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BENDING OF RING PLATES, PERFORMED
FROM AN ORTHOTROPIC NONLINEAR DIFFERENTLY
RESISTANT MATERIAL

Alexandr A. Treschev, Evgeniy A. Zhurin
Tula State University, Tula, RUSSIA

Abstract. This article proposes a mathematical model of axisymmetric transverse bending of an annular plate of
average thickness, the loading of which is assumed to be on the upper surface of a transverse uniformly
distributed load. An orthotropic plate made of a material whose mechanical characteristics nonlinearly depend on
the type of stress state is considered. The most universal, built in the normalized tensor space of stresses
associated with the main axes of anisotropy of the material are taken as defining relations. The loads were taken
in such a way that the deflections of the middle surface of the plate could be considered small compared to its
thickness. Fastening plates are presented in two versions: 1) rigid fastening on the outer and inner contours; 2)
hinge bearing on the outer and inner contours. As a result of the formulation of the boundary value problem, a
mathematical model was developed for the class of problems in question, implemented as a numerical algorithm
integrated into the application package of the MatLAB environment. To solve the system of resolving
differential equations of plate bending, the method of variable parameters of elasticity was used with a finite-
difference approximation of the second order of accuracy.

Key words: transverse bending, axisymmetric deformation, ring plate, orthotropic material,
nonlinear dissociation, small deflections

N3I'b KOJIBHEBBIX IIJIACTHUH,
BBINNOJIHEHHBIX U3 OPTOTPOIIHOI'O
HEJUHENHO PABHOCOMNPOTUBJIAIOIIETIOCS
MATEPHAJIA

A.A. Tpewes, E.A. ZKypun

Tynbckuii rocynapcTBeHHBIH yHUBepeuTeT, T. Tymna, POCCUSA

AnHoTanusi. B rmpeincTaBieHHON cTaThe NpeAsaraeTcs MaTeMaTHdecKas MOJENb OCECHMMETPHUYHOIO
TIOTIEPEYHOTr0 M3ruba KOJIBIEBOM IUIACTUHBI CPEIHEH TOJIIMHBI, HAarpyXKEHHEe KOTOPOH IPEZroJaracTcsi Io
BEPXHEH MOBEPXHOCTU MOMEPEYHON PaBHOMEPHOH paclpenenéHHoN Harpy3Kkoi. PaccMarpuBaeTcs opToTponHast
IJIaCTUHA, BBIMOIHEHHAs U3 MaTepHasa, MEXaHUYECKHE XapaKTEPUCTUKNA KOTOPOr0 HEIMHEWHO 3aBUCAT OT BUJA
HaINpsDKEHHOT'O COCTOSIHMS. B KadecTBe OMpenernsiomx COOTHOIICHUH NMPUHATH HauOojee yHUBEpCAIbHBIC,
MIOCTPOEHHbIE B HOPMHUPOBAHHOM TEH30PHOM IIPOCTPAHCTBE HAMpPSDKEHUH, CBS3aHHOM C TJIABHBIMH OCSIMH
AQHM30TPOIHMU MaTepHaia. BeanduHbl Harpy30K NPUHAMAJIKCh C TAKMM PacyeToOM, YTOObI MPOrHObl CPEIUHHON
MOBEPXHOCTH IUIACTHHBI MOTJIM CUHTATHCA MAJbIMHM 110 CPABHEHHUIO C €€ TOJIIUHON. 3aKkperuieHus IUIacTHH
NpEeCTaBICHbl B JABYX BapHaHTax: 1) kKECTKOE 3aKperyieHHe MO BHEIIHEMY U BHYTPEHHEMY KOHTypam; 2)
HIApHUPHOE OMMPAaHKE 1O BHEIIHEMY M BHYTPEHHEMY KOHTypaM. B pe3ynbTaTe mMOCTaHOBKM KpaeBOW 3aaadu
Obuta pazpaboTaHa MaTeMaTHdeckas MOJENb Ul paccMaTpUBAaEMOro Kiacca 3ajad, peald30BaHHAas B BHJE
YHCJICHHOTO alrOpPUTMa WHTEIPUTUPOBAHHOTO B MAKeT MPHUKJIAAHBIX mporpamm cpeasl MatLAB. Jlng pemenus
CHCTeMBI pa3pemaromux JuddQepeHInantbHbIX YpaBHEHNH U3rn0a MIaCTHH UCIIONB30BAJICS METOJL IIEPEMEHHBIX
MapaMeTPOB YIPYTOCTH ¢ KOHEYHO-PA3HOCTHON allpOKCUMAIMEN BTOPOTo MOpsiKa TOUHOCTH.

KaroueBblie ciioBa: HOHGpe‘IHLIfI I/ISFI/IG, OCCCUMMCTPUYIHOC ,I[e(l)OpMI/IpOBaHI/Ie, KOJIbIICBas IJIaCTHHA,
OpTOTPOHHBIﬁ Matepuall, HeJIMHEHHAs Pa3HOCONPOTUBIIAEMOCTD, MAJIbIC HpOFI/I6LI
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1. INTRODUCTION

Currently, more and more often designed and
built buildings, manufactured parts of machines
and devices, which until recently had no
analogues. These objects require deformation-
strength calculation of high accuracy, as the
slightest error at the initial stage of design can
lead to serious accidents.

Over time, more and more technological
materials are created for which the theory of
calculation of traditional (classical) materials is
not acceptable. That is why the development of
new and modernization of old models is an
urgent task of modern construction and
engineering.

It is obvious that researchers need not only to
develop a mathematical model, but also to test it
experimentally, and compare it with other
models for similar designs. With a deeper study
of the materials it will be possible to calculate
the components and structural elements with
minimal errors. This will allow you to develop a
design without waste of material.

In this paper we consider the axisymmetric
deformation of the annular plate of medium
thickness. The plate material is adopted
orthotropic. The nonlinear properties of the
material appear already in the early stages of
deformation and strongly affect the subsequent
stress distribution. It is not possible to reliably
describe the deformation of such a plate by
conventional linear functions.

The development of the theory of calculation of
plates of resistive anisotropic materials have
been studied by many scholars such as S.A.
Ambartsumyan, R.M. Jones, C.W. Bert, A.V.
Berezin, A.A. Zolochevsky, N.M. Matchenko,
A.A. Treshchev and others [1-33].

S.A. Ambartsumyan in his works [1, 2, 3]
proposed the simplest variants of defining
relations in the form of equations of state. In the
framework of the theory of small elastic
deformations, piecewise linear relations
between the principal stresses and strains were
established, and the question of the relations
between shear stresses and shear was not
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discussed. In S. A. Ambartsumyan's model [1,
2, 3] the field of principal stresses is divided
into regions of the first and second genera [3, 4,
5]. This model is similar in form to the classical
generalized Hooke's law of orthotropic matter,
but the elastic moduli and the coefficients of
transverse deformation in the directions of the
principal axes are determined separately from
the experiments on axial tension (Ex’, vim*) and
compression (Ex", vikm ). The direct application
of the proposed relations is possible only in
cases when the distribution of the principal
stresses by their signs at different points of the
body is known in advance, and also if the model
constraints on the constants arising from the
symmetry condition of the compliance tensor
are observed.

Model R.M. Jones [6, 7, 8, 9] it is based on the
construction of a matrix of weighted
malleability, the symmetry of which in areas
with different signs of the main stresses is
achieved by introducing weight coefficients into
the non-diagonal components. The weights
represent the pairwise correlation of modules in
the principal stresses

k, = |0'1|/(|0'1| +|<72

), k2=|62|/(|0'1|+|0'2|).

The simplest model of equations of state for
anisotropic multimodule bodies is proposed by
C.W. Bert [10, 11, 12, 13]. This model is
applicable to fibrous materials when it is
considered that the components of the
compliance matrix depend on the sign of normal
stresses arising in the direction of the fibers, that
is, when stretching along the fibers, one
symmetric matrix of compliance is used, when
compressing — another. The rigor of this model
is violated when the normal stresses along the
fibers are equal to zero.

A more complex, but no less controversial
model is proposed by A.A. Zolochevsky [14,
15,16, 17, 18, 19, 20, 21], which introduced an
equivalent stress, the second degree of which is
determined by the potential of deformation.
Potential constants are "hidden" in expressions
that make up the equivalent voltage. The
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equivalent stress is determined by the sum of
the linear and quadratic joint in-stress variants.
Due to the presence of irrationality in the stress-
strain coupling equations, it is not possible to
distinguish the compliance matrix in General.
The obtained nonlinear relations are sufficiently
complex and contain a large number of
constants to be experimentally determined. In
particular, for an orthotropic material in a quasi-
linear approximation, it 1is necessary to
determine thirty-two constants, and only 18 of
the simplest reference experiments (uniaxial
tension and contraction in the direction of the
main axes of orthotropy and at an angle of 45°
to them) can be established.

2. METHODS

It is obvious that even a detailed analysis of the
most well-known models of determining ratios
of anisotropic materials of different resistances
indicates that these models are not free from
serious shortcomings and are based on separate
hypotheses, often unfounded by experimental
facts. In particular, E.V. Lomakin in [22, 23]
formulates the strain potential for anisotropic
materials in the form of an energy function from
the ratio of the mean stress to the stress intensity

E=0/0,
(where
0c=0,6,/3

— average stress,

o, =, /1,SSgSy

— stress intensity;

S; =0, =00
— stress deviator components; 0; — Kronecker
symbol) multiplied by the convolution of the
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fourth rank compliance tensor with the second
rank stress tensors in the principal axes of the
anisotropy of the material. A serious drawback
of the introduced relations is the discontinuity of
the functional parameter &, which leads to un-

certainties of an infinite nature, which has been
repeatedly pointed out in [24, 25].

In the works of Matchenko N.M. and Treschev
A.A. [25, 26] are the deformation potentials for
anisotropic dissolving materials allowing the
quasilinear approximation, normalized vector in
nine-dimensional space of stresses. In these
works the equations of state of two levels of ac-
curacy are obtained. Despite the rationality of
this approach, the obtained relations are also not
free from significant drawbacks, which for the
equations of the first level of accuracy are com-
plex functional dependencies between uncorre-
lated constants of materials, and for the equa-
tions of the second level — an excessively large
number of constants to be experimentally de-
termined, which requires the involvement of
experiments on complex stress States.

In subsequent works [27, 28, 29] Treschev A.A.
carried out a corrective formulation of the
equations of state for different classes of
anisotropic materials, both in quasi-linear and in
non-linear formulations. The nonlinear model
[31] uses equations of state represented by the
type of generalized Hooke's law for anisotropic
materials by type:

(0.a,) 0, Hypy=H

rq’ kmpg —

k,m,q, p,s,t,=1,23,...

ekm = Hkmpq qum;

In particular, for orthotropic material, these de-
pendences are presented as follows:

ery =(4y111+Byyy1-apy)-oq) +
+[A1122 +B1122 '(0511 +0522)]'0'22 +
+[A1133 +By133-(ay +0‘33)]'U333
€2 :[A1122 +By127 '(0511 +0522)]'011 +
+(A2222 +By2) '0522)‘0'22 +
+[A2233 + B33 (@ +0‘33)]'0335
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€33 I[A1133 +Byi33-(ay +0‘33)]'511 +
+[142233 + B3 -(an +a3; )]'0'22 +
+(A3333 +By333-33)- 033
262 = Cin (U ) Tia
763 = Chans (O-i) ) z-23-

2e)3 =Cy313(0; 1713
a, mk’ ”ks fm > :Bkma Iukm’ 8im>

(1)

where
a;,=0;/5;

—normalized stresses in the principal anisotropy
axes of the material;

_ S 2 2 2 2 2 2
S—(Gl.j -O'ij) —\/O'” + 05, + 035 +2(z’l2 + 1755 +z'31)

— module full voltage (norm of the space of

stresses);  Ajums Bjkm:Cjm» — nonlinear functions

that determine the mechanical properties of a
material.

For orthotropic bodies the number of independ-
ent material functions reaches fifteen [29, 30,
31]. The presentation of these functions, which
determine the properties of the material, is car-
ried out by approximating the experimental dia-
grams of deformation under uniaxial tension
and compression along the main axes of anisot-
ropy and diagrams obtained for shear in the
three main planes of orthotropies by processing
them in the program Microcal Origin Pro 8.0
(Microcal Software Inc.). In this case, for struc-
tural orthotropic nonlinearly resistive composite
material AVCO Mod 3a [29, 30] are presented
as follows:

Ay (0,)=0.5-[1/ Ef (0,)+1/ E; (o)}

B (0,)=05-[1/E (c,)-1/E; (5,)}

Vi) vil(o)].

Aumn1) =03 {E;(af Em<o—i)J’

05| Vinle) vi(e))|
By (0,)=—0.5 |‘E;(O'l) Em(O'i)J’ o
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Conn(0,)=1/Gy, (0, )

ki( 1) ag +my -0, 007
:(O-):ﬁ“;m_'_ﬁkm G +1lem. 1’2’

Gion(0:)=Etom + Plon i + Qm O -

km’ ﬂkm’ ﬂkm’ gkm’ pkm’ qkm
— the constants of nonlinear material

+ + +
where a,, m,, n_,

Pion> Qiom
functions determined by processing of experi-
mental diagrams of deformation by the method
of least squares and presented in table 1.

This model of nonlinear orthotropic resistive
material [29, 30, 31] is currently the least con-
troversial, gives the results as close as possible
to the experimental data and therefore is the ba-
sis for the construction of the method of calcu-
lating the plates.

Consider the stress-strain state of the annular
plate under loading by a transverse uniformly
distributed load of intensity “q” (MPa). Material
of plates taken with non- llnear characteristic
having cylindrical orthotropy and properties of
resistivity. In this case, we focus on two options
for the support of the object of study:

a) plate with rigidly clamped contours according
to Figure 1a;

b) the plate is hinged on the contours in accord-
ance with Figure 1b.

Due to the axial symmetry, the problems are
considered taking into account the cylindrical
coordinate system (r, 0, z). In this case, the tra-
ditional model assumptions [30] are considered
to be valid in the following form: 1) the normal
to the median plane after deformation is rotated
by an angle y, relative to the circumferential

coordinate axis 0; 2) when determining the pa-
rameters of the stress state, the influence of
normal stresses o, is neglected due to their

smallness.
Based on the above assumptions, for
deformations at the points of the plate we have:

er :u,r+Z'l//0,r;
e, =ulr+z-y,/r;
yrz :W,r+l//9

)
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Figure 1. Design scheme of the ring plate with two types of support:
a) rigidly clamped circuits; b) pivotally supported circuits.

where u# — radial movements in the middle sur- For the convenience of further presentation, we
face; w, — rotation angle of the plate section introduce the following designations:

relative to the axis; 0; w — deflection of the

middle surface of the plate. Cin = Allll(o-z )+ Bllll(o-z) a,,
Taking into account the accepted hypotheses of C\1ys = Ay122(0, )+ B, 1po(0,)- (@, + 0!5)
equation (1) we transform to the form: Cis A1133(O'z )+ Bll33( 1)
e, —(Allll( )"’Bllll( ) ar).ar_l_ 2222:‘42222(0-1)"'82222( 1) Xy, (5)
+[4y125(0,)+ Byipa(o;)-(a, + ay)]-04; Coons = Ayos(0,) + Boss(0,)- 25
eg =[41122(07)+ Bi12a(0)- (@, +ap)]- 0, +(4) Cisis = Cusnlor }
+(42222(07)+ B 03)- @) 0 Having expressed stresses through deformations
€, = [A1133( ')+ B, 133( ) @ ] o)+ taking into account the simplifying equations
+ [A2233( )+ 32233( ) a 9] og; (3)-(5), after simple mathematical manipulations
. . we come to the following dependences:
erz C1313(O-1 ) z-rz’
where O, = Allll(u,r _Z"//a,r)"" A1122(14/7'_2"//9 /V);
Oy =A1122(u,r _Z"//e,r)+ Ayl r =2y, /)
a. =o,/S; (1//9+w1)
s 7, =t (6)
Ao =09 /0> Ay
a :O- /S A11]I :C2222/(Cllll 'C2222_C12122l
S: VO- +09 +Trz’ A1122:CVIIZZ/(CWIIII.C12222_Cw]2122) (7)
o, :\/o-r2 -0, -0, +Gg +3z-r22. Asyyy = Clll]/(Cllll 'C2222_C12122

Aq313 = Cyz13;
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Table 1. AVCO Mod 3a composite material constants [29, 30].

) The first element The second The third element
Type of prototype Technical of a nonlinear clement of the nonlinear
test parameter function of the nonlinear function
U function U
1 2 3 4 5
o a m, n’
? 1.058-10°1° 62.829 1.535-10°°
£ E;(c,), Pa % i 7
E AR 2.864-1071° -105.476 5.893-1077
o m; "
% 2.301-10°1° 88.349 3.711-10°
‘% /11+2 1+2 /v‘1+2
E 0.158 -3.106-10° 2.192-107"
i p9 B £,
8 0.103 ~1.79-10° 9.106-10°'8
= 1 ﬂ+ u+
e v (o 13 13 13
é inle) 0.203 215107 6.148-10"7
Ec; 153 18;3 /U2+3
= 0.104 0.87-10710 6.741-107"7
g /1;1 ﬂ3+1 /J3+1
0.146 —0.146-1071° 6.971-107"7
a; m; n
9.988-10° -12.943 6.71-1077
E;(0,). Pa @, m "
= 2.326-10'° —436.81 —6.077-1077
g a; my n
& 5.14-10° ~129.15 T7831-10°°
on _ - -
g § AL B My
7; g 0.118 —-1.457-107° 2.136-107"7
= - - -
'% g A o Hoi
%“5 0.06 1.77-107° 2.947-107"7
g v (O_) A B My
= A 0.264 ~1.118:10° 3.01-10"7
:% Az B Hys
5 0.189 2.156-107° 2.104-107Y
A5 o My,
0.134 —0.457-1071° 5.819-107"7
Volume 16, Issue 1, 2020 135




Alexandr A. Treschev, Evgeniy A. Zhurin

1 2 3 4 5

% g 147 qi,
£58 4.07-10° ~1,6 -8.38:10°
g & &
= '8 823 P23 q>3
= = Ginlo;), Pa
ZE% on(c7) 1.723-10° 16.899 11107
< i% 831 P31 qs

2.43-10° —54.455 ~1.97-10°°

Deformations e, are not explicitly included
here, but they are easily computed from the
third equation of the system (4).

Taking as a basis the new physical equations,
we thus do not make changes in the dependence
of the static-geometric nature, and therefore the
static conditions for the annular plates in a cy-
lindrical coordinate system will be presented in
the traditional form [29, 30]

N,, +(N, =N,)/r=0;

0., +0. /r=-q; (8)
M, +(M,-M,)r-0, =0

where N,, N,, Q,, M, , M, — forces and

moments in cross sections of plate.
Forces and moments are determined by integrat-

ing expressions for stresses (6) over the plate
thickness:

hi2 hi2

N, = J.ardz; N, = Iagdz;

~h/2 ~h/2

hl2
Qr = J.T}”Zdz; (9)

~h/2

hi/2 hi/2

M, = Iar-zdz; M, = Iag-zdz;
~h/2 ~h/2

From the joint consideration of dependences (6)
— (9), the resolving equations of axisymmetric
bending of plates of average thickness having
cylindrical orthotropy and nonlinear dependence
of mechanical characteristics of the material on
the type of stress state follow:
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Dll,r 'u,rr+K11,r 'l/lﬁ,rr+D12,r U, /r+
+Kpp, Wo, [ r+(Dyy-u, +Kyyp e, +
+D12'U/]"+K12'l//9/r—D12'l/[’r+
+K121//97r+D22'U/F+K22'l//9/r)/r:0;
DI3,r .(W,rr +l//6,r)+Dl3(w,r +lr//0 )/r:_% (10)

Kyp-u, + Ry yo, +Kyp-ulr+
Ry Wy lr—=Kpu, + Ry ye, + |-
6K22M/F+R22'(//9/V
= Dy3-(w, +yy)=0.

where D11, D12, D2, D13, Ki1, Ki2, K22, Ri1, Ri2,
R>> — the integral of the function on the plate
thickness, resulting after integration by formulas
(9); Dit,r, D12,r, D33,ry Kityr, Ki2,r, Rty Ri2, —
derivatives of integral functions on the radial
coordinate.

To solve the obtained equations (10) we use the
finite-difference method with the second-order
approximation of accuracy [32, 33].

3. RESULTS AND DISCUSSION

To solve this class of problems the program is
developed in MatLAB. Considered 2 options for
fixing the plate: hinge and rigid clamping at the
edges. Also, 3 variants of the decision were con-
sidered. For clarity, each of the solutions is indi-
cated by its own, different from the other line:

— considered model [27, 28, 29];

= == — solutions without taking into account
the properties of resistivity taking into account
the stiffness of the material only in axial
tension;
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Deflections of the plate from the value of the load

(hard sealing)

Load , *10A5Pa

0
o™ 1| 2|3 |4 |5 6|7 8|9 10n
-0,00005
-0,0001
£ -0,00015
2
3
% -0,0002
=1
-0,00025
-0,0003
-0,00035
Figure 2. Deflections of the plate from the load.
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Figure 3. Deflection of the plate along the coordinate r.
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Figure 4. Stress distribution o, over the thickness of the annular plate in typical cross-sections, PA.

Volume 16, Issue 1, 2020 137



Alexandr A. Treschev, Evgeniy A. Zhurin

\1.2*10"6 2.52*10"6 4.8*10"5 -1.76*10" -{.02*10"6 0.05
N 7 X .
k AN — N ~—
N — — D —
Z ~]
N 0
Ny —
N 2\
a— BN — N\
N N |
1.5*10’-\6 -2.0*1076 -4.15*10"5 1.5%10~6 1.22%10"6
&b 05b Eb b -0.05
ioure 5. Stress distribution op over the thickness of the annular plate in ical cross-sections, .
Fig 5. St distribut the thick th lar plat pical t PA
25 x10°4 The distribution of the moments in a plate of width "b"
. T T I T
2 _!.“ |
1.5\ "
1 | \.“ .. .’40 |
0.5F b Y : e o
0 fien "’-_ N - P 4 i
-0.5 | & i ge -.‘ |
-1 | ! e = I !
0 20 40 60 80 100 120

Number of points along the "r"

Figure 6. Distribution of M, moments on the annular plate.
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Figure 7. Distribution of moments My on the annular plate.
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Deflections of the plate from the value of the load
(hinged support)

- Load, *1045
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Figure 8. Deflections of the plate from the load.
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Figure 9. Deflection of the plate along the coordinate r.
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Figure 10. Stress distribution o, over the thickness of the annular plate in typical cross-sections, PA

Volume 16, Issue 1, 2020

139



Alexandr A. Treschev, Evgeniy A. Zhurin

1.9%10" 7 8.0*10" 6 1.46%10" 6  -3.4%10"-6 -5.2*10%6
0.057 ; 7 < W
—~ : 7 AN AN
I
— 7 2
ot
L // Y Vi =
7 : / —
| £ /4 / <
-0.05 -0.98*10"~ 7 -6.0%10" 6 -0.79%10~ 6 4.0%10"6 7.0*10"6
0 J—J:] 05b %b b

Figure 11. Stress distribution oy over the thickness of the annular plate in typical cross-sections, PA
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Figure 12. Distribution of M, moments on the annular plate.
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------- — solutions without taking into account
the properties of resistivity, taking into account
the stiffness of the material only in axial
compression.
After processing the calculation results, the fol-
lowing graphs and charts were obtained:
e deflections from the load value;
e deflections on the coordinate "r";
e distribution of stresses in the plate in dif-
ferent sections;
e horizontal movement and rotation angles
of the middle surface of the plate;
e distribution of moments in the plate.
The main results are given on the graphs for the
section of the ring plate "R-a". From 2 to 11
figure shows the results of the calculation of the
plate with a rigid clamping, and from 14 to 21
figure — with a hinge support.

4. SUMMARY

During the implementation of the model of
deformation of ring plates under the action of
uniformly distributed loads, the basic values of
the parameters characterizing their stress-strain
states are obtained.
As a result of comparison of the solutions of the
considered problems on the presented
deformation model with the data of the
traditional nonlinear theory without taking into
account the properties of the resistivity, the
following features characterizing the differences
in the stress-strain state parameters are noted:
1) A rigidly fixed plate:
e the difference in deflections is 1.3%;
e the difference in the values of forces in
different sections of the annular plate var-
ies in the range of 1.5-3% for or; 13-17%
for orz; 5-7% for c0;
e c. the difference in horizontal displace-
ment values is 6%;
e d. the difference in the values of the an-
gles of rotation is 4%;
e c. the difference in the values of the mo-
ment of Mr 1s 0.5-1%; and M6 — 10-15%.
2) Hinged plate:
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a. the difference in deflections is 1.5-2%;
b. the difference in the stress values in dif-
ferent sections of the annular plate varies
in the range of 7-15% for or; 5-19% for
orz; 10-14% for o0;
e c. the difference in the values of horizon-
tal displacements is 2-4%;
e d. the difference in the values of the an-
gles of rotation is 15-17%;
e ¢. the difference in the moment Mr is
15%; and M0 - 25%.
Thus, it is established that the non-linear
material resistivity is not taken into account
when considering the deformation parameters of
various structures made of such materials,
which leads to noticeable errors.

5. CONCLUSIONS

As a result of the study, a model of deformation
of orthotropic materials was concretized and
applied, which most accurately and adequately
describes most of the currently known nonlinear
materials. The model is based on the processed
results of experiments on deformation of
materials with different resistance, material
nonlinear functions and constants [30].

To solve the problem of deformation of a ring
plate from a nonlinear orthotropic material
according to the developed model, the method
of variable parameters of elasticity with a finite-
difference approximation of the second order of
accuracy was used. Developed the algorithm of
decision of task "calculation of axisymmetric
deformation of circular plates, the average
thickness of the non-linear orthotropic resistive
materials with small deflections". Practical
application of the algorithm and evaluation of
iterative methods of the solution were
implemented with the help of "MatLAB"
software package.

As a result of the work done, a number of test
problems on the topic of deformation of plates
of average thickness from nonlinear orthotropic
materials were solved, the parameters of the
state of the plates at different stages of loading
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by a transverse uniformly distributed load were
determined, two options for fixing the ring
plates were considered, the results of comparing
three.
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