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ANALYSIS OF NONLINEAR FORCED VIBRATIONS  
OF  FRACTIONALLY DAMPED SUSPENSION BRIDGES

SUBJECTED TO THE ONE-TO-ONE INTERNAL RESONANCE   
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Abstract: Nonlinear force driven coupled vertical and torsional vibrations of suspension bridges, when 
the frequency of an external force is approaching one of the natural frequencies of the suspension 
system, which, in its turn, undergoes the conditions of the one-to-one internal resonance, are 
investigated. The method of multiple time scales is used as the method of solution. The damping features 
are described by the fractional derivative, which is interpreted as the fractional power of the 
differentiation operator. The influence of the fractional parameters (orders of fractional derivatives) on 
the motion of the suspension bridge is investigated.  
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Аннотация: Исследуются нелинейные вынужденные изгибно-крутильные колебания висячего моста 
при наличии внутреннего резонанса один-к-одному в случае, когда частота возмущающей силы близка 
одной из собственных частот колебаний. В качестве метода решения используется обобщенный метод 
многих временных масштабов. Силы демпфирования описываются при помощи производной дробного 
порядка, которая интерпретируется как дробная степень оператора дифференцирования. 
Проанализировано влияние париметра дробности на колебания висячего моста.    

Ключевые слова: висячий мост, нелинейные вынужденные колебания, демпфирование с помощью 
дробной производной, обобщенный метод многих временных масштабов 

1. INTRODUCTION  

The suspension bridges are unique building 
structures, as they allow one not only to cover 

large spans, but also are economically viable. 
Compared to other types of bridges, suspension 
bridges have a number of technical and aesthetic 
advantages, that is why they are so widely used 
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in the modern world. The history of suspension 
bridges met with the largest catastrophe in bridge 
construction - the collapse of the bridge over the 
Tacoma River (USA) in 1940 (Tacoma Narrows 
Bridge). In flexible suspension bridges under the 
action of various dynamic loads, such as moving 
load or wind, strong bending-torsional vibrations 
could occur, sometimes resulting in extremely 
large amplitudes complicating the normal 
operation of the bridge, and sometimes causing 
its destruction. Due to the low damping ability of 
the suspension bridges, the oscillations could be 
accompanied by the transfer of energy between 
different modes of vibrations for a long time even 
after unloading, which was the cause of their 
occurrence. This is explained by the phenomenon 
of internal resonance, when one of the 
frequencies of free bending vibrations is close in 
value to one of the natural frequencies of 
torsional vibrations, which in practice can occur 
quite often due to the density of the spectrum of 
the natural frequencies of suspension bridges, 
which largely depend on the geometric 
parameters of the bridge.  
To analyze the phenomena of the internal 
resonance during dynamic response of 
suspension bridges, different mathematical 
models have been utilized. Thus, the continuous 
model proposed in [1] has been used in [2-6] to 
solve the system of nonlinear differential 
equations describing the dynamics of suspension 
bridges under one-to-one [2-6] and two-to-one 
[3-5] internal resonances by means of the 
multiple time scales perturbation technique [7].
The state-of-the-art survey of the internal 
phenomena in suspension bridges was made by 
Shitikova and Rossikhin [8] in their plenary 
lecture at the 5th European Conference of Civil 
Engineering held in Florence, Italy in 2014. 
During this report, the authors passed aloud their 
opinion that the reason of failure of the Tacoma 
Narrows Bridge was connected with the internal 
resonance between vertical and torsional 
vibrations.       
This idea was repeated a year later, in 2015, by 
Arioli and Gazzola [9], who trying to explain 
why did torsional oscillations suddenly appears 

before the Tacoma Narrows collapse found out 
that vertical oscillations had become large 
enough and switched to torsional ones. The four-
degree-of-freedom model accounting for both the 
flexural-torsional motion of the bridge deck and 
for the transversal motion of a pair of hangers has 
been considered in [10], and the internal 
resonance between the modes of deck and 
hangers vibrations has been studied. Stability of 
dynamic response of suspension bridges with due 
account for the phenomenon of the internal 
resonance has been considered in [11]. The 
generation of the force induced internal 
resonance was recorded during repairs connected 
with the retrofit of suspension bridges in the 
U.S.A. [12].   
Thus, the potential occurrence of internal 
resonance phenomena has been identified as the 
potential cause of critical dynamic states in long-
span suspension bridges. Therefore, the task of 
studying the internal resonance in suspension 
bridges is very relevant and important.
The first field observations of the vibrations of 
the Golden Gate suspension bridge were made in 
the period from 1933 to 1942, when 
seismological instruments were installed on the 
piers, towers and cables to measure any vibration 
that might occur [13]. After the failure of the 
Tacoma Narrows Bridge in 1940, it was decided 
to install ten instruments for measuring the 
vertical movement of the bridge, which worked 
continuously until 1954. Vincent [14-16]
analyzed these recordings of observations of the 
Golden Gate Bridge vibrations, and the field 
observations of this bridge were further 
continued to [17-20]. Thus, the experimental data 
obtained in [20] showed that different vibrational 
modes feature different amplitude damping 
coefficients, and the order of smallness of these 
coefficients tells about low damping capacity of 
suspension combined systems, resulting in 
prolonged energy transfer from one partial 
subsystem to another. However, the analytical 
model described in [2] with its further extension 
in [3,4] allows one to analyze only free 
undamped vibrations of suspension bridges. 
Nonlinear free damped vibrations of suspension 



Analysis of Nonlinear Forced Vibrations of Fractionally Damped Suspension Bridges Subject to One-to-One Internal 
Resonance 

Volume 16, Issue 2, 2020 115 

bridges in the cases of the one-to-one internal 
resonance, when the natural frequency of a 
certain mode of vertical vibrations is close to the 
natural frequency of a certain mode of torsional 
vibrations, and the two-to-one internal 
resonance, when one natural frequency is nearly 
twice as large as another natural frequency, have 
been examined in [5] when damping features of 
the system are prescribed by the first derivative 
of the displacement with respect to time. It has 
been shown that for the both types of the internal 
resonance the damping coefficient does not 
depend on the natural frequency of vibrations, 
but this result is in conflict with the experimental 
data presented in [20] and [21].
To lead the theoretical investigations in line with 
the experiment, fractional derivatives were 
introduced in [22] for describing the processes of 
internal friction occurring in suspension 
combined systems at nonlinear free vibrations. 
The nonlinear suspension bridge model put 
forward allows one to obtain the damping 
coefficient dependent on the natural frequency of 
vibrations.  
The overview of the existing research of the 
internal resonance in suspension bridges could be 
found in [23,24].   
In the present paper, the model proposed in [22]
for the analysis of free damped vibrations is
generalized to the case of nonlinear forced 
vibrations of suspension bridges, when the 
frequency of the external force is close to one of 
the natural frequencies of the vertical vibrations 
of the suspension combined system, which is 
subjected to the condition of the one-to-one 
internal resonance.  

2. PROBLEM FORMULATION  

To analyze the forced damped vibrations of 
suspension bridges we will use its classical 
scheme involving a bisymmetrical thin-walled 
stiffening girder connected with two suspended 
cables by virtue of vertical suspensions [25]. The 
cables are thrown over the pilons and are 
tensioned by anchor mechanisms. The 

suspensions are considered as inextensible and 
uniformly distributed along the stiffening girder. 
The cables are parabolic, and the contour of the 
girder's cross-section is underformable. It is 
assumed that the girder's contour translates as a 
rigid body vertically (in the y -axis direction) on 
the value of ( , )z t*  and rotates with respect to 
the girder's axis (the z -axis) through the angle of 

( , )z tF  (Fig. 1). The origin of the frame of 
references is in the center of gravity of the cross 
section. 
It is known for suspension bridges [2-4] that 
some natural modes belonging to different types 
of vibrations could be coupled with each other, 
i.e., the excitation of one natural mode gives rise 
to another one. Two modes interact more often 
that not, although the possibility for interaction 
of a greater number of modes is not ruled out. 
Below it would be considered the case when only 
two modes predominate in the vibrational 
process, namely: the vertical n -th mode with 
linear natural frequency 0n� , and the torsional 
m -th mode with the natural frequency 0m� .
Under such an assumption the functions ( , )z t*
and ( , )z tF  could be approximately defined as 
(using the eigenbase of the associated linear 
undamped unforced problem)  

1

2

( , ) ( ) ( ),
( , ) ( ) ( ),

n n

m m

z t v z x t
z t z x t

*
F J

( )n n1( )( ) 1( )( ) 1( )( )) 1

m 2( ) 2( )( )) 2( )) 2

        (1) 

where 1 ( )nx t  and 2 ( )mx t  are the generalized 
displacements, and ( )nv z  and ( )m zJ  are 
natural shapes of the two interacting modes of 
vibrations. 
When the harmonic force ˆ= cos( )FF F t�  is 
applied at the center of the suspension bridge, 
then the equations of its forced vibrations are 
written in the dimensionless form as (what is the 
immediate generalization of the approach 
proposed in [22] by adding the external vertical 
excitation with amplitude ˆ = cF onst  and 
frequency F� )
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Figure 1. Scheme of a suspension bridge.
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where ija , iib , and iic  ( = 1,2i , = 2j ) are 
certain dimensionless coefficients which are 
defined in [2,22] (subsequently the indices n
and m  are omitted for ease of presentation), 
dots denote differentiation with respect to time, 
the terms 1

0 1D x91 	  and 2
0 2D x91 	  characterize 

inelastic reaction of the system, 1  is the 
viscosity coefficient, the fractional derivative 

0D x9
	  ( 1=9 9  or 29 ) is defined as follows [26] 

0 0

( )= (0 < 1),
(1 )

td x t t dtD x
dt t

9
9 9

9	

K K�
�

KL �;   (3) 

9  is the order of the fractional derivative 
(fractional parameter), and (1 )9L �  is the 
Gamma-function. 
Let us consider the case of the one-to-one 
internal resonance, as well as suppose that the 
frequency of the external force is close to the 
natural frequency of the interacting modes, i.e., 
  

0 0 .F� �M� M (4) 

Note that the influence of the detuning parameter 
characterizing the small difference in magnitudes 
of the natural frequencies 0�  and 0�  has been 
investigated in [4,6,24].
Since for finding the solution of equations (2) we 
will use the method of multiple time scales, 
where the functions i te �D  are utilized as the 
main harmonic functions, then in order to carry 
out the calculations the following formulas will 
be utilized [27] 

0 0

sin= ,
ut

i t i t u e duD e D e
u i

9
9 � 9 � "9

" �

�ND D
	 	 	

D; (5) 

  
= ( ) ,i t i tD e i e9 � 9 ��D D

	 D                   (6) 

where D9
	  is obtained from (3) changing the 

low limit to �N . 
It has been shown in [28] and [29] that the second 
term in formula (5) does not produce secular 
terms in the method of multiple time scales under 
the limitation of the zero- and first-order 
approximations. In other words, this term could 
be neglected in further consideration, and it is 
possible to use the approximate formula  

0 .i t i tD e D e9 � 9 �D D
	 	M (7) 

If we take into account formula (5.82) from [26] 
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= ,i t i tdD e e
dt

9
9 � �D D
	

C @
A >
B ?

(8) 

then from the combination of (7) and (8) it 
follows the relationship  

0 ,i t i tdD e e
dt

9
9 � �D D
	

C @M A >
B ?

(9) 

which will be used in further calculations.  

3. METHOD OF SOLUTION  

We will seek the solution for two cases:  

(1) =1 8O  and that 2ˆ =F f8 ,

and  

(2) 2=1 8 O  and that 3ˆ =F f8 ,

where a small parameter 8 is introduced as a 
bookkeeping device to indicate the smallness of 
terms [7]. 
In these cases, an approximate solution of 
equations (2) for small amplitudes weakly 
varying with time can be represented by an 
expansion in terms of different time scales  

2
1 11 0 1 2 12 0 1 2

3
13 0 1 2

2
2 21 0 1 2 22 0 1 2

3
23 0 1 2

( ) = ( , , ) ( , , )

( , , ) ,

( ) = ( , , ) ( , , )

( , , ) ,

x t x T T T x T T T
x T T T

x t x T T T x T T T
x T T T

8 8

8

8 8

8

	 	

	 	

	 	

	 	

,

,

(10) 

where  

= n
nT t8 ( = 0,1,2)n

are new independent variables, 8  is a small 
parameter which is of the same order of 

magnitude as the amplitudes, and O  and f  are 
finite values. Here, 0 =T t  is a fast scale, 
characterizing motions with the natural 
frequencies 0�  and 0� , while  

1 =T t8  and 2
2 =T t8

are slow scales, characterizing the modulations 
of the amplitudes and phases. 
Considering that [7] 
  

2
0 1 2

2 2 2 2 2
0 0 1 1 0 2

/ = ,

/ = 2 ( 2 ),

d dt D D D
d dt D D D D D D

8 8

8 8

	 	

	 	 	
 (11) 

as well as applying the expansion of the 
fractional derivative as it was suggested in 
Rossikhina and Shitikova [22]   

2
0 1 2

1 2 2 2
1 1

( / ) = ( )
1= ( 1) ...
2

d dt D D D

D D D D D

9 9

9 9 9

8 8

89 8 9 9� �
	 	 	

	 	 	 


	 	 �

)9) 
)9)
(12) 

where = /n nD T# # ,  

( )= ( = 0,1,2)
(1 )

tn
n

d x t t dtD x n
dt n t

9
99

�
	 ��N

K K�
KL � 	;

substituting (10) into (2), and equating the 
coefficients at like powers of 8  to zero, we 
obtain   
to order 8 :

2 2
0 11 0 11
2 2
0 21 0 21

= 0,

= 0;

D x x
D x x

�	

	�
(13) 

to order 28 :

2 2
0 12 0 12 0 1 11 11

2 2
11 11 22 21 0 0

= 2 (2 )

(2 ) cos( ),

D x x D D x k D x
a x a x k f T

9� O

�
		 � � � �

� � 	 �
(14)

2 2
0 22 0 22 0 1 21 21

12 11 21

= 2 (2 )
;

D x x D D x k D x
a x x

9O 		� � � � �
�
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to order 38 :

2 2 2
0 13 0 13 0 1 12 1 0 2 11

1
12 1 11

11 11 11 12 22 21 22
3 2

11 11 22 21 11 0 0
2 2 2
0 23 0 23 0 1 22 1 0 2 21

22

= 2 ( 2 )

(2 ) (2 )

( 1) 2 2

( 1) cos( ), (15)

= 2 ( 2 )

(2 )

D x x D D x D D D x
k D x k D D x
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�
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	 � � 	 �

� � � � �

� � � � �

� � 	 �

	� � � 	 �

� � � 1
1 21

21 12 11 22 12 21
2 3

11 11 21 22 21

(2 )

( 1) ( )
.

k D D x
k D x a x x x x

c x x c x

9

9

O 9

O

�
	

	

� �

� � � 	 �

� �

At =1k  and = 2k , we obtain governing 
equations for the first and second cases, 
respectively.
Integrating equations (13) yields 
  

0

0 0

0 0
11 1 1 2 1 1 2

0 0
21 2 1 2 2 1 2

= ( , ) ( , ) ,

= ( , ) ( , ) ,

i T i T

i T i T

x A T T e A T T e

x A T T e A T T e

� ��

� � �

	

	
(16) 

where 1A  and 2A  are unknown complex 
functions, and 1A  and 2A  are the complex 
conjugates of 1A  and 2A , respectively. 
In order to integrate the sets of equations (14) and 
(15), it is necessary to consider each case 
separately. 

3.1.The case =1k   

Now let us substitute (16) into the right-hand 
sides of equations (14) putting there =1k , then 
gather all terms standing at 00i Te �  and 00i Te ��

with due account for (4) and vanish them in order 
to exclude secular terms. As a result we obtain  

1
1 1 0 1

0

1
1 2 0 2

1 ( ) = 0,
2 4
1 ( ) = 0,
2

fD A i A
i

D A i A

9

9

O �
�

O �

�

�

	 �

	
         (17) 


 � 0

0

22 2 2 2 0
0 12 0 12 11 1 22 2

11 1 1 22 2 2
22 2 0

0 22 0 22 12 1 2

12 1 2

=

,

=
,

i T

i T

D x x a A a A e

a A A a A A cc

D x x a A A e
a A A cc

�

�

�

�

	 � 	 �

� � 	

	 � �

� 	

(18) 

where cc  is the complex conjugate part to the 
preceding terms. 
Integrating equations (17), we find  

1
1 1 2 1 2 0 1

0

1( , ) = ( )exp ( )
2

,
2 ( )

A T T a T i T

f
i

9

9

O �

O �

�2 3� 	4 56 7

	
 (19a) 

1
2 1 2 2 2 0 1

1( , ) = ( )exp ( ) .
2

A T T a T i T9O � �2 3�4 56 7
 (19b) 

Substituting (19) in equations (18) and 
integrating, we obtain the expressions for 12x
and 22x . Then substituting found 12x  and 22x
in equations (15) and using the standard 
procedure for eliminating the secular terms, we 
have  

2 2 3
2 1 0

2 2
211 11

12 2 1
0

1 ( ) (1 2 )
8

( 3 )1 = 0,
4

i

D a i

f a bi e a

9

" 9
9

O � 9

O �

�

�
	

2	 � 	46
3�

	 5
7

 (20) 

2 2 3
2 2 0

2 2 2
11 12 11 12 0

2
22 2 1

0

1 ( ) (1 2 )
8

1( 2 )1 3 = 0.
4

i

D a i

f a a c a
i e a

9

" 9
9

O � 9

�

O �

�

�

�
	

2	 � 	46
3� � 5

	 5
5
7

Integrating equations (20) yields  
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0 2 2 2
1 1 2 0

2 2
11 11
2 2 1

0

1= exp (1 2 )( )
8

( 3 )1 ( cos 2 sin 2 ) ,
4

a a T i

f a b i

9

9

O 9 �

"9 "9
O �

�

	

$ 2� � �& 46'
.3� %� 	 /5
%70

(21a) 

                             


 �

0 2 2 3
2 2 2 0

2 2 2
11 12 11 12 0

2 2 1
0

1= exp (1 2 )( )
8

1( 2 )1 3
4

cos 2 sin 2 ]},

a a T i

f a a c a

i

9

9

O 9 �

�

O �
"9 "9

�

�

	

$ 2� � �& 46'

� �
� �

� 	

(21b) 

where 0
1a  and 0

2a  are arbitrary constants. 
Considering formulas (10), (16), (19), and (21), 
we finally obtain  

0 1
1 1 1

2
0

0

= 2 cos

cos ( ),
2

tx a e t

f t O

+

9

8

"� 9 8
O�

�2 � 	6
3C @	 � 	5A >

B ?7

 (22a) 

0 22
2 2 2= 2 cos ( ),tx a e t O+8 8� � 	 (22b) 

where  

1
1 0

2
0

2 2
2 11 11

2 2 1
0

1= sin
2 2
11 (2 1) cos
2 2

( 3 )1 sin(2 ),
4

f a b

9

9

9

"9+ 8O�

"98O 9 �

8 "9
O �

�

�

	

C @�A >
B ?

2 3C @� 	 � �A >4 5B ?6 7
�

�
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O �

�
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	 � �
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	 � �

3� �
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7

Reference to the found analytical solution (22) 
shows that it involves two parts: the first 
corresponds to the damping vibrations with 
damping coefficients and nonlinear frequencies 
dependent on the fractional parameters and 
describes the transient process, while the second 
one is nondamping in character and describes 
forced vibrations with the frequency of the 
exciting force and with the phase difference 
depending on the fractional parameter. 

3.2.The case = 2k   
Let us substitute relations (16) in the right-hand 
parts of equations (14) at = 2k . Eliminating 
secular terms and integrating the equations 
obtained, we have 

1 1 1 2= = 0,D A D A (23) 


 �

0 02 22 211 220 0
12 1 22 2

0 0

2
11 1 1 22 2 2 0

=
3 3

,

i T i Ta ax A e A e

a A A a A A cc

� �

� �

�

	 �

� 	 	
(24a) 

0212 120
22 1 2 1 22 2

0 0

= .
3

i Ta ax A A e A A cc�

� �
� 	 (24b) 

From (23) it follows that the functions 1A  and 

2A  are 1T -independent. 
Substituting then (16) and (24) in equations (15) 
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and utilizing the standard procedure for 
eliminating secular terms, we obtain  

1 2
2 1 0 0 1 1 1 1

2
2 1 2 2 1 1 2

0

1 ( )
2

1 1 = 0,
4 4

iD A i A A A

fA A A A A

9O� � �

�
�

�� � � �

� 	 L 	
(25a) 

1
2 2 0 0 2 3 1 1 2

2 2
4 2 2 2 1 2

1 ( )
2

1 = 0,
4

iD A i A A A A

A A A A

9O� � �

�

�� � � �

� 	 L
(25b)         

where coefficients i�  and jL  ( = 1,2,3,4i  and 
=1,2j ) are presented in [2,4]. 

Now we multiply (25a) and (25b) by 1A  and 2A
, respectively, and find their complex conjugates. 
Adding every pair of the mutually adjoint 
equations and subtracting one from another, and 
after all manipulations representing the functions 

1A  and 2A  in their polar form, i.e.,  

� �1 2 1 2 1 2( ) = ( )exp ( ) ,A T a T i TF
� �2 2 2 2 2 2( ) = ( )exp ( ) ,A T a T i TF

as a result we obtain the modulation equations 
  

1 2
1 0 1 1 1 2

1
0 1

1 1 1sin sin
2 2 4

1 sin = 0, (26a)
4

a a a a

f

9O� "9 H

� F

�

�

C @	 � L 	A >
B ?

	

1
1
2 0a 9O�00

99	
                                      

1
2 0 2

2
2 1 2

1 1sin
2 2

1 sin = 0,
4

a a

a a

9O "9

H

� C @	 � 	A >
B ?

	 L

2
1
2 0a2

9O 000
9	 �

1 OO
(26b) 

1 2 2
1 0 1 1 2 2

2 1 1
1 2 0 1 1

1 1cos
2 2

1 1cos cos = 0,
4 4

a a

a f a

9F O� "9 � �

H � F

�

� �

C @� � � 	A >
B ?

	 L 	

1
1
2 0F O�1 0
1
2 0

99

(26c) 

1 2 2
2 0 3 1 4 2

2
2 1

1 1cos
2 2

1 cos = 0,
4

a a

a

9F O "9 � �

H

� C @� � � � 	A >
B ?

	 L

2
1
2 0F O2 0
1
2 0

9OO1 9

(26d) 

where  

2 1= 2( )H F F�

is the phase difference, and a dot denotes 
differentiation with respect to 2T .  
The set of differential equations (26) subjected to 
the initial conditions competely describes the 
modulations of amplitude and phases of forced 
damped vibrations. An approximate analytical 
solution of equations (26) could be found by the 
method of successive approximations. 
As the initial approximation, let us consider the 
solution of the homogeneous part of equations 
(26):                              


 �

1

2

1

2

1
1 0 1 1

1
2 0 2 2

1
1 0 1 1

1
2 0 2 1

1 1sin 0,
2 2
1 1sin 0,
2 2
1 1cos 0,
2 2
1 1cos 0,
2 2

a a

a a

9

9

9

9

O� "9

O "9

F O� "9 !

F O "9 ! !

�

�

�

�

C @	 
A >
B ?
C @	 � 
A >
B ?
C @� � 
A >
B ?
C @� � � � 
A >
B ?

1
1

1
2 0a1

9O�000	 191O� 1
0
9

2
1
2

a2
9O 9	 �

1 O

1
1

1
2 0

9F O� 1
1 02 0

99

2 2 0
1 9F O2 02 0

9�
1 OO 9

(27)         

which has the form 

1 2 2 2
1 10 2 20

1 3 2 10 2 4 2 20

,     ,     
+ ,    + ,

S T S Ta a e a a e
S T S TF F F F

� �
 


 


(28)

where 0ia  and 0iF  (i=1,2) are, respectively, 
the initial values of amplitudes and phases to be 
found from the initial conditions, 


 �0 20 102H F F
 �

is the initial phase difference, and  
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1
1 0

1
2 0

1
3 0

1
4 0

1 1sin ,             
2 2
1 1sin ,
2 2
1 1cos ,       
2 2
1 1cos .
2 2

S

S

S

S

9

9

9

9

O� "9

O "9

O� "9

O "9

�

�

�

�

C @
 A >
B ?
C @
 � A >
B ?
C @
 A >
B ?
C @
 � A >
B ?

(29)                                                           

Now substituting (28) in equations (26) yields 

1 2 2

1 2 2

1 2 2 2

2 2

1 2

( 2 ) 2
1 1 1 1 10 20 2 0

1
0 3 2 10

(2 )2
2 2 2 2 10 20 2 0

2 22 2
1 3 1 10 2 20

22
1 20 2 0

1 1
0 10 3 2

1 sin( )
4

1 sin( ),
4

1 sin( ),
4

1 cos( )
4
1 cos(
4

S S T

S S T

S T S T

S T

S T

a S a a e a T

F S T

a S a a e a T

S a e a e

a e T

F a e S T

H

� F

H

F � �

H

�

� 	

�

� 	

� �

�

� �

	 
 L P 	 �

� 	

	 
 � L P 	

� 
 	 �

� L P 	 �

�

1 1 1a S a1 1 11S aS a1 11

2 2 2a S a2 2 22S aS a2 22

1 3 1F �1 3 1S3 1S3 11

1 2 2 2

1 2

10

2 22 2
2 4 3 10 4 20

22
2 10 2 0

),

1 cos( ),
4

S T S T

S T

S a e a e

a e T

F

F � �

H

� �

�

	

� 
 	 �

� L P 	

2 4F �2 4S4S4

(30) 

where 
 �4 3= 2 S SP � .  
To solve the first two equations in (30), we will 
use the method of variation of arbitrary 
functions, and assume the proposed solution in 
the form 

                                                     
1 2

2 2

1 2 1 2

2 2 2 2

( ) ( ) ,         

( ) ( ) ,

S T

S T

a T C T e
a T C T e

�

�






(31)                        

where 1 2( )C T  and 2 2( )C T are arbitrary functions 
to be found. 
Substituting the proposed solution (31) in 
equations (30) yields 

2 2

1 2

1 2

22
1 2 1 10 20 2 0

1
0 3 2 10

22
2 2 2 10 20 2 0

1( ) sin( )
4

1 sin( ),
4

1( ) sin( ).
4

S T

S T

S T

C T a a e T

F e S T

C T a a e T

H

� F

H

�

�

�


 L P 	 �

� 	


 � L P 	

1 222 4
1( )C T1 2
1( )22
1

( )C ( )

(32)        

Integrating equations (32), we have 

�

�
 �
�

�
 �
�

�
 �

2 2

1 2

1 2

2
1 2 1 10 20 2 2 0

1 22 2
2 0 2

1 3 2 10
0

12 2
3 3 2 10 1 3 10

2
2 2 2 10 20 1 2 0

1 22 2
2 0 1 20

1( ) 2 sin( )
4

cos( ) 4

sin( )
4

cos( ) ,

1( ) 2 sin( )
4

cos( ) 4 ,

S T

S T

S T

C T a a S T

T S e

F S S T

S S T S S e C

C T a a S T

T S e C

H

H

F
�

F

H

H

� �

�

� �


 � L P 	 	

	P P 	 	 P �

� 	 �

� 	 	 	


 L P 	 	

	P P 	 	 P 	

 (33)           

where 10C  and 20C  are constants of 
integration. 
Considering relationships (33), the amplitude 
functions take the form  
              

�

�
 �
�

�
 �
�

�
 �

1 2

1 2 2

1 2 1 2

2 2

2
1 10 1 10 20 2 2 0

1 ( 2 )2 2
2 0 2

1 3 2 10
0

12 2
3 3 2 10 1 3 10

2
2 20 2 10 20 1 2 0

2 2
2 0 1

1 2 sin( )
4

cos( ) 4

sin( ) (34)
4

cos( ) ,

1 2 sin( )
4

cos( ) 4

S T

S S T

S T S T

S T

a a e a a S T

T S e

F S S T

S S T S S e C e

a a e a a S T

T S

H

H

F
�

F

H

H

�

� � 	

� �

�

�


 � L P 	 	

	P P 	 	 P �

� 	 �

� 	 	 	


 	 L P 	 	

	P P 	 	 P 1 2 2 2 2
1 (2 )

20 .S S T S Te C e� 	 �	

         

Integrating the third and fourth equations in 
(30), we obtain the 2T -functions of the phases 
of vibration
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1 2 2 2

2 2

1 2

1 2

2 2
2 21 10 2 20

1 3 2 10
1 2

22 2 2 0 2 0
1 20 2 2

2
1

10 1 3 2 10 3 3 2 10
2 2

0 1 3

30
2 2

23 10 4 20
2 4 2 20

1 2

2 2
2 cos( ) sin( )1

4 4

cos( ) sin( )1
4

, (35)

2 2

S T S T

S T

S T

S T

a aS T e e
S S

S T Ta e
S

Fa S S T S S T e
S S

C

a aS T e e
S S

� �
F F

H H

F F
�

� �
F F

� �

�

�

�


 	 � � 	

P 	 	 P P 	
	 L �

	 P

	 	 	
� 	

	
	


 	 � � 2 2

1 2

2

22 1 2 0 2 0
2 10 2 2

1

40

2 cos( ) sin( )1
4 4

,

S T

S TS T Ta e
S

C

H H

�

�

	

P 	 	 P P 	
	 L 	

	 P
	

                                                   

where 30C  and 40C  are constants of integration to 
be determined from the initial conditions.
Since the general solution of the system under 
consideration is the sum of the particular solution 
of the inhomogeneous set of equations and the 
general solution of the corresponding 
homogeneous system, then the arbitrary constants 
could be chosen in such a way that the initial 
conditions of all successive approximations would 
be zero. Thus, for the first approximation the 
constants to be found take the form
             

2 2 0 0
10 1 10 20 2 2

2

1 10 3 10
2 2

0 1 3

2 1 0 0
20 2 10 20 2 2

1

2 sin cos1
4 4

sin cos ,
4

2 sin cos1 ,
4 4

SC a a
S

S SF
S S

SC a a
S

H H

F F
�

H H

	 P

 L 	

	 P
�

	
	

	 P

 � L

	 P

                  

2 2
21 10 2 20 2 0 0

30 1 20 2 2
1 2 2

1
10 1 10 3 10

2 2
0 1 3

2 cos sin1
2 2 4 4

cos sin1 , (36)
4

a a SC a
S S S

Fa S S
S S

� � H H

F F
�

�

	 P

 	 � L 	

	 P

	
	

	
2 2

23 10 4 20 1 0 0
40 2 10 2 2

1 2 1

2 cos sin1 .
2 2 4 4

a a SC a
S S S

� � H H	 P

 	 � L

	 P

Substitution of the found constants of integration 
(36) in relationships (34) and (35) results in the 
approximate analytical solution of the formulated 
problem. 

4. NUMERICAL RESULTS  

For numerical studies of the influence of the 
parameters of the fractional derivative 
viscoelastic model on forced vibrations of 
suspension bridges, the fourth-order Runge-
Kutta method was used in the «GNU Octave»
system for numerical mathematics utilizing 
different values of the fractional parameter. 
Envelopes of the amplitudes of nonlinear 
vibrations of the Golden Gate Bridge in the case 
of the internal resonance 05 03 2.61s s� 
 � 
 rad/sec 
(according to data presented in [2], the natural 
frequency of the fifth symmetric mode of vertical 
vibrations is equal to that of the third symmetric
mode of the torsional vibrations) are depicted in 
Figure 2(a) for free vibrations and in Figure 2(b) 
for forced vibrations at f=1 at different magnitudes 
of the fractional parameter 9 = 0, 0.15, and 0.5. 
Reference to Fig. 2 shows that the increase in the 
fractional parameter results in a significant 
decrease in dimensionless amplitudes of nonlinear 
oscillations. The energy exchange between the 
interacting modes takes place both in the case of 
undamped ( 09 
 ) and damped ( 0 19� � )
vibrations, and the action of the external force 
does not affect this phenomenon.   
Dimensionless displacements of the Golden Gate 
Bridge for forced vibrations are shown in Fig. 3
for different levels of the external force 
magnitudes. From Fig. 3 it is evident that the 
displacement 1x  is more susceptible to a higher 
vertical force than 2x . This is due to the fact that 

1x  and 2x  are responsible for vertical and 
torsional vibrations, respectively, whence it 
follows that the 2x -displacement is weakly 
sensitive to the increase in the force amplitude f.  
Figure 4 allows one to trace the influence of the 
level of the external force magnitude on the 
dimensionless amplitudes of vertical 1a  and 
torsional 2a vibrations. From Figure 4 it could be 
seen that the magnitudes of the amplitudes of 
vertical vibrations are very sensitive to the action 
of the force.  
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Figure 2. Dimensionless amplitude vs. dimensionless time:  
(a) free vibrations, (b) forced vibrations at 1f 
  with the initial amplitude 0 0.3ia 
 ,  

blue line – 1a , orange line – 2a .
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Figure 3. The time-dependence of the generalized displacements at different levels of external force 
magnitude for 09 
 .
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Figure 4. Time-dependence of the dimensionless amplitudes 1a  (blue) and 2a (orange) at different 
levels of the external force amplitude.

CONCLUSION    

Nonlinear force driven coupled vertical and 
torsional vibrations of a suspension bridge 
subject to the combination of external and 
internal resonances have been investigated for 
the case when its damping features are described 
by the fractional derivatives. From the above 
discussion the following conclusions could be 
reached. 
If the external force is of order of 28  and the 
viscosity coefficients are of order of 8 , then it is 

possible to obtain the approximate analytical 
solutions for the generalized displacements. As 
this takes place, the solution for the vertical 
displacement 1x  involves two parts: the first 
corresponds to the damping vibrations with 
damping coefficients and nonlinear frequencies 
dependent on the fractional parameters and 
describes the transient process, while the second 
one is nondamping in character and describes the 
steady-state regime, i.e., forced vibrations with 
the frequency of the exciting force and with the 
phase difference depending on the fractional 
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parameter. The solution for the torsional 
displacement 2x  consists only from one term 
describing the transient process. 
Moreover, in the transient processes, the 
damping coefficients and the frequencies of 
nonlinear vibrations depend on the square of the 
exciting force amplitude. 
If the external force is of order of 38  and the 
viscosity coefficients are of order of 28 , then  
the approximate analytical expressions for the 
generalized displacements 1x  and 2x  have 
been obtained by the method of successive 
approximations. The numerical analysis has 
shown that dimensionless amplitudes decrease 
with the increase in the fractional parameter 9 ,
and the vertical amplitude and hence vertical 
displacement are much more susceptible to the 
higher vertical external force than torsional 
amplitude.
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