased by
adding functions equal to zero on the sides of
the element as those corresponding to eleven
internal degrees of freedom functions (65).

2.4. Accuracy of Elements

The considered finite elements, except for the
1soparametric ones, use polynomial or piecewise
polynomial approximations of the displacement
field over the entire area of the element.
Equalities of the completeness criterion (15) are
satisfied  for all  elements including
isoparametric ones. Let us add the equalities of
the completeness criterion of the 2-nd order to
them:

N 2 0
Eoun={s ], Srtebto =}

(1@l () - 2<p,3(x))-{’5y }

Mz

I
—_

i

M=

v (y:07, (%) — @j3(x)) —{

Il
—_

y
ol
v 0
S (x«plz(x)+<p,3(x))s{x2},

0
Xy

Mz

V(X (%) + (Pl3(x))_{ } (67)

~
L
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They are satisfied only for compatible 6-node
triangular and 8-node quadrangular elements
whose functions are sought as second-degree
polynomials. Despite a rather large number of
degrees of freedom, the equalities (67) are not
satisfied for elements with quasi-rotational

degrees of freedom and all incompatible
elements.
Considering that the equalities of the

incompatibility criterion (17) are satisfied for all

incompatible elements, we obtain the following

minimum estimates of the order of the

convergence rate according to [15] for regular

partitions with sufficiently smooth boundary in

the L, norm for elements:

o a-i, k — the first one in stresses and the
second one in displacements;

e j, I (high-precision compatible elements) —
the second one in stresses and the third
one in displacements.

3. TESTS

All tests for elements with quasi-rotational
degrees of freedom were performed with the
value &0.001. Since the wvalues of
displacements and stresses calculated for these
elements according to the hypothesis (4), and
hypothesis (5) for the given ¢ differ only in the
fourth significant digit, and only on the coarsest
mesh, they are not provided.

All the approximations considered in this paper
and corresponding to the “internal” degrees of
freedom of the elements are applied.

The loads specified as uniformly distributed,
trapezoidal and parabolic were reduced to nodal
ones taking into account the condensation of
“internal” degrees of freedom.

All calculations were performed in SCAD,
which is a part of SCAD Office®.

3.1. Patch Tests

Patch tests [21] are performed in order to check
whether the equalities of the completeness
criterion (15) are satisfied for all considered
elements:

Viktor S. Karpilovskyi

e stiffness matrices of all considered finite
elements each have three eigenvectors
corresponding to their displacement as rigid
bodies;

e the results for plates under constant stresses
were obtained with an accuracy up to a
computational error.

These tests serve only as a correctness criterion

of the program code.

3.2. Narrow Rectangular Plate

The plate of rectangular section shown in Fig. 3
1s subjected to a trapezoidal load applied at its
ends P=t2kEy, E=100kPa, v=0, h=1m, a=10m,
b=Im. Coefficient £=0.06 results in unit
moments at the ends of the plate, when it is
considered as a bar.

The problem has an analytical solution, known
from the theory of elasticity:

__2 ) % e S S
u= bkxy, v—bk(y +x 4aj (68)

The design models shown in Fig. 4 are taken
from [7], where this problem was considered.
Table 1 contains calculated  vertical
displacements at the point A(0,5), stresses oy at
the point B(0,—5) and rotation angles ® at the
point E(1.6(6),0). The following analytical
solutions are obtained from (68):

va=1.5m, oxp=6kPa, wr=0.4rad.

If the given plate is considered as a bar, then
after applying a pair of moments at its ends

My=+2kEJ,/h, J,=hb%/12

(moment of inertia of the plate section), we
obtain the same values of vertical deflection and
rotation angle using rod theory.

A loading statically equivalent to the given load
was considered to study moment loads, when
the moments My are specified in the nodes C(-
5,0) and D(5,0). Table 2 shows the results of
experiments.
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Figure 3. Narrow plate.
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Figure 4. Design models 1x6 for a narrow rectangular plate.

Table 1. Displacements, stresses and rotation angles in a narrow plate.

Ele-
ment

Mesh
type

Displacements wa (m)

Stresses og (kPa)

Rotation angles g (rad)

Mesh

Mesh

Mesh

1x6 | 2x12 | 4x24 | 8x48

1x6 | 2x12 | 4x24 | 8x48

1x6 | 2x12 | 4x24 | 8x48

S
o

-1.5

6

0.4

-1.231|-1.4221-1.480|-1.496

4.874 | 5.673 | 5.915|5.978

0.3255]0.3783]0.3943|0.3986

-1.203|-1.412]-1.478 |-1.495

4.775 1 5.639 | 5.905 | 5.976

0.3199(0.3761]0.3937|0.3984

-0.923|-1.295]-1.442 |-1.485

3.052 | 4.743 | 5.529 | 5.817

0.2430(0.3450{0.3846(0.3960

-1.298|-1.458]-1.490 |-1.497

5.711 | 6.020 | 5.998 | 5.999

0.2945|0.3771]0.3933|0.3961

-1.318|-1.458]-1.490 |-1.497

5.686 | 6.027 | 6.001 6

0.3234/0.3838]0.3943|0.3964

-0.777(-1.2221-1.418 |-1.479

3.267 | 5.241 | 5.805 | 5.951

0.2005]0.3198]0.3758|0.3936

-0.766 |-1.200|-1.410|-1.476

2.332 1 4.088 | 5.280 | 5.747

0.2011]0.3193]0.3758|0.3936

-0.858]-1.261 |-1.432|-1.482

3.318 | 5.026 | 5.741 | 5.939

0.2079]0.3750{0.4570{0.4780

-0.920]-1.291|-1.440|-1.484

4..81416.096 | 6.252 | 6.171

0.2323]0.3389]0.3823]0.3952

-0.684-1.118|-1.372|-1.464

1.779 | 3.412 | 4.894 | 5.635

0.1793]0.2991]0.3667]0.3908

-1.512|-1.502 -1.5

6.038 | 6.009 | 6.002 | 6.001

0.4012]0.399310.3998| 0.4

-1.5

6

0.4

-1.511|-1.502|' -1.5 [ -1.5

6.246 | 6.072 [ 6.019 | 6.005

0.3934]0.3958/0.3983]0.3993

-1.5

6

0.4

-1.367]-1.461]-1.490 |-1.497

5318]5.754 [ 5.914 ] 5.970

0.3601]0.3897]0.3974]0.3993

S~ [~~~ Q[0 |0 |09 [~

-1.5

6

0.4

The obtained results slightly differ from those
given in Table 2 only for elements with the

degrees of freedom ..

Numerical experiments show that the obtained

3.3. Cantilever Plate under Simple Bending
Let us consider a plate shown in Figure 5:

E=3e7kPa, v=0.25, h=1m, a=48m, b=12m. The

rotation angles for the element with quasi-

rotational degrees of freedom are incorrect. .

Volume 16, Issue 1, 2020

plate is subjected to the following loads:

on the side x=a :

fy=>06ry(b-y) — parabolic load;
. on the side x=0 : fi=6ra(b-2y);

ﬁ/:6TY(b—Y),

r=f1b3/E, f=40kN.
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Table 2. Displacements, stresses and rotation angles in a narrow plate

(loaded by a concentrated moment).

Displacements wa (m)

Mesh| Ele-

Stresses os (kPa)

Rotation angles wg (rad)

Mesh

Mesh Mesh

ment

type

1x6

2x12

4x24

8x48

1x6

2x12

4x24

8x48 | 1x6

2x12

4x24

8x48

S

-1.499

-1.467

-1.457

-1.453

5.996

5.998

5.997

5.991 |0.6877

1.5776

5.0046

18.805

-1.499

-1.474

-1.464

-1.454

5.996

5.998

5.997

5.991 10.6877

1.5516

5.0064

18.803

-1.286

-1.397

-1.449

-1.470

4.877

5.673

5915

5.978 |0.3178

0.3784

0.3943

0.3986

-1.255

-1.403

-1.452

-1.470

4.775

5.639

5.905

5.976 10.3170

0.3749

0.3937

0.3984

-0.938

-1.291

-1.431

-1.472

3.053

4.743

5.529

5.817 10.2409

0.3454

0.3846

0.3960

-1.225

-1.393

-1.456

-1.442

5.801

6.424

6.446

6.413 |0.5241

0.9224

2.8121

10.096

-1.295

-1.419

-1.441

-1.443

5.803

6.392

6.428

6.408 10.6074

1.2582

3.103

10.373

-0.796

-1.208

-1.390

-1.455

3.264

5.241

5.805

5.951 |0.1970

0.3207

0.3758

0.3936

-0.780

-1.194

-1.396

-1.461

2.336

4.088

5.280

5.747 |0.1999

0.3186

0.3758

0.3936

-1.029

-1.502

-1.700

-1.747

4.305

6.959

8.027

8.017 |0.5514

0.6701

2.4418

9.1624

-0.916

-1.279

-1.423

-1.467

4..801

6.097

6.252

6.171 |0.2429

0.3447

0.3828

0.3952

-0.697

-1.113

-1.359

-1.451

1.781

3.412

4.894

5.635 |0.1785

0.2983

0.3668

0.3908

-1.528

_1.494

-1.494

-1.490

6.072

6.013

6.002

6.001 |0.3897

0.4034

0.3953

0.3991

-1.511

-1.496

-1.487

-1.483

6.003

6

0.3991

0.3996

0.4

-1.521

-1.493

-1.495

-1.489

6.295

6.069 | 6.019 | 6.005

0.3703

0.4088

0.3976]0.3987

-1.504

-1.490

-1.484

-1.484

5.998

6

0.3993

0.3974

0.4

-1.372

-1.477

-1.490
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5.300

5.754 1 5.914 | 5.970
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0.3917
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Figure 5. Cantilever plate and its design models.

This problem has an analytical solution:

u= V(3(b - 2y)(x — a)2 —(v+ 2)(3by2 —
20°)(6a% + (v+2)b%)y —3ba?)
V:r(—6v(by—y2)(x—a)+ (69)
2(x—a)’ = (6a% +(v+2)b)x+2d°)
The load on the side x=0 was ignored in many
studies. In the case of the third degree of
freedom it is an approximation even when there
no additional nodes on the side of the cantilever.
The design models shown in Figure 5 are taken

from [2], where this problem was considered.
Table 3 contains calculated  vertical
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displacements at the point A(48,6) and stresses
ox at the point B(12,12). The following
analytical solution is obtained from (69): wa=
0.353(3)m, ox,=60kPa.
0.353(3)m, ox=60kPa.

3.4. Cook’s Problem

Let us consider a wedge with a clamped left
edge shown in Figure 6. A uniformly distributed
load P is applied to its right edge. Following [4]
we take:

E=1Pa, v=0.3(3), A= 1m,
P =0.0625 N/m, u|x=0=0, v|x=0=0.
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Figure 6. Wedge and its design models.

Table 3. Displacements and stresses in a cantilever plate.

Mesh

Displacements wa (m)

Stresses o (kPa)

Element Mesh

Mesh

type

1x4 2x8

4x16

8x32 1x4 2x8 4x16 | 8x32

-0.3283

-0.3456|-0.3511

-0.3527)| 59.988 | 60.998 | 60.746 | 60.438

-0.3283

-0.3458|-0.3512]-0.3527

59.988 | 60.980 | 60.746 | 60.437

-0.3541-0.3583

-0.3586|-0.3572

64.969 | 61.874 | 61.028 | 60.509

-0.3480-0.3556|-0.3572[-0.3564

63.811 | 61.823 | 60.990 | 60.500

-0.27421-0.3264 |-0.3451

-0.3510| 43.205 | 54.035 | 57.923 | 59.226

-0.33421-0.3465

-0.3513

-0.3527] 61.512 | 61.304 | 60.945 | 60.501

-0.3271

-0.3462|-0.3513

-0.3528| 59.743 | 61.140 | 60.934 | 60.501

-0.3227]-0.3487|-0.3544|-0.3553

61.805 | 62.292 | 61.366 | 60.725

-0.2614-0.3216|-0.3434[-0.3504

39.607 | 52.825 | 57.497 | 59.064

-0.2471

-0.3179]-0.3427-0.3503

36.867 | 50.599 | 56.499 | 58.611

-0.2673

-0.3236[-0.3440|-0.3505

44.407 | 52.306 | 57.177 | 59.052

-0.2141

-0.2902 |-0.3297]-0.3457

35.949 | 48.270 | 55.999 | 58.521

-0.3567]-0.3522|-0.3521

-0.3525] 64.896 | 61.840 | 60.458 | 60.128

-0.3540-0.3534]-0.3533

-0.3533| 60.004 60

-0.3585

-0.35291-0.3522-0.3525

63.849 | 61.159 | 60.288 | 60.092

-0.3533

59.328 | 59.804 | 59.960 | 59.991

-0.33981-0.3488 |-0.3519]-0.3529

41.195 | 52.981 | 57.554 | 58.844

~ 0 [~~~ [0 |0 || [~ [

-0.3470-0.3523

-0.3532(-0.3533

62.438 | 60.555 | 60.090 | 60.017

A statically equivalent stress was also
considered when uniformly distributed moments
were applied at the ends of the plate and
reduced to a nodal load using the formula (8).
No analytical solution is known for this
problem. Stable numerical solution with an
accuracy of up to 6 significant digits, obtained
with various finite elements and mesh
refinement up to 1024x1024 (3149825 nodes,
220 elements):

Volume 16, Issue 1, 2020

. vertical displacement wa=—23.9677m,

. principal stresses ©15=0.203525 Pa and
03,c=0.23687 Pa.

Table 4 shows the results of experiments.

Some papers assume v=0.3. The values are

slightly different in this case:

wa=23.9119m, c18=0.20353Pa
and 03,c=0.23692Pa.
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Table 4. Displacements and principal stresses in Cook’s problem.

Meshl Ele- Displacements wa (m) Pr. stresses o158 (kPa) Pr. stresses o3¢ (kPa)
type | ment Mesh Mesh Mesh
2x2 | 4x4 | 8x8 |16x16| 2x2 | 4x4 | 8x8 |16x16| 2x2 | 4x4 | 8x8 |[16x16
b -21.66 | -23.23 | -23.78 | -23.92 | 0.1774|0.1977 | 0.2009 | 0.2032 |-0.1730|-0.2197|-0.2322|-0.2354
A c -21.56 | -23.22 | -23.78 | -23.92 | 0.1747|0.1977|0.2007 | 0.2032 |-0.1711|-0.2193|-0.2322|-0.2354
g -17.26 | -21.92 | -23.37 | -23.79 1 0.1777{0.2013 | 0.2039 | 0.2049 |-0.1760]-0.2279|-0.2388|-0.2395
k -17.55]-21.53-23.13 | -23.69 1 0.1430] 0.1769 ] 0.1953 | 0.2013 |-0.1470[-0.1982|-0.2249|-0.2338
a -17.46 | -21.51 | -23.23 | -23.75 | 0.1196 | 0.1618 | 0.1873 | 0.1970 |-0.1643|-0.2124|-0.2312|-0.2363
B d -18.49 | -22.00 | -23.34 | -23.76 | 0.1687 | 0.1693 | 0.1940| 0.2018 |-0.2011|-0.2382|-0.2485|-0.2482
i -15.36 | -18.97 | -21.60 | -23.07 | 0.1486 | 0.1547 | 0.1838 | 0.1964 |-0.1446|-0.1838|-0.2147|-0.2337
C h -23.24 1 -23.79 | -23.90 | -23.94 1 0.2051 | 0.2015 | 0.2042 | 0.2040 |-0.2629|-0.2466|-0.2399|-0.2377
/ -22.97|-23.76 | -23.90 | -23.94 1 0.2114 ] 0.2023 | 0.2041 | 0.2037 |-0.2557|-0.2430]-0.2392|-0.2375
D e -22.14 | -23.57 | -23.85 | -23.93 | 0.1911|0.1903 | 0.1988 | 0.2014 |-0.2110|-0.2301|-0.2369|-0.2376
J -21.21|-23.42 | -23.85 | -23.93 | 0.1305|0.1971 | 0.2020 | 0.2032 |-0.1931-0.2304|-0.2379|-0.2375
3.5. Bending of an Unlimited Wedge by a Radii of points in the design models in Figure 8:

Concentrated Moment Applied to Its Vertex
(Inglis Problem).

Let us consider an unlimited wedge with
thickness #=1m and moment M applied to its
vertex shown in Figure 7a: r, B — polar
coordinates of the point. This problem has an
analytical solution [22]:

2Msin(2p)
r? (2acos(20)-sin(2a)) ’
_2M( cos(2a)—cos(2))
r*(2acos(20) —sin(2a))

r

T}’ﬁ (70)

Let us consider the area R < 24m, o=22.5° and
specify the boundary conditions shown in
Figure 7b. According to the Saint-Venant's
principle these constraints will not have a
significant effect on the results, since we will
consider points A(4,-22°) and B(4,0°).
Analytical solutions according to (70):

op.a = 0.582474 kPa, tp5 = 0.120634 kPa.
We take:

E=3.0-10"kPa, v = 0.2, /=1m, M=—1kN.
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0.5, 0.625, 1, 1.75, 2.5, 3.25, 4, 4.75, 5.5, 6.5,
7.75,9.25, 11,13, 15.5, 18, 21, 24.

Table 5 shows the results of calculations only
for elements with degrees of freedom ®,, since
they are incorrect for elements with quasi-
rotational degrees of freedom.

Let us consider the area R < 24m, 0=22.5° and
specify the boundary conditions shown in
Figure 7b. According to the Saint-Venant's
principle these constraints will not have a
significant effect on the results, since we will
consider points A(4,-22°) and B(4,0°).
Analytical solutions according to (70):

op.A = 0.582474 kPa, t.,p3 = 0.120634 kPa.
We take:
E=3.0-10" kPa, v= 0.2, h=Im, M=—1kN.

Radii of points in the design models in Figure 8:
0.5, 0.625, 1, 1.75, 2.5, 3.25, 4, 4.75, 5.5, 6.5,
7.75,9.25, 11,13, 15.5, 18, 21, 24.

Table 5 shows the results of calculations only
for elements with degrees of freedom ®,, since
they are incorrect for elements with quasi-
rotational degrees of freedom.
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(a)

Figure 7. Inglis problem.

Figure 8. Wedge design models.

Table 5. Stresses in the Inglis problem.

Mesh Stresses oA (Pa) Stresses 1,8 (Pa)
type Element Mesh Mesh
A A2 A4 A8 A A2 A4 A8
A g 0.6108 | 0.5909 | 0.5851 | 0.5834 | 0.0914 | 0.1172 | 0.1216 | 0.1218
k 0.5759 1 0.5781 | 0.5801 | 0.5812 | 0.1216 | 0.1208 | 0.1208 | 0.1207
C d 0.6578 | 0.6108 | 0.5940 | 0.5875 | 0.1135]0.1121 | 0.1164 | 0.1185
i 0.5541 [ 0.5761 | 0.5811 | 0.5822 | 0.1043 | 0.1217 | 0.1232 | 0.1224
B h 0.5637 | 0.5784 | 0.5816 | 0.5823 | 0.1522 | 0.1263 | 0.1220 | 0.1210
/ 0.5737 { 0.5809 | 0.5821 | 0.5824 | 0.1414 | 0.1259 | 0.1219 | 0.1210
D e 0.6066 | 0.5892 | 0.5843 | 0.5830 | 0.1283 | 0.1244 | 0.1230 | 0.1220
j 0.5418 | 0.5706 | 0.5791 | 0.5816 | 0.1220 | 0.1213 | 0.1209 | 0.1207

Volume 16, Issue 1, 2020
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Figure 9. Deep beam and its design models.

3.6. Bending of a Rectangular Deep Beam.
Let us consider a square deep beam rigidly
suspended on the sides x=0 and x=2.4 (Figure 9)
and subjected to a uniformly distributed load p
applied to its upper edge. This problem has an
analytical solution in series, given in [23].
Displacement values are calculated with high
accuracy in [24] for a square plate with the
following characteristics: E=2.65-MPa, v=0.15,
h=0.1m, p=500N/m: wa=3.763392mm,
up=2.210055mm.

The calculation is performed only for the half of
the deep beam taking into account the axis of
symmetry CD and the following boundary
conditions: W|=0= u|x=12=0/0],=12=0. Design
models are shown in Fig. 9. Models C and D are
the same as those used for patch tests [20].
Calculation results are given in Table 6.

4. CONCLUSIONS

The conducted numerical experiments have
confirmed theoretical foundations for creating
finite elements:

. elements with quasi-rotational degrees of
freedom a,b,c and incompatible elements
df.g yield almost identical results in
displacements and stresses;

° elements a,b,c can yield incorrect results
in rotation angles;

. compatible elements ik yield slightly

worse results compared to elements
a,b,c,d.f.g;
o as expected, elements with intermediate

nodes on the sides e,h,j,/ have yielded the
best numerical results. And compatible
elements j,/ are unparalleled;

. all elements with degrees of freedom ®,
enable to calculate structures subjected to
both  concentrated and  uniformly
distributed moments.

It is now interesting to study the application of

the given approximations when creating shell

elements (especially in combined design models
with bar elements).
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Table 6. Displacements in the rigidly suspended deep beam.

Mesh type

Element

Displacements wa (mm)

Displacements ug (mm)

Mesh

Mesh

2x2

4x4 8x8

16x16 | 2x2 4x4 8x8 | 16x16

-3.4643

-3.6726|-3.7415

-3.7580| 1.9846 | 2.1234 | 2.1739 | 2.1966

-3.4603

-3.6686|-3.7414

-3.7580| 1.8881 | 2.0835 | 2.1546 | 2.1870

-3.5971

-3.6802|-3.7410

-3.7577) 2.0216 | 2.0975 | 2.1564 | 2.1875

-3.5344

-3.6762|-3.7395

-3.7573] 1.8855 | 2.0341 | 2.1258 | 2.1725

-3.3881

-3.6433|-3.7312

-3.755411/9479 | 2.0749 | 2.1505 | 2.1858

-3.2005

-3.6080-3.7249

-3.7547| 1.8805 | 2.0160 | 2.1214 | 2.1715

-3.3494

-3.6562|-3.7377

-3.7582|2.1242 | 2.1274 | 2.1736 | 2.1967

-3.0276

-3.5946|-3.7042

-3.7468| 1.9472 | 2.0158 | 2.1133 | 2.1674

-3.1204

-3.6785|-3.7518

-3.7627| 1.4033 | 1.9437 | 2.0779 | 2.1411

-3.1483

-3.6716|-3.7507

-3.7626| 1.5706 | 1.9523 | 2.0554 | 2.1257

-3.1957

-3.6065 |-3.7582

-3.7745| 1.6774 | 1.6550 | 1.8636 | 2.0106

-2.8401

-3.4950(-3.6285

-3.7053| 1.8166 | 2.0413 | 2.1162 | 2.1461

-3.0684

-3.5233|-3.6936

-3.7464| 1.7172 | 1.9280 | 2.0795 | 2.1497

-3.2120

-3.5619-3.7015

-3.7492| 2.0067 | 2.0686 | 2.1351 | 2.1736

-2.7636

-3.1829-3.3407

-3.4860| 1.8346 | 1.8803 | 1.9712 | 2.0734

-3.8112

-3.7866|-3.7752

-3.7677| 1.9724 | 2.1122 | 2.1663 | 2.1923

-3.7435

-3.75431-3.7630

-3.7635] 1.8486 | 2.0507 | 2.1359 | 2.1770

-3.8661

-3.8615|-3.8079

-3.7799| 1.6800 | 1.9761 | 2.0908 | 2.1497

-3.5164

-3.7586|-3.7651

-3.7639| 1.3827 | 1.8735|2.0504 | 2.1316

-3.8582

-3.7694 |-3.7593

-3.7621| 1.7710 | 2.0022 | 2.1109 | 2.1648

-3.4784

-3.7437|-3.7620

-3.7634| 1.6815 | 1.9797 | 2.1015 | 2.1600

H

-3.6114

-3.7890|-3.8003

-3.7818] 1.7490 | 1.9895 | 2.1021 | 2.1594

~ [ [~ [~~~ Q[0 [0S~ R[0S

-3.4959

-3.7713|-3.7742

-3.7665| 1.4127 | 1.8596 | 2.0539 | 2.1392
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