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SEARCHING SHEAR FORCES FLOWS FOR AN ARBITRARY

CROSS-SECTION OF A THIN-WALLED BAR: DEVELOPMENT

OF NUMERICAL ALGORITHM BASED ON THE GRAPH
THEORY

Vitalina V. Yurchenko
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Abstract: Searching problem of shear stresses on outside longitudinal edges of an arbitrary cross-section
(including open-closed multi-contour cross-sections) of a thin-walled bar subjected to the general load case has
been considered in the paper. Detail numerical algorithm intended to solve the formulated problem using
mathematical apparatus of the graph theory has been proposed by the paper. The algorithm is oriented on
software implementation in systems of computer-aided design of thin-walled bar structures.
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MOUCK MOTOKOB KACATEJBHBIX YCUJIU
JJIA TPOU3BOJIBHOI'O CEYEHUA TOHKOCTEHHOI'O
CTEPXHS: PASBPABOTKA YUCJIIEHHOI'O AJI'OPUTMA

HA OCHOBE TEOPUU I'PADPOB

B.B. IOpuenko

KueBckuil HalMOHAIBHBIN YHUBEPCUTET CTPOUTENILCTBA U apXUTeKTypsl, I. Kues, YKPAUHA

AnHoTanusa: PaccmoTpeHa 3ajaya NoOMCKa 3HAYEHHUM IOTOKOB KacaTeNbHbIX YCHUJIUN IS TPOU3BOJIBHOIO
cedeHus (OTKPBITO-3aMKHYTOTO MHOTOKOHTYPHOTO CEYECHHsI) TOHKOCTEHHOTO CTEpXKHS A OOIIero ciydas
HarpyXeHus. Pa3paboTaH [OeTampHBI aITOPUTM YHCICHHOTO pEHmIeHHs C(HOPMYIMPOBAHHONW 3aJadél C
HCTIONF30BaHUEM MAaTEMAaTHYEeCKOTO ammapara TeopuH rpadoB, OPHEHTHPOBAHHBIA Ha MPOTPAMMHYIO
peanu3amnuio B CHCTEMaxX aBTOMaTH3UPOBAHHOTO IPOCKTHPOBAHMS TOHKOCTCHHBIX CTEP)KHEBBIX CHCTEM.

KiroueBble ¢j10Ba: TOHKOCTEHHBIN CTEPIKEHb, IPOU3BOJIBHOE CEUCHUE, TIOTOKU KacaTENIbHBIX YCUIIUIA,
3aMKHYTBII KOHTYp, Teopusi rpadoB

INTRODUCTION

Let us consider the problem of shear stresses on
longitudinal edges of an arbitrary section of a
thin-walled bar that can consist of several closed
(connected and/or disconnected) contours
and/or also open parts. This problem has been
studied by V. L. Slivker [1, 2, 8] for the general
loading case of the thin-walled bar.

Further investigation in this area requires
development of detail algorithm intended to
software implementation in a computer-aided
design system for thin-walled bar structures. It is

reasonable to construct this algorithm using
mathematical apparatus of the graph theory [11].
The graph theory has been applied in [7, 10, 12]
for calculation the geometrical sectional
properties of thin-walled bars with hybrid
(open-closed) types of cross-sections. The graph
theory has been also used to analysis of thin-
walled bars with multi-contour cross-sections by
G. Alfano in [6] and A.Proki¢, A [10].
Herewith, the problem of the contoured
distribution of shear forces flows for hybrid
(including multi-contour, open-closed) thin-
walled sections was out of consideration.
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1. INITIAL DATA AND SYSTEMS
OF COORDINATES

Let us introduce on the plane of thin-walled
section the Descartes rectangular system of
coordinates yOz with origin of the system
placed in center of mass of the section
(Fig. 1.1), direction of the coordinate system
axes coincides with direction of principle axes
of inertia uOv .

Figure 1.1. Cross-section of a thin-walled bar
with indication of positive directions of forces
and moments.

Let us introduce in further consideration the
system of angular position coordinate with
origin of such system in certain (in general case
randomly selected) sectional point. Each
considered sectional point can be associated
with angular position ¢ . The value ¢ should be
calculated as geometrical length of the curve
which is constructed from the origin to the
considered sectional point taken along sectional
contour. We also assume that increment of the
angular position ¢ corresponds to the positive
direction of section path tracing.

We assume that integral geometrical properties
of the section are known: 4 — cross-sectional
area, /, and /_ — second moments of area

relating to the main axes of inertia which
coincide with axes of global Descartes system
of coordinates yOz; I, — sectorial moment of
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inertia; /, — second moment of area for pure

torsion. We also assume that elasticity module £
and shear module G are constants for the whole
section of the thin-walled bar.

In general case a thin-walled bar is subjected to
the action of eight force factors. Axial force N,
bending moments M and M_ relating to the

principle axes of inertia and bi-moment B are
applied at the center of mass C (see Fig. 1.1) of
the section and caused normal stresses in section

o,(x,¢):

o) (xnc) = N(x), M;fX) 2 (6)+ y
M. (x) B(x) |
+ 7 vi(s)+ 7 @,(s)

where y,(s), z(¢), @,(s) — coordinates and

sectorial coordinate of the considered point in
cross-section of a thin-walled bar.

Shear forces O, and Q., free torsion moment

M_ and moment of restrained torsion A/, are

applied at the shear center 4 of the section
(Fig. 1.1) and caused shear stresses in cross-
section, which can be written in terms of shear

forces flows T (x,¢) as presented below:

T, (x.)
9, (g)

7,(x¢)= (1.2)

where &,(s) — thickness of considered ;"

section element.
An arbitrary section of a thin-walled bar can be
described by the set of sectional points

P={p,={»,7,}lp=1n,]

- th - -
(v, and z, — coordinates of p™ sectional point

in global Descartes coordinate system yO:z) and
by the set of sectional segments
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Figure 1.2. Arbitrary cross-section of a thin-walled bar determined on the set
of sectional points P and set of sectional segments S.

= (5= (ot} 1=,

which connect some two sectional points
(Fig. 1.2), where n, and »n, — numbers of

sectional points and segments accordingly.
Specified segment thickness

8={5, |s=1n]

corresponds to each sectional segment.
The set of sectorial coordinates

® :{a)p | p :l,np}
and the set of normalized sectorial coordinates
@ = {wp | p =1,np}

of the section correspond with the set of
sectional points P, assuming that the values of
the sectorial coordinates and normalized
sectorial coordinates in each cross-sectional
point are known [4].

The set of angular positions

Volume 15, Issue 1, 2019

s={a. ={er 0}l =1n, -1

is actually intended to implement numerical
integration taken along thin-walled section
contour (for example, when calculating
geometrical properties of the cross-section,
values of shear forces flows, etc.), where x —
ordinal number of segment, n_-1 — number of

sectional segments. It should be noted that an
angular positions are attributes of the ends of
sectional segments.

Initial data about a thin-walled section should be
mapped onto the set of angular positions

S, K‘=1,ng -1,

by means of formation corresponded sets of
sectional segments

-5 _ start d | . _.start _end
s = {55 ={er.c0'} g 60 <
set of sectorial coordinates
s _ ) e start end | . . start end
@ _{ o {a)l( 1 M } x 'k - (")}

for ends of sectional segments as well as the set
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of thicknesses

8 ={5: < 8}

for segments, k=1, n. -1.

2. DISTRIBUTION OF SHEAR FORCES
FLOWS TAKEN ALONG CLOSED
CONTOURS OF AN ARBITRARY
CROSS-SECTION OF THIN-WALLED
BAR

2.1. Construction of connected graph
G={V,R} associated with a section of thin-

walled bar.

An arbitrary cross-section of thin-walled bar can
be associated with planar connected non-
oriented graph G determined on the sets of

G={V,R}, where V — finite set of graph
vertices, R — the set of graph edges or the set of

unordered pairs on V (see Fig.2.1) [9].
Herewith, for each graph edge

r={u,v}eR

we assume that u = v.

Vertices of the graph G are associated with
characteristic sectional points only, which are:
1) branch points — sectional points connected
with more than two sectional segments,

v ={pIv=Ln],

here »n, — number of these points;

2) end points — sectional points connected with
only one sectional segment

Voud :{ﬁg |g:]z},

here n, —number of these points.

Edges of graph G are associated with sectional
parts located between characteristic sectional
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points (with unbranched sectional parts).
An edge of the graph G, as a rule, may contain
several sectional segments, so full information

about edge R‘ of the graph can be described by
the set of sectional segments

r=1n

—c
S crj !

r !

from the array
§° =157 ={er" e e =Ln 1, 57 e,
belonged to considered graph edge, 57 € R :
RS ={5 5 €S* A5 eR, |r=1n],

here n_, — number of segments for /" graph

edge. The set of all graph edges defined on the
set of segments S° can be expressed as

RE={R:|j=1n].

We also assume that an arbitrary section of thin-
walled bar may contain some quantity of closed
contours. Each closed section contour is
associated with cycle of graph G or with

vertices cortege v;, vi, v}, ..., v\, such that

ViV Vie

i+l i+17

where n, — number of closed contours in
section (number of graph G cycles).

Some closed section contour I'7 (basic cycle of
the graph G) can be definitely determined by
the set of graph edges R € R® belonged to the
considered contour

07 ={R;|j=1n, |},

where n,,. — number of graph edges belonged
to k" closed section contour.
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Figure 2.1. Graph G = {V, R} associated with cross-section of thin-walled bar

(graph vertices — v,, v,...v,,, graph edges — r,, r,...1;3).

Besides, it’s convenient to have the mapping of
closed section contour I')" onto the set of

sectional segments

s, 50 eS8t
belonged to considered closed contour,
Vm=1, Ny
- 5° eSSt
I =455 I
JR c R :5: cR; AR cTI'F

here n, - number of sectional segments

belonged to 4" closed section contour.
Closed section contours (basic cycles of the

graph G) defined on the set of graph edges R®

and on the set of section segments S can be
described as

@ {17 k=L
and
@ = (I |k=1n,|

accordingly. It should Dbe noted that
identification of closed contours in the section

Volume 15, Issue 1, 2019

@ and ®° can be easily implemented using
depth-first search algorithms on the graph.

Let us compose incidence matrix 1 for graph G’
with dimensions », xn,_,

i={g,li=1n,j=1n}.

Components of the matrix take on following
values: g, =1 —if ™ graph vertex is start vertex

h C £ th ;
for /' edge; g, =-1 —if i graph vertex is end
vertex for /" edge; g, =0 — otherwise. Let us
also introduce in further consideration matrix

il ={lef1i=2n.j=Ln}

composed using modulus of elements g, of

matrix 1.
Next, we can compose the matrix of basic graph
cycles F with dimension », xn,_,

F={/f,} k=Ln,j=1n,.
Components of the matrix take on following
values: 7, =1 — if /" graph edge belongs to A"
basic graph cycle (R$ < T'; ) and edge direction

coincides with the positive direction of path
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tracing; 7, =-1 —if ;" graph edge belongs to

K" basic graph cycle (RS cTj) and edge
direction does not coincide with positive
direction of path tracing; /, =0 — if /" graph
edge does not belong to A" basic graph cycle
(RENT; =)

2.2. Distribution of the shear forces flows

taken along closed section contours

th
Each , edge R, of graph G
corresponds with a constant — edge weight,
Vk:is; e RS AS; €S

j=1n,

9

~
~
I
JiN
o
m
z
o)

,1 o zg/ 2.1)
- Z .[ Z éfg
r=1 Y,

Let us also compose weighting matrix of
unbranched sectional parts (edges of graph G) —
square matrix W with dimensions » xn_ and

diagonal elements p,, j= l_n :
p 0 ... 0
0O p, ... O
w=| . (2.2)
0 0 0 p,
I Pu —Pu —Pu
—Px Dy P
P Pr Pu
_pnkl _pnk 2 _pnkk
Q Q, Q,
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H ‘th
Besides, each ;" graph edge R°® corresponds
with the increment of sectorial coordinate

Ao = {Aaf | j= 1n} :

VK:§: eR?/\s eS¢

Aw; . —Ipdg jda) —1,!‘R<da):

. (2.3)
—Z I do = ZAa)

=1 ¢,

Each closed contour of the section I,

k :].,_nk , corresponds to the following constant
— contour weight, f,.€F, Vj R cI'*:

S

My

Z\f@\n

o) (2.4)

Let us consider the problem of free torsion for
an arbitrary thin-walled section which consists
of certain number of closed (connected and/or
disconnected) contours as well as of open parts.
In general case the following resolving system
of equation for calculation the distribution

factors a, , k =1,n, , of shear forces flows taken
along closed contours of the section has been

formulated in [2] and presented below:
Qlral o]
Q, a, 0
Q, [x|a |=| 0 |; (2.5)

" - -~
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here diagonal elements of the matrix are weights
of K" closed contour,

D = Pr» k=1Ln;

Q, — double area embraced by 4™ closed
contour I';,

Other elements of matrix p,, take on zero
value p,, = p,, =0, when corresponded closed
contours have no common edges:

rENrs =g,

and the sum value of weights for all common
edges [3]:

Pup =Ppu = 2.0, Vr : RECTS ARS T,

Solution of the system of algebraic equations
returns the column vector of factors

A, ={a | k=1,n,

for distribution of shear forces flows taken
along closed contours of the section. Based on
A, we can generate the column vector of

factors for distribution of shear forces flows
taken along graph G edges:

A, =la,|j=1n},

where each element should be determined as:

a,=> fua. f,F, Vj=Ln,. (2.6)
k=1

Since each graph edge R°, j=Ln, is

Volume 15, Issue 1, 2019

described by the set of sectional segments
57 eS° as:

R® ={s7 .57 eS* A5 eR,|r=1n_},

Iz

then it is possible to determine for each
sectional segment 5§ eS° the value of
piecewise constant distribution function for
shear flows taken along section a* (g) as the set
of

a® :{a,i |x=1n. —1}

as follows:

and

otherwise.

3. RESOLVING EQUATIONS FOR AN
ARBITRARY CROSS-SECTION OF
THIN-WALLED BAR

Search problem of shear forces flows for an
arbitrary cross-section of thin-walled bar
(including open-closed multi-contour cross-
sections) can be transformed into minimization
problem of Castigliano’s functional C subject
to constraints-equalities of shear forces flows
equilibrium formulated for cross-section branch
points as well as subject to equilibrium equation
for the whole cross-section relating to
longitudinal axes of the thin-walled bar [2].

Let present the formulated problem as
mathematical programming task, namely as
searching of unknown values of shear forces
flows at start points of unbranched parts of a
section:
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T,={T,,} , j=1n,, (3.1)

which ensure the least value of optimum
criterion — Castigliano’s functional C:

€ =C(7y) = min C(7;). (3.2)

on hyperplane of feasible decisions 3,

described by the follow system of constraints-
equalities:

r
where T, — vector of design variables (searched

shear flows); »  — number of unknown shear
flows; T,

*

C — minimum value of Castigliano’s
functional; f, — function of the vector argument
r

Ty, n, — general
equalities f(f’s) and fx(fs) which define

— optimum decision of the problem;

number of constraints-

C‘%[Z[J (20(-25?12)) o(s)

Let rewrite Castigliano’s functional C (3.4)
with replacement normal stresses o (¢) by the

expression (1.1), and shear stresses 7(¢) — by

T(s) 1

0.
T (g): 5(9‘) :m[TS/ - Ji

J y
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hyperplane of feasible decisions J, in search

space.

For Castigliano’s functional C in further we
will consider Euler’s equations only which
define strain compatibility conditions and are
expressed depending on shear forces flows

r .
Ty {TSJ}T'J.:L”W

So it is well known that in case of quadratic
functional Euler’s equations don’t depend on
boundary conditions, then kinematic boundary
conditions can be accept as homogeneous. As it
was shown by V.Slivker in [2, p.405],
Castigliano’s functional in this case can be
identified with expression for strain energy
formulated in terms of stresses as presented
below:

C-= Z[I( ))25 g)ngrIJ' (T(g))z

2Ee(c) 2Gg(g)5(g)dg

J

or for isotropic material:

(3.4)

r g))25(€)d€”:

the dependence from shear forces flows (1.2) as
presented below:

Qv

(3.5)

z o
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a

gor (v, e, 8,
26| &\ 20\ 4, T T

j(TZ—ZT =S, 2Ty QyS — 2T, M’”S

here we omitted functional dependence from
angular position ¢ (to simplify presented
formulas):

Let us leave in (3.6) those summands which are
dependent from shear forces flows values

r -
T={,) j=1n,

and also denote by the symbol K all other
summands that are don’t dependent from the

o 9
Z[I[ SJ G[ SUJ’J' _];,j GIZ

=1

o3| %, &

J

oy.Jj S
J

where integral

dg
I5

by =

can be calculated according to (4.5), and

integrals

ISvy/ S J.SUZ] 5

J j J

— using following equations (3.9), (3.10) and

(3.11) accordingly presented below,

.36 s TS 5.
Vi:s; eR5 A5 €S

Volume 15, Issue 1, 2019

5, -1, Meg 4]£+KJ;

dg 0
S =-T. ==
j > Glz |

2
] 0,dg +

2 (3.6)
QZSo-'+QySUZ'+MmS0w-' dg
I V] I 2] I ] 5

y z o J

.
vector 7;. In this way we have obtain

expression for Castigliano’s functional C in
terms of shear forces flows [2]

"
I = {TS’/'}T

as presented below:

G (37)

w

0,

J

ds
s, TSJ GI

5 J (38)

;o (s)
”g (3.9)
— l (Sg \start + 4Sg ,mid Sg end)
~ 65]5 0zZ,K oz,K oz,K
. (g)dg
S = oy.J _
" I - (9)
' (3.10)
- Z(W (Sp 4557+ Sf:::d)),
Ss,,(s)ds
ha,j — r_[ 5(9') -
(3.11)

ow K ow K 0w K

= Z[ (S§ start +4S¢ ,mid + 85 \end )]

Let us define the following column vectors

lel



consisting of », elements, Vj =11, (according
to the number of edges of graph G):

Shz,l Shy,l
= Szz,Z P Sh 2
Shz - I: ' hy :y ;
Shz,n Shy,n
(3.12)
Shw,l
_ S
Shw _ /1:(0,2 ’
S

Using weighting matrix of unbranched sectional
parts W (2.2) introduced above as well as

column vectors S,., S, and S, presented

above (3.12) we can rewrite Castigliano’s
functional (3.8) as the following vector-matrix
equation:

1
2G

r r r
T/WT, - T

C-=
i (3.13)

rT Qz r rT ]\42,7

s GI, S =1 Gl,
Next, for each section branch point we can work
out equation of shear forces flows equilibrium
in terms of projections on the longitudinal axis
of the thin-walled bar. In order to obtain general
view for these equations (the system of
equations by the number of branch points in the

section) we can use incidence matrixes I and |I|

introduced above which reflect topological
structure of considered cross-section of the thin-
walled bar:

(i|+1)7, —(ji|-1)7, =0, (3.14)

r S
where T :{Tsyj}T,jzl,nr — vector of shear
forces flows at start points of unbranched
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r .
sectional parts; 7, = {TEJ}T , j=1,n_— vector of

shear forces flows at end points of unbranched
sectional parts:

r r r
T,=T,—AT;

(3.15)
r .
here AT:{ATJ} ,j=1n_— vector of shear

forces flows increments for each unbranched
sectional part:

r or or M_T
AT, =28, 458, 47280, (3.16)
rr r
where vectors S_., S ., S, are presented
below:
z1 Sy,l
~ 5 ~ S,
SZ = ! Sy - }L !
Sz,n Sy,n
(3.17)
Sw,l
- S
S,=| 7
Sw,n
rr r
and components of vectors S_;, S, ;, S, ; can

be calculated as follow, Vi :s; € RS A5 €S°:

S., =7 (¢)d(s)de =
(3.18)

= 2(5515 (yg’ + lAyiD;
K=1 2

S, =[=(5)5()ds =

-
7

ATyl

(3.19)
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Sy = Iwg(g)ﬁ c)dg =

=S 5[ s+ Laas ||
k=1 2

Let us rewrite the equation (3.14) taken into
account the equation (3.15), we obtain the
following:

(il+1)7;
(il+1)7;

(3.20)

(- 1)+(7-a7)=0;

(1Y% +{i-T)a7-0;

207, +(|i|-1)AT =0;
or taken into account the equation (3.16):
ZITS +(|l‘ —l)x

X %S’ 2 S, Mg
AR A

@,]

} (3.21)
0.

z y

The system of equation (3.21) has =n,

equilibrium equations. The last equation is
linear-dependent or a linear combination from
the previous equations. Let us rewrite the
system of equations (3.21) excluding the last
equilibrium equation:

Zi'TS +( I —i')x
_ _ _ : (3.22)
25 .25 (Mg )
L1 I,
where 1’ — incidence matrix of the graph G

truncated by the last row with dimensions

S Q’ Qz Mw
M, =3 J.LTSJ—]—)S e

oz,] I oy, j [

z y @

Volume 15, Issue 1, 2019

s,fpdg——ISoz,p s-< I

(n,~L)xn,, 1" ={g, li=1n -1 j=1n,|;

v

|| — matrix composed using modulus of

elements g, of truncated matrix I' as

] ={‘gv“i=1'”v_1’f=1'_”r}'

We also can work out the last equilibrium
equation relating to the longitudinal axes x—x
of a thin-walled bar as condition of static
equivalence of torsional moment caused by the
shear forces flows to the free torsional moment
M acting in the cross-section of the thin-

walled bar:

(3.23)

where T’ (¢) — shear forces flow at some point
of the cross-section which can be expressed
depending on shear forces flow 7 (¢) at start

point of the corresponded unbranched part of
the section as follow:

o o m,

o0z,j I oy.j - I

z y ©

T =T, - (3.24)

ow,j !

here we omitted functional dependence from
angular position ¢ (to simplify presented

formulas).
Then:

Snw,j\]pdgzo;

S,,.,pds - J S, ,pdGJ
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Finally, we’ve obtained [2]:
M-y Ts,jjpdg—
j=1 .

31, pdg—
Jj=1 I

z J= y J=

here integrals

anIS"ZJ’Odg’ nzr,l.SOprdg’ nZVJ.Sow,./’Odg

J=L J=L J=

can be calculated using equations (3.26), (3.27)
and (3.28) accordingly as presented below,

oz,K 0z,K 0z,K

_ i (””” Aaf (Sg start L A Qs mid + §eend )}’

(3.27)
_ A'l{ gl (Sg;;“”+4sgy":" Sjy‘,’;d)],
S\ &
S =2 | St (@) pdc =
l':lrn
‘ (3.28)
= Z[Z O (sS4 ST )J
=1\ x=1

Let us rewrite the constraints-equality (3.25)
using vector representation taken into account

sl U Qy <
20T +(|i —I)(ZSZJ+
= O, 0

T z
w TS_I_:S'DZ_ZSP)/_

le64

f S, pds — 5= ZfSoy,pdg

Vitalina V. Yurchenko

%II S, pds — QI S, pdg - —I P |=0;

M, ZJ.Sow'jpdg—Mx -0

@ j=1l/.

(3.25)

equations (3.26), (3.27) and (3.28) as presented
below:

r
([)TTS Qysz QZ Py
z y
(3.29)
MZH
~ =S, M, =0.

Thus, the formulated problem is presented as
mathematical programming task, namely as
searching of unknown values of shear forces
flows at start points of unbranched parts of a
section:
r T S
T, ={T;,} .j=1n, (3.30)

which ensure the least value of the following
Castigliano’s functional C (3.13):

rT r I’T Qy r
C= o TIWI—1] 25, -
e @)
—Ty =8, —T{ —=8,, +K — min

1, G,

subject to the following equilibrium conditions
(3.22) and (3.29):

(3.32)
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Method of Lagrange multipliers can be used to  point of h
reduce the mathematical programming task functional A(T. A7 1 ):
(3.30) - (3.32) to the searching of stationary unetl ( s )

the following modified

rr 1 r.r r .ot or r.om v
T _ = T T =y T ¥ 1 Mg
A(TS:/1 ’ﬂ’n‘,)_ZGTS WTS Ts G[z Shz N GIy hy Ts G]m Sha7+
ryo.r . r r r
+A"| 21'T, +(‘I"—I’) %Sz L+ S, .+%Sw ]+ (3:33)
VA I, eer
r.r 0, 0. M, .
+4, {a)TTS—I—}SpZ—I— A pw—Mx}—Hmn.
here Stati(r)narry conditions of the modified functional
r A(TS,AT,/L,_) (3.33) can be transformed into
A={4}, f=Lln-1 " . ic equati
: the system of n_+#, linear algebraic equations

and presented using vector-matrix form as

— vector of Lagrange multipliers consisting of _
n,—1 elements; 4, — additional Lagrange follow [2]:

multiplier.
[ 1 . i S ]
AL o, e
21’ 0, ,,. 0, ]| A |=M, x 0, ,|+—"x (I'—i')gz +
(A0i) 07, 0 < 1 Z S,
_ i _ _ 5. _
G Iy G
+%x (i3, |+==x (T[S, |- (3.34)
' S, Y S,
where: ) ) _ _
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M — square matrix with dimensions
(n,+n,)x(n,+n,), here n, and n, — number
of edges and vertices of the graph G
accordingly; Aw$ — column vector of sectorial
coordinates increments

S i1V

A("‘)r :{Aa)r,j |J :1’nr}

consisting of n calculated
according to (2.3); S,, S,, S, — column

vectors (3.17) with » components calculated
according to (3.18), (3.19) and (3.20)

respectively; Shy, S,., S, — column vectors

components

(3.12) with n. components calculated according
to (3.9), (3.10) and (3.11) respectively; S, ,
S,.. S,, —integral section properties calculated
according to

(3.26), (3.27) and (3.28)
respectively.

Solution of the system of equations (3.34)
determines column vector of shear forces flows

TrS :{TSVJ.}T,]':].,_nF,

at the start points Pf unbranched cross-section
parts. The vector 7, can be also presented as
follow:

r rypmr
~b, +=2b, +—=b,.
71

r

r
T:g M)Cbx +

1O
1<

(3.35)

~|

z ()

In this case the system of algebraic equations
(3.34) disintegrates and transforms into the four

systems of » +n, algebraic equations relating

rrr r
to the b., b, b and b,
consisting of n  elements [2] as presented
below:

column vectors
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b, 0,
M x /Tx = Onv_l ;
Ao 1
[ S, i
b, G
M x /Ty = (i'—‘i')xgy ;
Aoy S,
S
i z (3.36)
Mx| A |= (i'—i'|)><§z ,
A - S,
5
b G
Mx|| A | = (I'—i’)xﬁw ;
Ao S
where

8

- {ﬂ‘wv.f

— unknown column vectors of  Lagrange
multipliers consisting of »,—1 elements;

A A A A

1 1 1
n,x n,y n,z n,@

— additional Lagrange multipliers.
Projection of the vector

Ex ={bx,j |]:1'_n;}

defined of the set of » unbranched sectional
parts into the set of sectional segments
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b ={b:, | =1n -1} T = {7}, Teme = {7emel
T = {75, k=1n -1,

consisting of »n_-1 elements (by the number of
sectional segments) as presented below [5]:

can be written as:
b;.=b.; Vk:5. cR:;

and
— @H ag Qy Sg start
QO K IZ 0zZ,K
0 Y 4.1)
z Qostat Mg Gestart,
_I_ Soi‘,x I Sam K !
y

bj,)( =0 Vk: S‘f n R; =, TKg,start

By analogy column vectors

b= fo =T} Bl mDn) e 0 Qg
K QO K ]Z 0zZ,K
- — (4.2)
and b, :{bw’j [j=1, n} can be also projected 9 S — M, S,
into the set of sectional segments obtaining L Ly
corresponded column vectors peend _ o H o Qy Geend _
K QO K ]Z 0zZ,K (4 3)
s _f1¢ _ _ .
5 —{b;JK|K—1,n§ 1}, _%gg,end M, S“"d
be ={bs, | =1n, 1} I
e (. e
& _{bm |e=Ln, 1} ' here the first moments of inertia SoiK, Sjw and

. N .
The following transformations for the first sectorial moment of inertia SOM should  be

moments of inertia and for the sectorial moment Calculated using transformations (3.37) and

N i (3.38) accordingly.
of inertia should be performed, v =1,n, 1. Shear stresses for each « " sectional segment

Siw St =Pt can T o{E={me e e k=ln 1,
S 3 S .
Soy K {Soy K by,/c} !
Sg { SE —bE } : can be calculated as presented below:
3.38 star
S;w K {Sogm P ]_w} ( ) Tg,start = T’(g’ - + (1_80)[_[55
B S I
S i LS4 S
4. SHEAR FORCES FLOWS AND SHEAR I 3 Y ’ '
STRESSES - end Tg,end . (1_80)]_[55
T = |t
Let us define the sets of shear forces flows 5 ‘ I,
values for the start, middle and end points at the
middle line of the sectional segments here torsion moment of inertia 7, and parameter
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¢ should be calculated as:

n. -1

1 3
1x=1k+1r=521,§(5,§) +1,; (4.5)
k=1
1
% I (4.6)
and components
Tg,start Tg,mid | Tg,end
X , | = and |—=
NI

in equations (4.4) define shear stresses values
for start, middle and end points at the middle
line of x™ sectional segment accordingly.
Besides, transition from the shear stresses
related to the middle line of x ™ segment to the
shear stresses at the outside longitudinal edges
of this segment can be performed by addition or
subtraction of the member

U=9) s

k

CONSLUSIONS

Searching problem of shear stresses on outside
longitudinal edges of an arbitrary cross-section
(including open-closed multi-contour cross-
sections) of a thin-walled bar subjected to the
general load case has been considered in the
paper. Formulated problem has been
transformed into minimization problem of
Castigliano’s functional subject to constraints-
equalities of shear forces flows equilibrium
formulated for cross-section branch points as
well as subject to equilibrium equation for the
whole cross-section relating to longitudinal axes
of the thin-walled bar.

Detail numerical algorithm intended to solve the
formulated  problem  using  mathematical
apparatus of the graph theory has been proposed
by the paper. The algorithm is oriented on
software implementation in systems of computer-
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aided design of thin-walled bar structures.
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