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Marina V. Shitikova'?, Aleks L. Katembo'
'Voronezh State Technical University, Voronezh, RUSSIA
2Research Institute of Structural Physics of the Russian Academy of Architecture and Construction Sciences,
Moscow, RUSSIA

Abstract: Nonlinear force driven coupled vertical and torsional vibrations of suspension bridges, when
the frequency of an external force is approaching one of the natural frequencies of the suspension
system, which, in its turn, undergoes the conditions of the one-to-one internal resonance, are
investigated. The method of multiple time scales is used as the method of solution. The damping features
are described by the fractional derivative, which is interpreted as the fractional power of the
differentiation operator. The influence of the fractional parameters (orders of fractional derivatives) on
the motion of the suspension bridge is investigated.
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AHAJIW3 BBIHY ) KJEHHBIX HEJIMHEVHBIX KOJIEBAHUM
BUCAYUX MOCTOB IIPU HAJIMYUU BHYTPEHHEI' O
PE3OHAHCA OJUH-K-OAHOMY
C IOMOLBIO MTPOU3BOAHBIX TPOBHOI'O IMMOPAAKA

M.B. IHTumuxkoea®?, A.JI. Kamemoo'

! BopoHEKCKHIA TOCYJapCTBEHHBIN TEXHUYECKUI YHUBEPCHUTET, T. Boponex, POCCHU
2 Hay4HO-MCCIIEIOBATENBCKU I HHCTUTYT CTPOUTENBHON (PU3MKK
Poccuiickoil akaneMuu apXuTeKTYpbl U CTPOUTENBHBIX HayK, I. MockBa, POCCUS

AnHoTanus: Vccrnenytorcs HelnMHEeWHbIe BBIHYKICHHbIE H3THOHO-KPYTIIIbHBIE KOJICOaHUS BUCSIETO MOCTa
IPY HAJIMYUY BHYTPEHHETO pe30HAaHCa OJMH-K-0JJHOMY B CJIy4ae, KOT/Ia YacTOTa BO3MYIIAIONIeH CHIIBI OJIH3Ka
0JTHOM M3 COOCTBEHHBIX YacTOT KojieOaHuii. B kauecTBe MeTO/1a pelIeHHsI CTIONIb3YyeTCsl 000OIIECHHBIH METOT
MHOTHX BPEeMEHHBIX MaciTa00B. CHITbl IeMI(UPOBAHKSI ONICHIBAIOTCS IPU MOMOIIH MPOU3BOIHON JPOOHOTO
HOpsAIKa, KOTOpash WHTEPIpPETHpYeTCsl Kak JpoOHas cTemeHb omeparopa An(QepeHIIMPOBaHNS.
[Ipoananu3upoBaHO BIMSHUE TApUMETPa APOOHOCTH Ha KOJICOAHUS BUCSUYETO MOCTA.

KiroueBble c10Ba: BUCSYHI MOCT, HETMHEHHBIC BHIHYKICHHBIC KOJICOAHMS, AeMII(HUPOBAHUE C TIOMOIIIBIO
JPOOHOM TPOU3BOIHOM, 0OOOIICHHBI METO] MHOTHX BPEMEHHBIX MacIITa0OB

1. INTRODUCTION large spans, but also are economically viable.

Compared to other types of bridges, suspension
The suspension bridges are unique building bridges have a number of technical and aesthetic
structures, as they allow one not only to cover advantages, that is why they are so widely used
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in the modern world. The history of suspension
bridges met with the largest catastrophe in bridge
construction - the collapse of the bridge over the
Tacoma River (USA) in 1940 (Tacoma Narrows
Bridge). In flexible suspension bridges under the
action of various dynamic loads, such as moving
load or wind, strong bending-torsional vibrations
could occur, sometimes resulting in extremely
large amplitudes complicating the normal
operation of the bridge, and sometimes causing
its destruction. Due to the low damping ability of
the suspension bridges, the oscillations could be
accompanied by the transfer of energy between
different modes of vibrations for a long time even
after unloading, which was the cause of their
occurrence. This is explained by the phenomenon
of internal resonance, when one of the
frequencies of free bending vibrations is close in
value to one of the natural frequencies of
torsional vibrations, which in practice can occur
quite often due to the density of the spectrum of
the natural frequencies of suspension bridges,
which largely depend on the geometric
parameters of the bridge.

To analyze the phenomena of the internal
resonance during dynamic response of
suspension bridges, different mathematical
models have been utilized. Thus, the continuous
model proposed in [1] has been used in [2-6] to
solve the system of nonlinear differential
equations describing the dynamics of suspension
bridges under one-to-one [2-6] and two-to-one
[3-5] internal resonances by means of the
multiple time scales perturbation technique [7].
The state-of-the-art survey of the internal
phenomena in suspension bridges was made by
Shitikova and Rossikhin [8] in their plenary
lecture at the 5th European Conference of Civil
Engineering held in Florence, Italy in 2014.
During this report, the authors passed aloud their
opinion that the reason of failure of the Tacoma
Narrows Bridge was connected with the internal
resonance between vertical and torsional
vibrations.

This idea was repeated a year later, in 2015, by
Arioli and Gazzola [9], who trying to explain
why did torsional oscillations suddenly appears
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before the Tacoma Narrows collapse found out
that wvertical oscillations had become large
enough and switched to torsional ones. The four-
degree-of-freedom model accounting for both the
flexural-torsional motion of the bridge deck and
for the transversal motion of a pair of hangers has
been considered in [10], and the internal
resonance between the modes of deck and
hangers vibrations has been studied. Stability of
dynamic response of suspension bridges with due
account for the phenomenon of the internal
resonance has been considered in [11]. The
generation of the force induced internal
resonance was recorded during repairs connected
with the retrofit of suspension bridges in the
U.S.A. [12].

Thus, the potential occurrence of internal
resonance phenomena has been identified as the
potential cause of critical dynamic states in long-
span suspension bridges. Therefore, the task of
studying the internal resonance in suspension
bridges is very relevant and important.

The first field observations of the vibrations of
the Golden Gate suspension bridge were made in
the period from 1933 to 1942, when
seismological instruments were installed on the
piers, towers and cables to measure any vibration
that might occur [13]. After the failure of the
Tacoma Narrows Bridge in 1940, it was decided
to install ten instruments for measuring the
vertical movement of the bridge, which worked
continuously until 1954. Vincent [14-16]
analyzed these recordings of observations of the
Golden Gate Bridge vibrations, and the field
observations of this bridge were further
continued to [17-20]. Thus, the experimental data
obtained in [20] showed that different vibrational
modes feature different amplitude damping
coefficients, and the order of smallness of these
coefficients tells about low damping capacity of
suspension combined systems, resulting in
prolonged energy transfer from one partial
subsystem to another. However, the analytical
model described in [2] with its further extension
in [3,4] allows one to analyze only free
undamped vibrations of suspension bridges.
Nonlinear free damped vibrations of suspension
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bridges in the cases of the one-to-one internal
resonance, when the natural frequency of a
certain mode of vertical vibrations is close to the
natural frequency of a certain mode of torsional
vibrations, and the two-to-one internal
resonance, when one natural frequency is nearly
twice as large as another natural frequency, have
been examined in [5] when damping features of
the system are prescribed by the first derivative
of the displacement with respect to time. It has
been shown that for the both types of the internal
resonance the damping coefficient does not
depend on the natural frequency of vibrations,
but this result is in conflict with the experimental
data presented in [20] and [21].

To lead the theoretical investigations in line with
the experiment, fractional derivatives were
introduced in [22] for describing the processes of
internal friction occurring in suspension
combined systems at nonlinear free vibrations.
The nonlinear suspension bridge model put
forward allows one to obtain the damping
coefficient dependent on the natural frequency of
vibrations.

The overview of the existing research of the
internal resonance in suspension bridges could be
found in [23,24].

In the present paper, the model proposed in [22]
for the analysis of free damped vibrations is
generalized to the case of nonlinear forced
vibrations of suspension bridges, when the
frequency of the external force is close to one of
the natural frequencies of the vertical vibrations
of the suspension combined system, which is
subjected to the condition of the one-to-one
internal resonance.

2. PROBLEM FORMULATION

To analyze the forced damped vibrations of
suspension bridges we will use its classical
scheme involving a bisymmetrical thin-walled
stiffening girder connected with two suspended
cables by virtue of vertical suspensions [25]. The
cables are thrown over the pilons and are
tensioned by anchor mechanisms. The
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suspensions are considered as inextensible and
uniformly distributed along the stiffening girder.
The cables are parabolic, and the contour of the
girder's cross-section is underformable. It is
assumed that the girder's contour translates as a
rigid body vertically (in the y -axis direction) on
the value of 7(z,7) and rotates with respect to

the girder's axis (the z-axis) through the angle of
¢(z,t) (Fig. 1). The origin of the frame of
references is in the center of gravity of the cross
section.

It is known for suspension bridges [2-4] that
some natural modes belonging to different types
of vibrations could be coupled with each other,
i.e., the excitation of one natural mode gives rise
to another one. Two modes interact more often
that not, although the possibility for interaction
of a greater number of modes is not ruled out.
Below it would be considered the case when only
two modes predominate in the vibrational
process, namely: the vertical » -th mode with

linear natural frequency ,,, and the torsional
m -th mode with the natural frequency Q,, .
Under such an assumption the functions 7(z,7)

and ¢(z,t) could be approximately defined as

(using the eigenbase of the associated linear
undamped unforced problem)

17(z,0) ~v,(2)x,(0),

1
o(z,t) ~ 0O, (2)x,, (1), )

where x, (f) and x,, () are the generalized
v(z) and O, (z2)

natural shapes of the two interacting modes of
vibrations.

displacements, and are

When the harmonic force F=F cos(w,t) is

applied at the center of the suspension bridge,
then the equations of its forced vibrations are
written in the dimensionless form as (what is the
immediate generalization of the approach
proposed in [22] by adding the external vertical

A

excitation with amplitude F =const and

frequency ;)
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Figure 1. Scheme of a suspension bridge.

nm 2

. 2 ¥ n_2
X, + @, X, + BD(x,, +a)x;, +ay x,,

n_2 nm .2 - (2a)
+(b)\x;, + b3y x5,)%,, = F cos(wy),
. 2
x2m + QOm‘x2m + ﬂDg+x2m + a1’12mxlnx2m (2b)

nm_2 m_2 _
+(e'x;, + €%5,)%,,, =0,

where a;, b,, and ¢, (i=1,2, j=2) are
certain dimensionless coefficients which are
defined in [2,22] (subsequently the indices n

and m are omitted for ease of presentation),
dots denote differentiation with respect to time,

the terms AD;'x, and BD;’x,

2x, characterize

inelastic reaction of the system, S is the
viscosity coefficient, the fractional derivative
Di.x (y=y, or y,)is defined as follows [26]

, o d prx(e—=1t)dl

xX=— 0<
o dtOF(l—y)t"( 4

<1), (3)

y is the order of the fractional derivative
(fractional parameter), and T (1—y) is the

Gamma-function.

Let us consider the case of the one-to-one
internal resonance, as well as suppose that the
frequency of the external force is close to the
natural frequency of the interacting modes, i.e.,

W, Q) ~ . 4)
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Note that the influence of the detuning parameter
characterizing the small difference in magnitudes
of the natural frequencies @, and €2, has been
investigated in [4,6,24].

Since for finding the solution of equations (2) we
will use the method of multiple time scales,
where the functions e”” are utilized as the
main harmonic functions, then in order to carry

out the calculations the following formulas will
be utilized [27]

J-oo u’e " du 5)

- - sin 7
Dé/+eiza)t — Di/eim)t + 7 . ,
T O utio

Di/eiim — (il(t))y eiriwt’ (6)

where D! is obtained from (3) changing the

low limit to —oc.

It has been shown in [28] and [29] that the second
term in formula (5) does not produce secular
terms in the method of multiple time scales under
the limitation of the zero- and first-order
approximations. In other words, this term could
be neglected in further consideration, and it is
possible to use the approximate formula

y tiot y Tiot
DO+e ~ D+e : (7)

If we take into account formula (5.82) from [26]
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B dyY ..
Dye_ta)t —| = eita)t’ 8
: ( dt] (8)

then from the combination of (7) and (8) it
follows the relationship

B dY ..
D;/ e_lwt ~| = eitwt’ 9
0+ (dfj ( )

which will be used in further calculations.

3. METHOD OF SOLUTION

We will seek the solution for two cases:
(1) B=cu andthat F =g’f,
and
(2) B=¢&*u andthat F=¢'f,

where a small parameter ¢ is introduced as a
bookkeeping device to indicate the smallness of
terms [7].

In these cases, an approximate solution of
equations (2) for small amplitudes weakly
varying with time can be represented by an
expansion in terms of different time scales

x(0) = ex, (T, 1. 1)+ &7°x, (T, T, T) +
+&’x,(T,,T,,T,) +...,
X%, (1) = ex, (1, 1, T,) + &7 x,, (T, T, T,) +
+&°%,(T,, T, T,) +...,

(10)

where
T =¢"t(n=0,1,2)

are new independent variables, ¢ is a small
parameter which is of the same order of
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magnitude as the amplitudes,and ¢ and 7 are
I,=t 1s a fast scale,

characterizing motions with the
frequencies @, and €, while

finite values. Here,
natural

T =ct and T, =&t

are slow scales, characterizing the modulations
of the amplitudes and phases.
Considering that [7]

d/dt=D,+eD,+&'D,,

(1D
d* | dt* = D} +2¢D,D, +&* (D} +2D,D,),

as well as applying the expansion of the
fractional derivative as it was suggested in
Rossikhina and Shitikova [22]

(d/dty =(D,+eD,+&D,+...) =

7 y-1 1 2 =212 (12)
=D +eyD] D1+58 y(y=1)D] "Dy ...
where D, =0/0T,

D{‘"x=ij’ X=0)dt 2012
dt?=T(1—y+n)'""™"

substituting (10) into (2), and equating the
coefficients at like powers of & to zero, we
obtain

to order ¢:
Dgxll‘*'a’(ixu =0, (13)
Dgle +Qx,, =0;
to order &£2:
D§x12 + a)02x12 =-2D,Dx;, — u(2—k)D]x,, —
—a, X, — anXs, +(2—k) f cos(a,T,),
(14)

Dyxy, + 0%, ==2D,Dyx,, — 2 = k) D] x,, —

X1 %5
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to order &°:

Dix,, + wjx,, =-2D,D,x,, —(D} +2D,D,)x,, —
—u(2-k)D'x,, — u(2—-k)yD!"'Dx,, —
—u(k=1)Dx,, —2a,,x,,X,, —20,,X,, X, —

~b,,x;, — by, x5 x,, + (k=1) f cos(w,T,), 15)
Dixy, +Qox,, ==2D,D\x,, — (D] +2D,D,)x,, —
—u(2—k)D!x,, — u(2—k)yD! "' Dyx,, —
—u(k=1)D"x,, —a,,(x,, Xy, +X,,X,,) —

2 3
TC XXy T Xy

At k=1 and k=2, we obtain governing
equations for the first and second cases,
respectively.

Integrating equations (13) yields

X, = AT, T,)e™" + A(T;,T,)e ™",

o (16)
Xy = A4,(1,T,)e

QT

+A4,(T,T)e ",

where 4, and 4,

functions, and 4, and 4, are the complex

are unknown complex

conjugates of 4, and A4, , respectively.

In order to integrate the sets of equations (14) and
(15), it is necessary to consider each case
separately.

3.1.The case k=1
Substituting (19) in (18) and
integrating, we obtain the expressions for x,

equations

and x,,. Then substituting found x,, and x,,

in equations (15) and using the standard
procedure for eliminating the secular terms, we
have

D,a, + Lé #2(ia)0)2y—3(1 —2y)+

2, 2 '
+li ! (Cin 2y§1bn) e—2m7:|a1 =0,

4 Hw,

(20)
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Now let us substitute (16) into the right-hand
sides of equations (14) putting there k=1, then

gather all terms standing at ¢ and e "

with due account for (4) and vanish them in order
to exclude secular terms. As a result we obtain

D4, +l u(io,) " A L 0,

2 di,

| ’ (17)
D 4, +E pic)) ™ 4, =0,

2 2 _ 2 2\ ZiogT
Dyx,, + @yx,, = _(allAl +and, )e -

—a,, A4 —a,A,A4, +cc,

L (18)
2 2 _ 1ayly
Dyx,, + wyx,, =—a,, A 4,e —

-a,, 4,4, +cc,

where cc is the complex conjugate part to the
preceding terms.
Integrating equations (17), we find

Al(ﬂ,z)=al(7;>exp[—§ ﬂ(ia)o)“TlJ+
(19a)
P
2u(ic,)

A2<T1,1;)=a2<73)expl—%miwoy"TlJ. (19b)

Dy, % Wi (1-2) +

1

2 2 2

1 S (aya,—2¢, _g a,,,

+—i 2 241
4 y7aron

Integrating equations (20) yields
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a=d exp{Tz H 1 (1-2p) (i, -

1 f2( - : (21a)

a, —30,) . ;
—— =——1———1> (icos 27y +sin 27:7/)}},

4 o)

1 . _

a, = al exp{Tz [‘ < (1=27)i,)" -

1 fz(analz 2¢y, 611226()072 b
__ X 21

4 ,u2a)§7+1 ( )
x(icos 2y +sin 27y )]},

0 0 :
where a, and a, are arbitrary constants.

Considering formulas (10), (16), (19), and (21),
we finally obtain

X =& LZaloefalt cosQt +

(22a)
+L cos(ooot—z ;/j}LO(gz), :
Uy 2

x, = 2ale ¥ cosQ,t+0(g?), (22b)

where
a, = 1 suw] " sin (ﬂj X
2 2

1
><|:l + 5 uy -l cos(%ﬂ -

—182 fz(a121 —3b,)
4 /120)027+1

sin(27y),

1
Q, =, {1 ts sl COS(%J -

+é 1’ 2y~ cos(my) -
_l g2 fz(a121 _3b11)

4 lu2a)§(}'+1)

cos(27z7/)},
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1 .
=7 suw]™ s1n(%J X

X {1 + % g2y —1)w] cos (%ﬂ -

2 2 2
_lgz S (aya, —2¢, —ap,0,” | 3)
2 2y+1

4 JIRON

sin(2zy),
1 wy
Q, = o, {1 ts s, COS(?J +

+é 1’ Qy -y cos(my) -

1 &2 S (aya, —2¢, — a0, /13)

4 ﬂ2a)§(7+1)

cos(27z7/)}.
Reference to the found analytical solution (22)
shows that it involves two parts: the first
corresponds to the damping vibrations with
damping coefficients and nonlinear frequencies
dependent on the fractional parameters and
describes the transient process, while the second
one is nondamping in character and describes
forced vibrations with the frequency of the
exciting force and with the phase difference
depending on the fractional parameter.

3.2.The case k=2

Let us substitute relations (16) in the right-hand
parts of equations (14) at k=2 . Eliminating
secular terms and integrating the equations
obtained, we have

DA =D A, =0, (23)
= a, AzeZi(uoTO & 2 2iegTy
12 1
30, 30, (24a)
—(al IAIZI + azzAzZ2 ) a)(f +cc,
Xy, = a;zz AlAz«e'MOT0 —% AA, +cc.  (24b)
0 0

From (23) it follows that the functions 4, and

A, are T, -independent.
Substituting then (16) and (24) in equations (15)
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and utilizing the standard procedure for
eliminating secular terms, we obtain

1 —
—iD, 4, 3 pey (i@, A — A7 4, —
o 1y (25a)
~LAAA +~T AL +—~=0,
4 4 o,

. | Vi
—iD, 4, 5 pooy ' (io,) A, — LA A A, ~
. (25b)
A A A, + n I,4°4,=0,

where coefficients 4, and I'; (i=1,2,3,4 and
j=1,2) are presented in [2,4].
Now we multiply (25a) and (25b) by 4, and 4,

, respectively, and find their complex conjugates.
Adding every pair of the mutually adjoint
equations and subtracting one from another, and
after all manipulations representing the functions

4, and A4, in their polar form, i.e.,

A(T,)) = a,(T,)exp [i(/’1 (Tz)]a
A4,(T) = az(Tz)exp[igoz(Tz)],

as a result we obtain the modulation equations

.1 . (1 1 .
a + Eya)oy ‘ sm(a m/Jal —Zl"lalaz2 sin & +

+i faw,'sing, =0, (26a)
A
a2+5,uQO sin Eﬁy a, +
(26b)
+i I,ala,sind =0,
- 71 1 2 2
4~ pa " cos| > 7y |20l ~ ol +
(26¢)

+%F,a22 cosé+ifa)0‘1al‘l cosp, =0,
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.1 _ 1

23 1y COS(E W]—ﬂsaf —Aa; +
(26d)

+i I,al cosd =0,

where
0=2p,—®)

is the phase difference, and a dot denotes
differentiation with respect to 7, .

The set of differential equations (26) subjected to
the initial conditions competely describes the
modulations of amplitude and phases of forced
damped vibrations. An approximate analytical
solution of equations (26) could be found by the
method of successive approximations.

As the initial approximation, let us consider the
solution of the homogeneous part of equations
(26):

o1 . (1
a, +E,ua)g‘ lsm(zﬂyljal =0,

.1 a. (1
a, +5ng2 lsm[zﬂyzjaz =0,

(27)
. 1 71-1 1
(/)1_5/1600 cos Eﬂ71 —-0,=0,
.1 - 1
@, —— Q" cos| —xy, —(0'1—0')=O,
2 2
which has the form
a, = aloe*S’T2 , a,= azoe*SzT2 . (28)
o =S+, @, =8T,1p,,

where a, and ¢, (i=1,2) are, respectively,
the initial values of amplitudes and phases to be
found from the initial conditions,

0, = 2((”20 _¢10)

is the initial phase difference, and
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1 1
S =—uw!'sin| —xy |,
1 2/1 o (2 7/J
1 (1
S, = Eng‘l s1n(§ﬂ7j,
(29)
S _L w’lcos[lﬁ
3 2‘U 0 2 7/ b}

S, = %,qu] cos(%nyj.
Now substituting (28) in equations (26) yields

a, +Sa, = if‘lclloe_(s“r”lﬂ2 a3 sin(ET, +6,) -
1 .
_ZFwo_l sin(S,7, + @),

. 1 _ .
a, +S,a, = —Zfzafoe @SSR g sin(ET, + 6,),

. 4 2 aST 2 28,
@ =Sy =haye 7 + Laye T -

30
1 2 28,7, ( )
—ZFlazoe ¥2 cos(ZT, +0,) —

1 o
_ZF(‘)OIC’loleSIT2 cos(S,7; + @),
@, =S, = %alzoe_ZSITz + /Ltazzoe_ZSZT2 -

1
—Zl"zafoe’zs‘T2 cos(Z7, +9,),

where £=2(S,-5;).

To solve the first two equations in (30), we will
use the method of wvariation of arbitrary
functions, and assume the proposed solution in
the form

a(T,) =G (Tz)e’iTzT ; G1)
a,(T,) =G (T)e ™,

where C/(7,) and C,(7,) are arbitrary functions

to be found.

Substituting the proposed solution (31) in
equations (30) yields
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. 1 .
G(T)= Zrlaloazzoe_zszr2 sin(X7, +6,) -

-1_5,

—%Fwo e sin(S, T, + ¢, (32)

Cz (T,)= _il—‘zalzoazoe_zslT2 sin(ZT, + &)
Integrating equations (32), we have

1 :
C(T1)= _Zrlaloazzo [2S2 sin(X7, +6,) +
+2Xcos(XT, + 50)](45'22 432 )—1 25T _

F .
[Sl sin(S,7, +¢y) —
29

4 (33)

-1
-5, cos(S;T,, + ¢10)](S12 + S32) e +Cp,

1 .
C,(T,) = Zrzafoazo [2S,sin(ET, + 6,) +

+ECos(ET, +6,)] (45 +22) e 4y,

where C,, and C,, are constants of

integration.
Considering relationships (33), the amplitude
functions take the form

a, =ae " —%Flamaio [252 sin(Z7, +6,) +

+Zcos(ZT, + 50)](4522 432 )—1 o (S2ST _

F
4a,

[Sl sin(S,7;, + @) — (34)
1 _
8, c08(S,T, + ) |(S7 +57) & +Cpe ¥,

a, =a,e " + irzafoazo [ZS1 sin(Z7, +6,) +

+2cos(ZT, + 50)](4512 432 )—1 e ST ) oS

Integrating the third and fourth equations in
(30), we obtain the 7, -functions of the phases

of vibration
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ﬂvla 28T, /Izazo 28,7,
. S - S’) 2
e e N ——=—=—pe "2 4

=S.T,+¢,—

Py =031y TPy 25, 28,

+1F1a220 28, cos(ZT, + 602) + EZSin(ET2 +0,) o2
4 45,7 +Z

1 Fayy S, cos(S,T; +¢y,) + S, sin(S, T, + @y,) STy
4 w, S’ +5;

+C5,

Aaafo By /145’220 25,7,

=S +@,———e " ————e " +

Py =045 TPy 25, 28,

+ll"2a120 28, cos(ZT, + 502) + ZZSin(ZT2 +0,) 0T
4 457 +2

+C

40>

where C,, and C,, are constants of integration to
be determined from the initial conditions.

Since the general solution of the system under
consideration is the sum of the particular solution
of the inhomogeneous set of equations and the
general  solution of the corresponding
homogeneous system, then the arbitrary constants
could be chosen in such a way that the initial
conditions of all successive approximations would
be zero. Thus, for the first approximation the
constants to be found take the form

1 , 28,sind, +Zcosd,
Gy zzrlaloazo 2 4S2(2) 7 0 4
N F S sing,, —S,cosq,,
4w, SE+S3
1., 28 5sind, +Xcosd
Cy Z_Zrzaloazo : 4S]2 32 <,
_}”1_"120+ a5 —ll“ , 28,c086, +Zsind, .
30 = 7 > -
25, 25, 4 45,7 +%
+l Fa,, S, cosqolg + S32 sing,, ’ G36)
4 @, Sl +S3
C, = 2,3_al20+ A4, _lrzalzo 28, COSb;O + Zzsin S,
285, 25, 4 457 +2

Substitution of the found constants of integration
(36) in relationships (34) and (35) results in the
approximate analytical solution of the formulated
problem.
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4. NUMERICAL RESULTS

For numerical studies of the influence of the
parameters of the fractional derivative
viscoelastic model on forced vibrations of
suspension bridges, the fourth-order Runge-
Kutta method was used in the «GNU Octave»
system for numerical mathematics utilizing
different values of the fractional parameter.

Envelopes of the amplitudes of nonlinear
vibrations of the Golden Gate Bridge in the case

of the internal resonance @,; =€, =2.61rad/sec

(according to data presented in [2], the natural
frequency of the fifth symmetric mode of vertical
vibrations is equal to that of the third symmetric
mode of the torsional vibrations) are depicted in
Figure 2(a) for free vibrations and in Figure 2(b)
for forced vibrations at /=1 at different magnitudes
of the fractional parameter y= 0, 0.15, and 0.5.
Reference to Fig. 2 shows that the increase in the
fractional parameter results in a significant
decrease in dimensionless amplitudes of nonlinear
oscillations. The energy exchange between the
interacting modes takes place both in the case of
undamped ( =0 ) and damped ( O0<y<1)
vibrations, and the action of the external force
does not affect this phenomenon.

Dimensionless displacements of the Golden Gate
Bridge for forced vibrations are shown in Fig. 3
for different levels of the external force
magnitudes. From Fig. 3 it is evident that the
displacement x, is more susceptible to a higher
vertical force than x,. This is due to the fact that
x, and x, are responsible for vertical and
torsional vibrations, respectively, whence it
follows that the x, -displacement is weakly

sensitive to the increase in the force amplitude f.
Figure 4 allows one to trace the influence of the
level of the external force magnitude on the
dimensionless amplitudes of vertical a, and

torsional a, vibrations. From Figure 4 it could be

seen that the magnitudes of the amplitudes of
vertical vibrations are very sensitive to the action
of the force.
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Figure 2. Dimensionless amplitude vs. dimensionless time:
(a) free vibrations, (b) forced vibrations at f =1 with the initial amplitude a,=0.3,

blue line —a,, orange line —a, .
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Figure 3. The time-dependence of the generalized displacements at different levels of external force
magnitude fory =0.
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Figure 4. Time-dependence of the dimensionless amplitudes a, (blue) and a, (orange) at different

levels of the external force amplitude.

CONCLUSION

Nonlinear force driven coupled vertical and
torsional vibrations of a suspension bridge
subject to the combination of external and
internal resonances have been investigated for
the case when its damping features are described
by the fractional derivatives. From the above
discussion the following conclusions could be
reached.

If the external force is of order of &° and the
viscosity coefficients are of order of ¢, then it is

Volume 16, Issue 2, 2020

possible to obtain the approximate analytical
solutions for the generalized displacements. As
this takes place, the solution for the vertical

displacement x, involves two parts: the first

corresponds to the damping vibrations with
damping coefficients and nonlinear frequencies
dependent on the fractional parameters and
describes the transient process, while the second
one is nondamping in character and describes the
steady-state regime, i.e., forced vibrations with
the frequency of the exciting force and with the
phase difference depending on the fractional
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parameter. The solution for the torsional
displacement x, consists only from one term

describing the transient process.

Moreover, in the transient processes, the
damping coefficients and the frequencies of
nonlinear vibrations depend on the square of the
exciting force amplitude.

If the external force is of order of &’ and the
viscosity coefficients are of order of &*, then
the approximate analytical expressions for the
generalized displacements x; and x, have

been obtained by the method of successive
approximations. The numerical analysis has
shown that dimensionless amplitudes decrease
with the increase in the fractional parameter y,
and the vertical amplitude and hence vertical
displacement are much more susceptible to the
higher vertical external force than torsional
amplitude.
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