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THE GENERALIZED BIFRACTIONAL BROWNIAN MOTION

Charles EI-Nouty
LAGA, Université Paris XIII, Sorbonne Paris Cité, FRANCE

Abstract: To extend several known centered Gaussian processes, we introduce a new centered Gaussian
process, named the generalized bifractional Brownian motion. This process depends on several parame-
ters, namely a>0, >0, O<H<1 and O0<K<1.When K=1, we investigate its convexity

properties. Then, when 2HK <1 , we prove that this process is an element of the QHASI class, a class of
centered Gaussian processes, which was introduced in 2015.
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OBOBHIEHHOE BU®PAKTAJIBHOE
BPOYHOBCKOE JIBUKEHUE

1. Snv-Hymu
Yuusepcuter [Tapmx X, Copbonna — Iapmx — Cure, DPAHIINS

AnHoTanus: PacimpeHue HECKOJNBKUX NEHTPUPOBAHHBIX T'ayCCOBCKUI IMPOIECCOB TPEOYET BBEICHHS
HOBOTO IpOIlecca, HA3BaHHOTO OM(pPaKTATEHBIM OPOYHOBCKUM IBIDKCHHEM. DTOT IPOIECC 3aBHCUT OT
HECKOJIbKUX mapameTpoB, a umenHo: a >0, #>0, 0<H <1 u 0<K <1 . Jlns ciay4as, korjaa napa-
metp K =1, nccmenyercs cBoiicTBo BhimykinocTr. s caydas, korma 2HK <1, moxassiBaeTcs pHHA-

JIEKHOCTh ITOrO Ipolecca K KBasu-kiaccy (0OmamaHueM KBa3M-KaHOHHYCCKOH KPHBOM MOCTOSHHOTO
CKIIOHA), U K KJIACCY LEHTPAIbHBIX [ayCCOBCKHX IIPOLECCOB.

KiroueBble cji0Ba: BRITYKJIOCTh, KBa3H-KAHOHWYECKAst KPUBAsI IOCTOSITHHOTO CKJIOHA,
MIPUONMKEHHO CTAIlMOHAPHBIE IPUPOLICHUN

1. INTRODUCTION

Let {B, «(t),t R} be a bifractional Brownian

motion (bBm) with indices O<H <1 and
0<K <1, i.e. acentered Gaussian process such
that By, (0) =0, with probability 1, and

E (B« (®)By (5))
2H 21 \K 2HK (1.1)
=2iK((ItI Hlsf" ) e )

We can verify that

2HK

VarB, , (t) =[t|

and that the bBm is self-similar with index HK .
Note also that the process B,, , is the fractional

Brownian motion (fBm) and therefore the pro-
cess B,,, is the ordinary Wiener process.

Straightforward computations show B, , has

no stationary increment. However, the bBm is a
HK-quasi-helix in the sense of Kahane ([1],
p. 137) and its increments are approximately
stationary for small increments. Houdré and Vil-
la [2] introduced the bBm and established the
previous results.

Consider the following centered Gaussian pro-
cess Y =Y, defined as follows:
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Y() =Y, 5k (1)

(1.2)
=aB, ((t)+B8B, (1)

with t>0,a >0, > 0. Set
a(K)=1/(2%""), 0<K <1.

The introduction of the process Y is motivated
by the fact that this process was already intro-
duced for specific values of «, g and K. In-

deed, the process Y, .11 Was introduced in

[3] and was named the sub-fractional Brownian
motion. El-Nouty and Journé [4] extended the
former process by introducing the process

Y, pannk e Which was named the sub-

bifractional Brownian process (sbBm). Finally,
Zili [5] introduced the process Y, ,, ,, which

was named the generalized fractional Brownian
motion (gfBm). This is why we will name Y
the generalized fractional Brownian motion
(gbBm). Set for s,t >0

o’ (st):= Uf,,ﬂ,H,K (s.t)

“E (Yo (Yo (5)))

(1.3)

Let us study the convexity properties of
o’ (s,t)=0, 54 (1)
on the set

T={(s,t) [0,1)° : s<t}.

Our first result is stated in the following propo-
sition.

Proposition 1. I. If H >1/2 , then the function
0. sna(sit), (st)eT s convex and has a
unique maximum at the point (0,1) .

Il If H <1/2 ,then the function o7 ,,, .(s.t),

a
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(s,t)eT is concave and has a unigue maximum
at the point (0,1) .

Note the difference between the case
O<H<1/2 andthecase 1/2<H <1, i.e. be-
tween short-range dependence and long-range
dependence. This phenomenon was already ob-
served by several authors in the fBm case
(Beran ([6], p52), Samorodnitsky and Taqqu
([71, p. 123)). Proposition 1 establishes that the
fBm and the gfBm are similar from the convexi-
ty point of view. However, when one compares
Proposition 1 with Proposition 1.1 in [8], he can
observe the difference between the gfBm and
the bBm. This implies that there is a significant
difference between the processes Y, ,,, and

Y with K <1.

a,pf,H,K?
The quasi-helix with approximately stationary
increments (QHASI) class of centered Gaussian
processes was introduced by EI-Nouty [9] and
was defined as follows. A centered Gaussian
process {X(t),tel <R} belongs to the
QHASI class if it fulfills the five following as-
sumptions:

e Al: X(0)=0 with probability 1,

e A2: there exists A>0 such that X s
self-similar with index A,

e AS3:thereexists 0<C, <C, <+oo such that

V(S,t)e |2

Colt—s[ <E(X (t)=X (5)) <C,Jt -5,

Ad4: there exists C, €[C,,C,] such that

V(s,t)el? t>s,st=0,whent-s—0,

E(X(t)-X(s)) ~Cy(t-s)"

AS: there exists C, €[C,,C,]| such that

vtel, EX(t)?=C,lt[".
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Let us state three known results. The first one is
due Houdré and Villa [2], the second one to [10]
and the last one to EI-Nouty [9].

Theorem 2. The bBM is an element of the
QHASI class.

Theorem 3. The sfBm is an element of the
QHASI class.

Theorem 4. The sbBm is an element of the
QHASI class.

We insist on the fact that the values of 4, C,,
C,, C, and C, for the bBm, the sfBm and the

sbBm can be found in EI-Nouty [9]. Using some
results of Zili [5] and introducing some addi-
tional computations, we get the following result.

Theorem 5. The gfBm is an element of the
QHASI class, with

e A=H,

. Cl:min(a2+ﬂ2,(a+ﬂ)2—22Haﬂ) ,

. C2:max(az+ﬂ2,((a+ﬂ)z—22Haﬂ)) :
o C,=a’+p,

e C,=a’+2(1-2"")ap+p°.

Our main result is stated in the following theo-
rem.

Theorem 6. Assume that 2HK <1. Then the
gbBm is an element of the QHASI class, with

e A=HK,
e C=(a+p)-2"%ap,

e C=2((a+p)-2"ap),
e C,=2""(a+p),

e C,=a’+2(1-2"")ap+p*.

Let us make some comments on the above theo-
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rem. When
H<1/2 and K =1,

theorem TH is similar to theorem tutu. When
2HK <1 and a=pg=a(K),

theorem TH is similar to theorem JLJ. Finally,
as expected, note the importance of the hyper-
bola

2HK =1.

This phenomenon was already observed in El-
Nouty [11], EI-Nouty and Journé [12] and Rus-
so and Tudor [13].

Let us investigate the case

1<2HK < 2.

There is no difficulty to determine A4,C, and
C,. Indeed they have the same values as those
found in the case

2HK <1.

A careful reading of the proof of theorem TH
enables to state the following lemma.
2HK >1. Then

Lemma 7. Assume that

v (s,t) el?

2HK

0% (5,0) <2 (a? + )t — ™.

The question of the existence of a constant C, is
still an open one.

In section 2, we prove Proposition 1. The proof
of Theorem 6is postponed to section 3. In the
sequel, there is no loss of generality in assuming
K<1.

83



2. PROOF OF PROPOSITION 1

Recall that K =1 in this section. We have for
any t>s

o’ (s,t)= O-a,ﬁ,H,lz (s,t)
—g2H ((0{2 +ﬂ2)(u _1)2H
(2.1)
402 aﬂ(ZlﬁzH (u +1)2H _uy _1))
=s*" A(u),
where

u=t/s=>1.

There is no difficulty to deal with the case
H=1/2. When H #1/2, the derivative of or-
der 2 of the function 4 is

AP W) =2H(@2H -1)s*" gu), (2.2)

where

g(u)=(a’ + A )u-1*"
+22Haﬂ(21—2H (U +1)2H—2 _u2H—2).

Let us study the sign of the function g. We
have

g(u)=2a fh(u), (2.3)

where
h(u) = (U-1)2""% + (U+1)?" 7% - 22"y 2,
Since
2H -2<0,

2

the function u—u®"?, u>1 is convex, and

therefore

U-1)"7 4+ (u+1)2H2 > 2u2H 2,

Charles EI-Nouty

Hence,

hu)=(2-22"u"2>0.  (2.4)

Combining (2.4) and (2.3) with (2.1), we estab-
lish that, if H>1/2, then the function

Cupns (S:t), (s,t)eT is convex, else the

function is concave.
By using (2.1), we have for any real s, t,s=t,

and a>0

o’(s,t)>0, o°(s,5)=0

and
o’(as,at)=a*"o’(s,t).
Thus, we get
007 (81) [ 00 (8Y) _ o 2s 1y (25)
0s
If

00’ (s,t) _ 90" (s.t) _,
os o

then (2.5) yields that
o’(s,t)=0
and consequently
s=t.
Thus, there is no maximum of &(s,t) in the in-

terior of T .
Let us investigate the existence of a maximum

of o?(s,t) onthe border of T . Note that
o’ (0,)=(a* +(2-2")a B+ p°) t*"

has a unique maximum at the point t=1. Thus,
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we have to study the function

o’ (s,1) = (a® + p?)(1—s)*"

+2M (277 L+ 5)™ — 52 -1), 26)

We have by differentiation

dO'Zd(sS,l) _oH (—(0{2 +ﬂ2)(1— S)ZH—l

+2 a2 (L) —SZH)).

We must consider the following three cases:

Casel. H=1/2.

Since
dO'Z(S,l) ) )
T:—(OC +ﬁ )<O,

the function o*(s,t),(s,t)eT has a unique

maximum at the point (0,1). Using (2.6), we
have

o’ (O,l) =a? +,32 )
Case 2. 2H >1.
We have

do? (S,l)
ds
2a(1+5)™"

<0<

-1 2H-1

<(a?+p°)(1-5)" " (27)

+2ap(2s)" .
Recall that
2af <a’+ p.

To prove (2.7), it suffices to verify

Volume 14, Issue 4, 2018

(L+s)" T <@-9)*" 1+ (29)%" 1 (2.8)
Inequality (2.8) is true at the points 0 and 1. Set
u=1/s>1.

Thus, inequality (2.8) can be rewritten as fol-
lows:

(u+2)" 7 <(u-2)" 22 (2.9)
Set

g(u)=(u +1)2H71 —(u —1)2H7l -2t
We have

g'(u) = (2H —l)((u +1)"" 7 —(u _1)2“'2) <0.

Since

we prove that g <0 and consequently inequali-

ty (2.9).
The function o?(s,t),(s,t)eT has a unique

maximum at the point (0,1). Using (2.6), we
have

o’ (01)=a’+(2-2"" )ap + * .
Case 3. 2H <1.
To show that

daz(s,l)
ds

<0

it suffices to establish that
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221 (1+ s)2H7l —s?1 <0

2H-1

< (1+5) S(ZS)ZH&.
Since
2H -1<0 and s<1,

Therefore, the function
has a unique maximum at

the result is true.
a’(s,t).(s,t)eT
the point (0,1) . Using (2.6), we have

o’ (01)=a’+(2-2"")ap+ " .
The proof of Proposition 1 is complete. [
3. PROOF OF THEOREM 6

We can easily remark that the process Y isa
centered Gaussian process such that Y (0)=0

with probability 1 and Y is self-similar with
index HK . The covariance function of the
process Y is given in the following lemma.

Lemma 8. We have for t>s>0

E(YOY(©) = (a4 ) (€ 5"
—(az —}-ﬂz)(t _ S)ZHK
_Zaﬂ(t+s)2HK)

and therefore
= (Y (t)z) - (az +2(1-2°" ") + ﬂ2>t2HK.
Proof. It suffices to combine (1.1) with (1.2).

Remark 9. Lemma 8 gives the value of the con-
stant C, .

Setfor t>s>0

Charles EI-Nouty

2H | 2H K
Fik(sit)= 2(%}
_2HK _g2HK 5 g

t4 g2
F%,ZHK (S’t) - 2(7)

2HK  L2HK
- =57

(3.1)

(3.2)

The functions given in (3.1) and (3.2) will play
a key role in the proofs of our results. Let us re-
call the following basic proposition.

Proposition 10. When 0<2HK <1,
Foomk 20. When 2HK =1, F,, =0. When

1<2HK <2, F, .« <0.

Remark 9. When 2HK <1, the function F,

1.2HK

can be viewedas F,, with H=3.

We can state the second technical lemma.

Lemma 12. We have for t>s>0

)ZHK

o’ (S,t) =K (a2 +ﬂ2)(t—s
—(a+B) Fyy(st)

+21—K+2HKa ﬁ Fl

2

s,t).

2HK (

Proof. It suffices to combine (1.3), (3.1) and
(3.2) with lemma 8. n

The next step consists in determining the value
of the constant C, .

Combining Lemma 12 with Proposition 10, we
have

if 0<2HK <1, then

2HK

o? (S,t) <tk (a2 +ﬁ2)(t —S)
+217K+2HK aIBF%‘ZHK (S,t),
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if 2HK =1, then
o’ (s,t) <27 (a® + 5%)(t-s),
and
if 1<2HK < 2, then
)2HK-

o’ (s,t) < kK (a2 +/3’2)(t—s

El-Nouty and Journé [12] showed that we have
for 0<2HK <1,

(t- s)2HI< 422K Fy o (s.t)
<(2-22")(t-

S)ZHK.

Then,
o’ (st) <27 (a’+ B°)(t-s)™
2L KI2HK (3ot 2HK (1_ 22HK—1)(t B
=27 ((a+ B)' -2 ap)(t-s)
=C, (t-s)™.

S)ZHK

2HK

Let us determine the value of the constant C, .

Combining Lemma 12 with Proposition 10, we
get

O'Z(S,t)zzl—K (0{2 +ﬂ2)(t—S)ZHK
—(a+B) Fyx(st).

It was proved by EI-Nouty and Journé [12] that,
when 2HK <1,

(t—S)ZHK+2K (tZHK+SZHK)_2(t2H +82H)

> (2 -1)(t-s)"™,
that is

Volume 14, Issue 4, 2018

(2-29)(t-s)"™ 22°F, . (s.t).

Then,

)ZHK

o (st)2((a+B) -2 a B)(t-s
=C,(t-s)"™.

Finally, we determine the value of the constant
C,. Recall that s> 0. Set

t—s=h.

When h— 0, the Taylor expansions of the
functions F,, and F,,,, ,givenin (3.1)

and (3.2), are

2
FHYK(s,t):SZHKLHZK(l—K):—Z
; (3.3)
()
S
and for 2HK #1
_ 2
F12HK(s't):_SZHK(HK(2HK 1)h_2
3 2 s
(3.4)

h2
Combining Lemma 12 with (3.3) and (3.4) (or

Proposition 10 if 2HK =1 ), we obtain the
Taylor expansion of o(s,t). Hence, since

2HK <2, we get the value of C,.

To complete the proof of Theorem 6, we have to
verify that

C,<C,<C,

and
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C,<C,<C,
Assume
a>f[>0
and set
X = %, X>1

The inequalities C, <C, <C, are equivalent to
X +(2-2)x+1
<2V (x2 +1)
<27 (% +(2-22") x+1),
that is
(x+1)°>0
and

(2—2”“)xzo.

Since 2HK <1, it proves the result. Similarly,
we can establish that

C,<C,<C,.

The proof of Theorem 6 is complete. [
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