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STABILITY OF THREE-LAYER RODS WITH ALLOWANCE
FOR INITIAL IMPERFECTIONS AND SHEAR DEFORMATIONS

Viacheslav S. Chepurnenko, Batyr M. Yazyev

Don State Technical University, Rostov-on-Don, Russia

Abstract: The article presents the derivation of equations describing the pre-buckling behavior of three-layer rods in
the presence of shear deformation and creep of the middle layer. The test problem for a rod with a filler made of
polyurethane foam is solved. A technique has been developed for calculating the critical time under loads which values

exceed the long critical ones.
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YCTOMYUBOCTD TPEXCJIOMHBIX CTEPKHEM
IIPU MTOJI3YUECTHU C YYETOM HAUYAJBHBIX
HECOBEPIHIEHCTB U JIE®@OPMALIMH CABUT A

B.C. Yenypuenxo, b.M. f3vie6

JloHCKOI rocyiapCTBEHHBIN TEXHUUECKUHM YHUBEPCUTET, I'. PocToB-Ha-Jony, POCCHU

AHHOTALUA:

B craree mnpuBOIMTCS BBIBOA YpaBHEHHH,

OIMACBIBAIOIUX JOKPHUTHUYCCKOC IMOBCACHUC

TPEXCIOMHBIX CTEp)KHEW IPM HAIWYMU CIBUTOBBIX JeOopManuii M IOI3YYECTH CpemHero cios. Pemaercs
TecToBas 3afada Ul CTEPXKHsS C 3allOJHUTEIEM U3 IeHomojuypeTaHa. Pa3paboTaHa MeTOJMKa BbIYHCICHUS
KPUTHYECKOTO BPEMEHH IIPH HArpy3Kax, 3HAUeHUS KOTOPBIX MPEBHINAIOT JUTUTENbHBIE KPUTHYECKHE.

KuioueBble cjloBa: TpeXCIOWHbIE OANKH, YCTOWYUBOCTD, CABUT, TIOJI3Y4eCTh, YUCIEHHBIE METOIBI

1. INTRODUCTION

When solving the problems of stability of rods,
in many cases it is necessary to take into account

shear deformations: for example, when
considering elements made of anisotropic
fibrous materials with a shear modulus

significantly smaller than the elastic modulus or
when calculating three-layer rods consisting of
two thin metal outer layers and a lightweight,
much less rigid filler. Taking into account the
shear force in deformable elements of this type
leads to obtaining lower critical loads than
without taking it into account. There is a formula
in [1] derived analytically to calculate the critical
force, acting on central-compressed three-layer
rod. It is important to note that the polymer filler
is subjected to creep, accordingly, the actual
values of the loads leading to buckling will be

lower than those obtained in the book [1], which
should be taken into account in the calculations
and structural analysis.

2. DERIVATION OF RESOLVING
EQUATIONS

We consider the element shown in Figure 1,
subject to longitudinal bending. In deriving the
equations, we take the Timoshenko’s model as a
model of rod deformation, which includes shear
deformations in the calculations.

In Figure 1 the following notation is accepted:
V.. —shear strain (it is equal to the angle

between the plane, normal to the median surface
and the cross section plane), ¢ — the angle of

cross section rotation relative to the initial
position,
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Figure 1. Element of rod subject to longitudinal
bending.

u,(x,z,t) — the displacement of a certain point

A of the cross section in the x direction.
As follows from Figure 1:

7xz=co+a—x, (1)

u (x,z,t) =u(x,t) +zp(x,t). (2)

We take into account the initial imperfection,
defined by some function w,(x), according to

the method, mentioned in [2], assuming that the
displacements of the points along the z axis are:

Uz = Wy (x) +w(x, 1), 3)

and then eliminating from the terms of the
Green strain tensor components those, that

contain only wy(x), since they correspond only

to the initial imperfections, when the stresses in
the rod are equal to zero. Neglecting the terms
of large order of smallness, we thus obtain:

2
g =g, = L[ 0us ) _ou Op,
ox; 2\ ox; Ox ox @)
1(aw)2 ow dw,
+=| — | +——2,
2\ ox ox Ox
gxy:gxz:gyz:gzz:gyy:()’ (5)
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According to the generalized Hooke's law for
the isotropic material of filler with creep strain
taken into account:

Z * *
yxz:7§z+yxz:G_o-xz+7/xz
f

the symbol «*» indicates creep strain, £, 7 -
elastic strains, E,,G, — filler characteristics.

We write the expression of the variational principle
of the minimum total potential energy [3]:

H=06U+V)=0U+0V =0, (7)

U — potential elastic strain energy, V — external
forces potential;

U = [ (0,060 + 0,070 )dV =

Xz
14

~ (08—t + 0,00 7Y = ®)

J

%

J. I (Gxxégxx +0.,0)\, )dAdx.
L4

In equation (8) the variations of creep strains are
equal to zero, as is in subsequent numerical
calculation step method at a small interval of
time Af the creep strains will depend only on
the components of the stress tensor, obtained in
the points of the rod in the previous step.

In the case of joint support of the rod (Figure 2),
compressed by the force P, with one movable
joint in the x direction and one stationary joint,
the variation of the external forces potential will
be equal to:

SV =—PSu(x =0). )
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Figure 2. Loading model.

We denote the axial, shear forces and bending
moment as:

N, =[o.d4, 0=[o.d4, M=o, zd4. (10)
4 4 4
Substituting in (8) and varying the components

of the strains given in (1), (4), we obtain the
expression:

5U:J. N (85u 6§w5‘w oow G‘WO)
ox Oox Gx ox Ox
L (11)
65¢+Q(5 Géw)jdx

Applying integration by parts and grouping the
terms with factors ou, ow, oy, in expression
(11) and substituting it together with (9) in (7),
we get the following result:

N, (L)ou(L)—(N,(0)ou(0)+ Pou(0)) +

L
+(N, aav;o+N a—+Q)5w +M5go|0

j((— £)u

L

0

_ 0w (9w O
HE V(o)

(12)
aQ)a +(—ﬂ+ Q)5gojdx 0.

In accordance with the main lemma of the
variational calculus, we obtain the system:
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_8Nx:0

ox

0 ow 0w, 00
- —+—) |-—==0, 0;L).(13
a( x(a ax)j o xe(0;L). (13)
oM
-——+0=0

ox Q

From the fixing conditions for the rod we have:

w(0,8) =w(L,t) =u(L,t) =0=>0w(0,7) = 1
=ow(L,t)=0u(L,t)=0 (14

at an arbitrary point of time. For convenience,
we omit the time ¢ during subsequent writing in
the notation of time-dependent functions.
We get the final set of six boundary conditions:

w(0)=w(L)=u(L)=0
N.(0)+P=0 ,
M@O)=M(L)=0

(15)

Using dependencies (13), (15), we transform
(13) to a system of two differential equations:

2 2
B 0w, )20
ox®  ox? Oox

(16)
oM
=7
) -
;
i P
= b

Figure 3. Rod cross section.

We substitute the formulas for strains and
Hooke's law (6) in expressions (10) for the
stresses, taking into account the cross sectional
parameters with the dimensions shown in Fig. 3.
We obtain:
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2
M:J.E(z)(a—u+za—¢+l(a—wJ +
y ox ox 2\ ox

+a_w%—g:x)zdz4 = jE(Zz a—(o—E;xZ)dA = (17)
Ox Ox y 2

8(0 *
=(EL+Eply) == Ey [ etczda,

4

E,—modulus of elasticity of the metal
sheathings,
I, I,— moments of inertia of the metal and

polymer cross section parts,

Sh? bh?
I ~(ho*+—b, [, =—. 18
s~ ( 5 )b, I, B (18)
Q= I szdA = _[ Gfo/xz _y;z)dA =
A, A,.
. (19)
= Kstyszf _Gf _[ }/xsz‘

4

Integration in expression (19) is performed over
the filler area due to the insignificant thickness
of metal plates that work only on compression,

K,is a coefficient that takes into account the

irregular distribution of shear stresses over the
section height (It is assumed in the Timoshenko

model that y . is constant in height). According

to [4], the coefficient value for a rectangular
section takes the form:

10(1+v,)
12+,

For convenience, we introduce the notation for
integrals containing components of creep
strains:

M"=E, [ e,zdd, 0" =G, [ y.d4, (20)

A A

/ /

We substitute (17), (19) into (16), taking into
account the previously introduced notation:
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*w  w, dp *w)| 00
Pl —+ V1=K G A, | Z+— |-=
{a‘xZ ax2 J s f f{ax aX_Z ax
ow *
KGA(p+—)-0 =
s f f(¢ ax) Q

Fo_ou’
o? Ox

=(EJ,+E/Iy)

Transferring all terms with w and ¢ to the left
side of the system and dividing by K.G,4, ,
we obtain the final system of resolving partial
differential equations (21):

dwl, P\ op__ P 0w,
K,G A, ox

ax KSGfAf a_x KSGfAf ax

with boundary conditions (22):

w(0)=0
w(L)=0

(E,I, +Ef1f)g—"’(0) =M. (22)
X

(E,1, +Ef1f>g—f(L) M (L)

As a law describing the creep process of a
polymer filler, we accept the Maxwell-Gurevich
equation [5]:

Y =| (o, —pd,)—E ¢c. | ==L, (23

* . . . . . .
n — invariant relaxation viscosity coefficient,

o
= 3”‘ , 0;— Kronecker delta, E,, — modulus
of viscoelasticity.
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* * 1 3 *
g, exp(—Fq 2O -P)-Eutn |max)j, (24)

the index r denotes the principle directions for

stresses, 77, — initial relaxation viscosity, m" —
velocity module.

3. METHOD OF CALCULATION

The system (21) of nonlinear differential
equations will be solved by the finite difference
method. Formulas for partial derivatives with
respect to x used in solving with accuracy

O(Ax?) for i-th point [6]:

of (%) . f (%) — F(X_4)

(25)
oX 2AX
2 —_— - .
0 ;X(zxi) ~ f (Xi-l) 2 fAE();I)+ f(X|+1) , (26)

here Ax — is the distance between adjacent
points of the FDM grid.

The system of differential equations (21) with
boundary conditions (22) is transformed to a
system of linear equations for each time
moment t. In calculating the creep strain
components (23) at different time moments, the
Euler’s method [7] is used.

We write the system in the form:

[A{X}={B}, (27)
Q. a1 2n
a a a.
[A]= 21 2.2 22 | _
a2I’1,l d2||,2n

matrix containing elements that are constant in
time with 2nx2n dimensions.
{X}=[wW, o W, @, ..., ©.]" — column vector

of unknown displacements, n — number of nodes
of the FDM grid, including 2 fictitious ones that
go on Ax beyond the length of the rod L and are
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used to write expressions for partial derivatives
with respect to x at the points of the rod with
coordinates x=0, x=L.

{B}=[b b, --- b, 1' — column vector of free
terms with 2nx1 dimensions.

4. RESULTS AND DISCUSSION

When solving a test problem, we use the
following data:

rod axis is initially curved according to the
equation

W, = f -sin(”—LX) ,L=3m,b=0.15m,
h=0.05m, 6=1 mm,
sheathings material is aluminum  with

E,=0.7-10° MPa, the filler material is
polyurethane foam with the following

characteristics:
G; =5MPa, v, =0.3, E,_ =27.38 MPa,
m" =0.0218 MPa, 7, =1.43-10* MPa-h.
According to [1], the critical force for a rod

without taking into account the rheological
characteristics of the filler material is:

po
Py =—5—=10.71kN, (28)
1+ ——
GfAf
2
7 (Eql +El
where P2 = & i_z ) 15N
— Euler critical force (excluding shear

deformations). When a coefficient K, is added

to formula (28), the value of the critical force
will be equal to:
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0
Fer =10.195 kN.

cr 0
cr

+7
K.Gpdy

(29)

When calculating the stability of the rod without
taking into account the effect of viscoelasticity
by the finite element method, a critical load

P,.=1049 kN was obtained in the LIRA-

SAPR software, the form of stability loss is
shown in Figure 4

Figure 4. The first form of buckling.

The number of three-dimensional (3D) solid
elements when modeling along the height of the
filler section is 8, along the length is 100. From
the ends, the axial load is transferred to the
section using the installed additional aluminum
plate. From the modeling by 3D and plate
elements in the software package it follows that
local loss of stability in thin metal sheathings
does not occur.

Next, we perform the calculation taking into
account creep effect in accordance with the
procedure described in this article using the
MATLAB software package.
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R400
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Figure 5. Displacements along z axis versus
time for various loads.
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In the calculation, the initial deflection
parameter was taken to be equal to
f =0.1 mm, number of sectors between nodes

along the length of the rod — 50, the number of
time steps — 100. An increase in the number of
accepted steps and sections leads to negligible
changes in the results, the solutions are stable.

In [8, 9], when analyzing the stability of
viscoelastic rods and beams using the Maxwell-
Gurevich equation, the value of the long-term
critical load is introduced by replacing the
instantaneous elastic constants E and G of the
filler by long ones determined by the formulas:

GG,

Gf,l = —Goo N Gf ) (30)
E E,

Ef,l :—Eoo +Ef ) 31

E . .
here G, = T‘”, the long-term Poisson's ratio of

the material used in calculating the coefficient
K, [10]:

*

(04

Virl= % (32)

x » V 1
where « =L+L, B =L
E, E E, 2E,

o0

Using this technique, we write down the long-
term critical force in the form:

P[O

p= =8.683kN, (33)

PO
l4——L
Ks,le,lAf

7*(EJI,+E A
LZ

where B’ =

As can be seen from the graphs shown in Figure
5 when £ =~ 8680 N the creep process is steady,
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the deflection grows at a constant speed. This
result with a high degree of accuracy
corresponds to the value obtained in expression

(33). At loads lower than FB, the deflection

growth gradually slows down, at loads P> F

the deflection growth accelerates. Note that the
nature of the curves does not change for various
parameters of the initial imperfections f, which
affect only the final value of the deflection
during decreasing creep, as well as the critical
time during buckling. We demonstrate this in
Fig. 6, showing the influence of the parameter
of initial imperfections f on the critical time at a
load P = 8900 N > F. In the general case, the
initial imperfections of real structures are
arbitrary and have a wide range of values, due
to both technological and operational reasons,
respectively, the actual values of long-term
loads under which the presented structure works
must be less than /.

0.2

0.01F I ===f=01mm

’ = {=0.01mm

%

é

Wmaxit) [m]

;

.
0.002F

4000 5000 6000 7000 8000
th

Figure 6. The influence of the initial
imperfection on the critical time, P = 8900 N.

0 1000 2000 3000

Thus, in the presence of complete data on the
characteristics of the materials and the initial
imperfections, it seems possible to calculate the
critical time.

In order to simplify the solution, normal stresses
in the filler can be neglected if its elastic
modulus is low, assuming that all normal stress
is perceived by metal sheathings. The effect of
taking into account normal stresses in the filler
on the critical time is shown in Figure 7.
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Figure 7. The effect of taking into account
normal stresses in the filler on the critical time,

P=9400 N.

Obviously, when using a polymer filler with
greater rigidity, the difference between the
critical time obtained without taking into
account the normal stresses in it and taking
them into account will increase significantly.

6. CONCLUSIONS

In the article, resolving equations are obtained
that describe the process of rod buckling taking
into account shear deformations and creep
effects, and a method for numerically solving
them is given. The presented algorithm for
solving the problem allows us to determine the
critical load leading to loss of stability, the
critical time in the presence of data on the initial
imperfections of the compressed structure, and
also to trace the history of its deformation in
time. The test problem is solved under various
loads.

For the initial data corresponding to part 3 of
this article, the difference in critical loads when
taking into account creep and without
considering it is equal to:

M.loo%:MQ%,
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which is important to consider when designing
such three-layer elements in schemes that allow
their work under compression forces.
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