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Abstract: The work is devoted to the development of a high-performance deep learning algorithm related to the diag-
nosis and classification of defects of water-repellent membranes. The mechanism of constructing visual models of the
membrane surface is discussed. This allows to get the representative training data set. The proposed methodology
consists in the sequent transformations of pixel-image intensities to find defected fragments on the membrane's 
surface. The computational algorithm is based on the architecture of convolution neural networks. To assess its 
effectiveness, the "confidence of confidence" criterion is proposed. The presented computations show that the 
methodology can be successfully applied in material sciences, for example, to study the properties of building 
materials, or in forensic science when examining the causes of construction catastrophes.
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Аннотация: Работа посвящена разработке высокопроизводительного алгоритма глубокого обучения, связан-
ного с диагностикой и классификации дефектов водоотталкивающих мембран. Обсужден механизм построе-
ния визуальных моделей поверхности мембран, позволяющий представить эволюцию различных поврежде-
ний. Этот подход позволяет получить тренеровочный набор изображений с известным количеством дефектов. 
Предложенная методология основана на последовательных преобразованиях интенсивности пиксельных 
изображений для обнаружения дефектных фрагментов на поверхности мембраны. Вычислительный алгоритм
основан на архитектуре сверточных нейронных сетей. Для оценки его эффективности предложен критерий 
«доверительная область». Представленные вычислителения показывают, что методологияя может быть 
успешно применена в материаловединии, на пример, для исследования свойств строительных материалов,
или в криминологии, на пример, при изучении причин строительных катастроф.

Ключевые слова: гидроизоляционные мембраны, глубокое обучение, машинное обучение, 
классификация патологий  

1. INTRODUCTION

The design of buildings and constructions re-
quires an understanding of the principle of sta-

bility, durability, and rigidity of the main con-
structed structures. Besides, the provision of 
measures of the building maintenance and 
monitoring their technical conditions are essen-
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tial during the design stage. The over-end dec-
ade of technological progress acceleration has 
led to the emergence of new building unique 
properties materials, which, on the one hand, 
drove to a simplification of building technologies. 
On the other hand, it took more stringent require-
ments on resistance, reliability, durability of struc-
tures [1].  The principles of building structures are 
changing. Virtual modeling has led to an increase 
in the number of available solutions to the same 
problems. This fact casts doubt on the authenticity 
of the standard design principles, thereby facilitat-
ing the selection of the right material and the de-
velopment of the correct structures. Besides, the 
desire to find the optimal simplification of the 
structure without reduction of safety mostly 
through choosing solid materials plays an im-
portant role. For example, through chemical reac-
tions, the hydro protective layer mechanically 
connects to the monolithic reinforced concrete 
mainstay's surface [2]. This process leads to excel-
lent hydro isolation. Therefore, waterproofing 
systems perfectly work. However, such a con-
structive solution loses effectiveness if damage 
occurs.  Numerous works devoted to studying the 
properties of composite materials often indicate 
that mechanical damage to the membrane insula-
tion leads to lateral migration of water inside the 
structure [1–3]. That means the place of soaking 
does not always match the location of insulation's 
damage, which unpredictably changes the struc-
ture's technical parameters. These papers indicated 
that the study of the phenomenon of water migra-
tion using new technologies and materials requires 
a new experimental research methodology to iden-
tify and classify possible pathologies in water-
proofing layers [4, 5]. The solution to this problem 
will help designers in their subsequent work. 
Civil engineering, like all other industries, is gone 
through the fourth industrial revolution. The main 
idea of this revolution consists in creating cyber-
physical systems. These include physical objects 
and information models. The physical object is 
managed at every life cycle stage (from the project 
concept to the moment of decommissioning) us-
ing an information system that analyzes the flows 
of heterogeneous information using computer 

systems. Artificial intelligence (AI), as well as 
machine learning (ML), and deep learning (DL), 
becomes the leading information technology and 
not only due to the possibility to work better and 
faster with large amounts of information. For ex-
ample, artificial intelligence algorithms simulate 
the work of the human brain.  These last can find 
and classify a defect or pathology hidden from the 
human eyes even at an early stage of the corrup-
tion process, improving feedback on building in-
formation modeling (BIM) and thereby ensuring 
uninterrupted operation of the entire project.  
By analogy with the task of pattern recognition 
applied to fault detection, this work aims to de-
velop a methodology and an algorithm capable 
of identifying and classifying the visible defects 
on the surface of the waterproofing membranes 
based on available information. To promote 
defects detection methodology, we will use arti-
ficially generated images, imitating real photo-
graphs of some waterproofing membranes. We 
focus our attention on the detailed description of 
the AI algorithm and its quality performance. 
The main advantage of this approach is the sce-
narios' development to investigate defects' prop-
agation on the membrane surface. The same 
methodology is also useful for concrete's petro-
graphic analysis, biological materials [6].
The rest of this paper is organized in the follow-
ing manner. In Section 2, we propose a brief 
description of waterproof membranes and detail
a generalized visual model of their surface. Sec-
tion 3 describes the methodology for the dam-
ages detection and classification. Next, in Sec-
tion 4, we illustrate the methodology by simula-
tion experiments. Finally, in Section 5, we give 
the concluding remarks concerning the method-
ology implementation and its further develop-
ment.

2. PROBLEM FORMULATION  

2.1. Conception of waterproof membranes
A waterproofing membrane is a continuous thin 
layer of waterproof material that is laid on some 
surface and which does not allow water to pass 
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through it. For example, if a waterproofing 
membrane is laid on a flat terrace between a 
structural slab and a finishing tile, water will no 
longer seep into the structural slab [4]. Howev-
er, in order for this property to be maintained as 
long as possible, the structural surface and tile 
must be correctly installed. Any water that re-
mains as puddles on the tile can leak into the 
plate over time, provoking corrosion of the hy-
dro-repellent membrane, and then the structural 
slab. There are two types of the waterproofing 
membranes. Liquid–applied (see Fig. 1 and 
Fig. 2) and sheet–based (see Fig. 3) membranes 
are composed of thin about 2 to 4mm thick lay-
ers of waterproof material. Membranes can be 
used in different elements of a construction, 
namely for underneath and around basements, 
over terrace slabs and balconies, over land-
scaped concrete decks, between the soil and 
concrete in gutters, and many others.  

Figure 1. Some corrupted liquid–applied
waterproofing membrane: pore deformation

and erosive swellings

Figure 2. Some corrupted liquid–applied
waterproofing membrane: erosive swellings and 

micro-cracks

UV stability, elongation, breathability, tear and 
abrasion resistances, chemical stability, geome-
try play an important role while selecting mem-
brane solutions for the construction. It is impos-
sible not to take into account the influence of 

the environment in which the structure will be 
operated. As one can imagine, over time, the 
desired qualities are lost. Thus, exposure to the 
sun and precipitation adversely affect breath-
ability. The pores, with which the membrane 
breathes, over time deform and stop working. In 
places of deformation there are swellings and 
cracks. The protective property is lost leading 
sooner or later to the threat of structural destruc-
tion. 

Figure 3. Some corrupted sheet–based 
waterproofing membrane: pore deformation 

and macrocracks

2.2. Generalized visual model of surface 
We suppose that n by m� �  pixels grayscale  
digital image corresponds to the membrane’s 
surface associated with the bounded closed set 

� � � � 20, 1 0, 1n m 	
 � � � ��
 � 2
	 . (1) 

For the simplicity each pixel correspond to “the 
smallest unit” of the membrane surface and is 
denoted as  �,x y � . We call this unit 
“a region”, that is to say, the membrane consists 
of the regions. Moreover, each pair  �,x y �
is characterized by an intensity  

 �,x yf � ,

where � �min max,...,f f 	
 ��
� 	  is an ordered 
final set. The set  is discretized as a regular 
grid such that each vertex (node) has coordi-
nates  �,i x j y� � , where x�  and y�  corre-

spond to the grid spacing, � �1,.., xi n�  and 

� �1,.., yj n�  with xn n��  and yn m�� . The 
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quantity of vertices  is x yn n� . Let us introduce 

the set � �1,.., x yn n
 ��
� . For the simplicity we 

denote these coordinates as  �,i jx y . We as-

sume that at some instant of time t , � �0 1,t t t� ,

each pore –  �t � � , ��� – of the membrane is 
presented by the disc of center ( , )i jx y , that is 

 �  ��  �

 �  ��
2

2 2

, |

,

i

j

t x y x x

y y r t


 � �

	 � �  � ,r 2

 �  ��  �2|��  ��  |� |� � ��
 (2) 

where  �r t �r   is the radius of the pore,  

 �0 0r t r
 ��r t �� . Moreover, we assume that at time 0t
that

� �� , k� � , k� k� �
 �  �0 0kt t 
� � � �� 
� ����  � �� 
 .

We denote the set of the pores by � . An exam-
ple of the possible configuration of the surface 
of the membrane is illustrated by Fig. 4. 

Figure 4. The visual idealized model of the 
membrane surface: initial state at 0t

The over-time erosion as well as the evolutionary 
process leading to damage to the pore, and there-
fore of the membrane surface at the observation 
time interval � �0 1,t t , is associated with the change 

in the radius  �r t �r   of the thth  pore, �� , with 
the formation of microcracks at its edges, and with 
cracks propagation on the surface. We can ob-
serve these processes only as the changes of the 
intensities of pixels. 

To model these processes we assume that at time 
t  each pore contains   �t�  ��  regions included in 

 �t � �  and denoted as  �i t�  �i� ,  

 �� �1,2,...,i t�� � � . Each region is characterized
by a state s , which takes one of the two values:

0s – non-damaged state, 1s – damaged state. The 
change of the state corresponds to the change of 
the intensities of pixels, which make corruption 
visible on the image. Hence, we can form the 
time-varying sets of all non-damaged regions 

 �  �  �� �0 0it t t s s�
 � 
� �  �  �� �0 �  �  � �  �  �� 0 �  � � s�  �  ��  �  ��  �  s �  � �  � (3) 

and of all damaged regions 

 �  �  �� �1 1it t t s s�
 � 
� �  �  �� �1 �  �  ��  �  �  �  �� 1 �  � � s s�  �  ��  � �  �  ��  �  s �  ��  � �  ��  � . (4) 

We obviously have  �  �0 1t t 
��
� �0 � � ���  � � 
 ,

 �  �  �0 1t t t
  � � �0 � � ���  � � � �  for any  �0 1,t t t� .
Note, that initially all the regions are in non-
damaged state, i.e.  �  �0 t t
 �  �0 � �  �  �� �  . Once the 
radius of the pore was changed, the state of the 

thth  region can be changed with some probabil-
ity  �p t ,  �0 1p t� � , namely for �

p
�

p

 � �1 0 0s s r t r p� � 
 � �t �r t r � 1 0s s1 0s0 ,  �0 1,t t t� . (5) 

The damaged regions form the edge-inward 
micro-cracks on the surface of the pore (see 
Fig. 5). The visual changes on the pore surface 
will be displayed in a darker shade of gray than 
the original. The membrane’s surface crack 
propagation (see Fig. 6a) starts if there exists 
one pore with damaged area such that 

 � �1max card t p
�

�max car
�

prdax car � � p� �� �� � , (6) 

where pp is a critical damage level, which has to 
be properly chosen. The crack starts from this 
pore (see Fig. 6b). Here, the visual changes on 
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the membrane’s surface will be displayed in a 
lighter shade of gray than the original. To model 
the micro-cracks the surface cracks we will use 
the modified algorithms of  Mersenne twister 
pseudorandom number generator  and non-
uniform fractals [7].  Finally, to model the non-
uniform background of the membrane the frac-
tional Brownian fields [8, 9] with different val-
ues of Hurst parameters  �0,1H �  are be used 
(see Fig. 7).   

  
 a) 0.12p 
 b) 0.51p 
  c) 0.79p 


Figure 5. The pore’s over-time erosion 

The structure formed in the manner described 
above we will call as a visual model of the 
membrane's surface.  

a) b)
Figure 6. The propagation of the crack

a) 0.15H 
 b) 0.5H 
 c) 0.95H 

Figure 7. The background of the membrane  

The research problem of this paper can be for-
mulated as follows: 
can we find and classify the damages on the 
membrane’s surface using its visual model and 
some methods of AI? 
As it is possible to notice the responses to the 
research problem require some specific method-

ology.  In next section, we will focus our atten-
tion on it. 

3. RESEARCH METHODOLOGY  

3.1. Method overview 
It is obvious that, visual analysis of the mem-
branes' surface condition requires special 
equipment that is better than the human eye can 
determine the place and character of the dam-
age. In addition, in the expertise of the building 
structure, characterized as large areas,  "manual" 
recognition of the pathologies' localization and 
classification is extremely time-consuming and 
often error-prone. Therefore, to solve the above 
problem, it would be helpful to have both a
high-performance embedded device and a com-
putational algorithm capable to complete real-
time analysis of visual flow information. In such 
a manner the human factor can be eliminated for 
better performance and efficiency.  In this study, 
we concentrate our attention only on the compu-
tational aspects.  
Being a part of artificial intelligence, machine 
learning is widely used in image analysis. The 
advantage is due to the ability to come up with 
rules based on automated statistical processing 
of available data called training, that is to say 
mapping inputs (initial visual information) to 
associated targets or predictions (detected and 
classified defects). The remarkable progress 
made in this area can serve as a ruled defect-
type classification by means of deep learning 
strategy, which includes: 
�� preprocessing (to speed up the recognition 

and the classification of the damages by 
normalizing and removing variations of ini-
tial visual information [10]); 

�� segmentation (to locate pores of the mem-
brane and to detect desired features, i.e. their 
edges, using simplifications and changes in 
the representation of the pre-processed visual 
information avoiding as much as possible the 
problems initial data artifacts [11]); 

�� classification (to classify the extracted fea-
tures into predefined categories by using 
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suitable methods that compare the image pat-
tern with the predefined etalons [6]);   

�� post-processing (to correct errors caused by 
“oversegmentation” and “undersegmenta-
tion” and to improve the plausibility of the 
results [10, 11]); 

�� evaluation (to estimate the quality of previ-
ous steps [12]).  

The choice of configuration of the deep learning 
algorithm depends on many factors associated 
with the available data, the purpose of their pro-
cessing, as well as hardware and software.  
Let us discuss these aspects in details.

3.2. Dataset 
The membrane’s surfaces were obtained by the 
simulation techniques described in subsection 
2.2. The major advantage of artificially generat-
ed data is the availability of high-quality labeled 
training datasets for supervised, semi-
supervised, and unsupervised deep learning 
used for object detection and recognition. The 
image dataset considered in this study is com-
posed of 1000 same-size images. Each image 
contains 100 pores imitating the corruption pro-
cesses. The lessons were automatically marked 
by pre-selection procedure with respect to the 
critical damage level pp and to the critical 
pore’s radius value  �0r r t�� � �r r  �r  , �� , as well 
as automatically analyzed by the proposed 
methodology.   

3.3. Image recognition: basic technique  
3.3.1. Preprocessing. In the general case, the 
image preprocessing is applied to the original 
image and consists of the image resizing with 
further normalization and equalization as well 
as gamma correction pixels’ intensities. Since 
we have assumed that is the digital grayscale 
image generated as it was described in the sub-
section 2.2, we can omit the resizing procedure 
and the gamma-correction which allows the 
compensation for the non-linear luminance ef-
fect of optic devices. In this methodological 
approach we only need the normalization and 
the histogram equalization.

Consider the normalization step first. Keep in 
mind that the normalization is a kind of trans-
formation applied to intensities of each pixel.
Recall that the set of intensities of the initial 
image was the set . The new values of 
intensities will be elements of the ordered final 
set defined as

� �min max,...,f f
 ���
 ,

where 

 �  � � max min
min min, ,

max min
x y x y

f ff f f f
f f

�

 � 	

�  �� min� � 
ff �   ��  fmf f  � 	max minf fmax m f	 . (7) 

For convenience,  can be rewritten with re-
spect to the L -leveled gray scale in the follow-
ing way 

� �min 0 1 max,..., ,...,k Lf f f f f�
 
 
 �0 1 maxk Lf f f f0 1 m,..., k L,...,�� f
� fminfminff i . (8) 

Thus, we define a new image  : 

normalization
�

normalizationli i
� . (9) 

The goal of (7) is to enhance the contrast by 
redistributing the intensities toward extreme 
values. We insist on the fact that the image 
contains also n m� pixels with the correspond-
ing set of the intensities defined in (8). 

Consider the histogram equalization step 
now. It is completed to normalize the gray color 
distribution across samples of images (mostly 
due to illumination, optics of devices etc.), that 
is to say the transformation of  into the new 
image . Therefore, let us introduce the quanti-
ties  �kf �� , 0 1k L� � � , such that 

 �
0

k

k
mf
n m



�
0 n m

�

k m�� � ��
k


�� , (10) 
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where m is the frequency of gray level .
Here, we focus our attention on the frequentist 
probability. However, the other choice is also 
possible [10]. Next, we define  

 �  �  �min max mink kg f f f f f
 	 ��  ��  ��  �� �  �  � � , (11) 

and, hence, the set of intensities  

 �� �, 0 1kg f k L
 � � �� k� , 0� k� 0� , 0� �g �g 
 �g  .

Thus, we get the new image 

equalization
�

equalizationli i
� . (12)  

We also insist here, that is the n m� -pixels 
image with the set of intensities being .

3.3.2. Segmentation. The purpose of this step is 
to form homogeneous groups of pixels that 
could serve to assign them to the K  specific 
objects �� , 1 K�� �  (usually a quantity of ��
are unknown before the segmentation). These 
elements form a subset  � 
 � �, 1 K�� �� �  of 

. The segmentation can be done by several 
techniques, namely: pixel-, edge-, region-, or 
model-based-techniques as well as the box-
counting method. Taking into account the 
strengths and the weaknesses of these methods 
[Tosta], we search for the edges of pores by the 
modified Canny edge detector algorithm [Can-
ny]. The main idea of this algorithm is as fol-
lows and consists in four phases.  
Let *F  be a n m�  matrix, such that the element 

of this matrix *
ijf � , � �1,...,i n� ,

� �1,...,j m� . The edge of  each element of �  is 
determined by the transformation and the com-
parison of the intensities *

ijf  of neighboring 
pixels.  In 2D image processing, two spatial 
variables 1  and 1  are related to *F . We de-

note the non-integer row index by 1  and the 
non-integer column index by 2 .
Phase 1. Smoothing. The kernel regression fil-
ter takes a form 

 �
� �

� �

� �

� �  �3 31 2 * 2 2
1 2

2 2
3 31 2

( ) ( )
1 2 2 2
, exp

i j
ij

i j

f i jg
 !  !

 !  !

  
"! !

  

 	 
 	


 � 
 �

� 	 �
 �� � , 

where !  is a smoothing parameter, which can be 
calculated as a standard deviation of pixel intensi-
ties of  or chosen arbitrary. It is used to avoid 
false detection and to riddle out the noise). Once 
applied to the image this filter gives  

*

kernel
regression 

�
kernelk l

* � . (13) 

Phase 2. Masking. To detect the black-white 
boundaries and in a consequence to determine 
edges of each element of � , firstly, the Lapla-
cian 

 � �  �

 �

2
1 2

1 2 2
1

2
1 2
2
2

,
,

,

g
g

g

  
  

 

  
 

#



#

#
	

#

 
(14)

is calculated, and, secondly, the mask M is the 
n m� matrix formed as 

1 2

1 2
1 2

,
,

,

0, 0,

1, 0,
m

  
  

  

�$%
 & �%'

1 2
0,

2 11

1 2
0,

2 11

 (15) 

where 
1 2,  1 2  1

 is the element of  � �1 2,g     .  In 
other words, zero-crossings in the Laplacian 
detect the white-black contours of each element 
of � .
Phase 3. Hysteresis. The Richardson extrapola-
tion is applied to values of the n m�  matrix M .
This permits to finalize the detection of edges of 
each element of �  by suppressing all the other 
edges that are not connected to strong edges. 
Phase 4. Morphology and boundary statistics. 
The application of the Fourier descriptor allows 
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finding the boundaries as well as calculate the 
area of each strong edge � .
To conclude the segmentation step, the set �
contains K elements � , each one � is defined 
by two parameters, namely: the contour �� and 
the area �� .

3.3.3. Classification. Once being detected the 
elements ��� can be classified either like 
corrupted pores (if the radius r exceeds the 
critical value r

es (if the 
r and if the surface corruption 

parameter p exceeds the critical value p
uption 
p ) or 

like non-corrupted ones. The sets of corrupted 
and non-corrupted pores are 1�� and 1	� , cor-
respondently,  

1 1� 	� � 
�1� 
�1

and 

1 1� 	� � 
 �1� 
 �1 .

The patterns of the pores are defined by the 
formula (2). We denote them by ,��� each 
contour �� of � corresponds to the border of 

 �1t � � and  �2
1r t� "
  �2r2

� "
 r2 , �� . We also in-

troduce the set of labels � �1,1( 
 � such that 
each element ) �( is given by 

 �
 �
1

1

1, ,
1, ,

for r t r and p p
for r t r or p p

)
� � �$%
 &	 � �%'

 �r t r � r
1

) 
 &
%%
	%
&&
'%%
&&&&  �r t r � r

d ,r and p pr and p
,r or p pr or p

thus, if 1) 
 �1) 
 � , then  1� ��� 1� ��� , and if 1) 
 	1) 
 	 ,
then 1� 	�� 1� 	�� , moreover, 1 1� 	� � 
�1� 
�1  and 

1 1� 	� � 
�1� 
�1 .
The classification problem can be formulated as 
follows:  
for a training set of pairs � � 1,� ) 
� 1
 , where ��
are input patterns from the set of patterns �
and  ) �() �( are the corresponding labels, find a 

classifier  �* � such that to get as few errors as 
possible.  
Let us introduce the classifier 

 �  �, , b* � � + ) � �
�


 , 	�  � b)  	�+ ) ��� �
�
�� , (15) 

where , is a kernel, b� is a shift, the pa-
rameters + �+ �

kernel, b
 form a weight vector α of the 

training element �� . We put 

� �00 + �
�


 �α 1 ��
�
� ��  (16a) 

and 

1 +
�


 �α +
�
�� . (16b) 

Therefore, the goal is to solve the non-convex 
discontinuous optimization problem 

 � �0arg min ,C - ) * � �
�

$ .
	& /

' 0
�

α
α /�� �

0
� � //� �

�
 (17) 

s.t. 10 C� �α , (18) 

where C is a hyperparameter and 

 �
1 , 1,

0, 1
z z

z
z

-
� �$


 & �'
(19) 

is the hinge loss. Here, we admit that the 
solution of the problem (17) - (19) can be found 
by standard procedure included to ALADIN 
Optimization ToolBox MatLab [14].

Post-processing. To evaluate the segmentation 
and classification stages we use the following 
idea. We suppose that a reference image con-
tains 1k regions (it can be generated by the pro-
cedure described in section 2.2 such that 

1 x yk n n
 � ) and 2k   regions detected by the 
segmentation or by the classification proce-
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dures. Let iA be the thi region on a reference 
image demarcated by a specialist and jB be the 

thj corresponding segmented image 
( 1{1,2,..., }i k� , 2{1,2,..., }j k� ). It is clear that 
in both cases regions contain pixels, therefore 
we treat any region as a set. In an ideal situation  

1 2k k
   and  i iA B
   for any  1{1,2,..., }i k� .
This situation is extremely rare. In practice the 
following situations are possible:
�� 1 2k k
 – the algorithm found the same num-

ber of regions, the sets iA  and iB  cover ap-
proximately the same domain  for  any 

1{1,2,..., }i k� (see Fig. 8); 
�� 1 2k k� – the algorithm found fewer regions 

than it was marked, for any 2{1,2,..., }i k�
the sets iA  and iB  cover approximately the 
same domain and for any 2 1{ 1,..., }j k k� 	

jB 
 � ; 
�� 1 2k k� – the algorithm found more regions 

than it was marked, for any 1{1,2,..., }i k�
the sets iA  and iB  cover approximately the 
same domain and for  1 2{ 1,..., }i k k� 	

iA 
� .
When two the sets A and B cover approxi-
mately the same domain, it implies that the sets 
A and B are not disjoint and than A is a strict 
subset of A B

j
B . Based on this remark, we can 

propose the following evaluation criteria (called 
by us “the domain of confidence criteria” - 
DoC), defined as follows  

� �1 2,

1

( ):
( )

min k k
i i

ii

A BDoC
A



 � )( )
( )i

)( i )i , (20) 

� �
� �

1 2

1 2

min ,
max ,

k k
DoC

k k
1� , (21) 

where  �0,11 �  is a resemblance parameter,
which has to be carefully chosen (or estimated).
The notation  denotes once the area of the set, 

which is used for the segmentation procedure, 
and once the number of pixels, defined by the 
classification procedure. 

Figure 8. Relation between region A identified 
by an expert and region B identified by compu-

tational techniques.

4. RESULTS AND DISCUSSION

To detect and to classify the damages on the 
membrane surface, five categories of membrane 
surface were defined mainly due to differentia-
tion of their backgrounds. The backgrounds 
were simulated as fractional Brownian fields
with five different values of  Hurst parameter 

� �0.05,0.25,0.50,0.75,0.95H� .

Each category contained 200 gray-scale images.
The gray scale used 256 different intensities. 
Each 120 120� -pixels-image was full of 100
pores distributed in equidistant–grid nodes. The 
pixel intensities of each pore’s edge were coded 
by 120, the micro-cracks pixel and crack propa-
gation intensities were  coded by 80 and 160 
correspondently. The pores evolution was done 
by 100 steps on the time interval � �0,1 . The 
initial radius value  for each one pore was 
 �0 2r t 
 �r  
 , the new radius value was randomly 

selected from the interval � �2,5 , the critical val-
ue was 4r 
 4r 
 . The corruption level was increas-
ing by each evolutionary step by  randomly se-
lected value from the interval � �0,0.05 , the crit-
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ical damage level was 0.7p 
 0.7p 
 . All these images 
were divided on the training and evolution sets 
as “3:1”.  The segmentation and classification 
procedures were developed using convolutional 
neural networks (ConvNets, CNNs) included in
Deep Learning Toolbox MatLab R2020a. Once 
the training was done, the image recognition 
was done for 100  generated surfaces with dif-
ferent values of H . The averaged statistics of 
the numerical experiments are listed in Tables 
1–3, 1k  stands for the number of corrupted 
pores after the evolution.  

Let us comment on the results. Initially, all 
the objects of interest are homogeneous.  How-
ever, evolution makes them non-homogeneous. 
The backgrounds of the membrane’s surface, as 
well as corrupted pores, contain fractional nois-
es, which restrict the effectiveness of segmenta-
tion by the intensity-threshold-based method. 
The influence of a smoothing parameter !  in 
global senses on the quality of the problem-
solution was studied in the first series of exper-
iments (see Table  1). As it was possible to ex-
pect, the inhomogeneous backgrounds
( 0.05H 
  and 0.25H 
 ) provoke more erro-
neous detections of corrupted pores then that in 
the case of 0.5H � . With increase of !  im-
proves the both statistics (20) and (21). The lo-
cal smoothing works better then the global one 
(see Table 2 and Table 3). We can observe the 
improvement of DoC statistics for highly noisy 
conditions.  

Table 1. Simulation results with the predefined 
smoothing parameter of kernel regression 

H ! DoC 1k2 34 5 2k2 34 5 1

0.05 1 0.5311 51 63 0.4299
0.25 1 0.5492 49 41 0.6563
0.50 1 0.8002 55 57 0.8292
0.75 1 0.6724 56 52 0.7241
0.95 1 0.7310 60 55 0.7975
0.05 2 0.5663 47 56 0.6747
0.25 2 0.5715 52 43 0.6911
0.50 2 0.8533 49 46 0.9090
0.75 2 0.7893 54 49 0.8698

0.95 2 0.8884 52 49 0.9427
0.05 3 0.5718 53 62 0.6689
0.25 3 0.5794 54 47 0.6657
0.50 3 0.8807 48 50 0.8455
0.75 3 0.7956 61 58 0.8368
0.95 3 0.8582 54 51 0.9087

Table 2. Simulation results with the estimated
on 5 5� pixel neighborhood smoothing parame-

ter of kernel regression  

H DoC 1k2 34 5 2k2 34 5 1

0.05 0.6200 56 49 0.7086
0.25 0.6587 48 51 0.6999
0.50 0.8338 58 54 0.8956
0.75 0.8105 57 62 0.8816
0.95 0.8453 61 57 0.9046

However, in all cases, the results still showed 
incorrect identification of corrupted pores or by 
their quantity or by their surface. It can be ex-
plained by the weak performance of the normal-
ization procedure, which has to be adapted to 
highly noisy backgrounds and more careful se-
lection of the optimization procedure for the 
solution of (17)–(18).  

Table 3. Simulation results with the estimated 
on 7 7� pixel neighborhood smoothing parame-

ter of kernel regression 

H DoC 1k2 34 5 2k2 34 5 1

0.05 0.7225 52 47 0.7993
0.25 0.7199 61 58 0.7571
0.50 0.8401 55 53 0.8718
0.75 0.8539 47 45 0.8156
0.95 0.8600 54 51 0.9105

5. CONCLUSIONS

This study presented the computational strategy 
for the detection of the membrane’s defected 
recognitions. Its main advantage is due to a mul-
ti-agent simulation of the object of interest be-
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havior. Once having values of physical, chemi-
cal, or mechanical parameters of water-proofing 
materials, we can develop different scenarios to 
predict the material performance. The effective 
results depend on the careful selection of the 
parameters of the method’s sequential steps.  
One limitation of the proposed method is the 
quantity of false detected regions, which is a 
common phenomenon for highly noisy back-
grounds of images [12, 13]. To make this meth-
odology helpful for object detection in different 
fields of interests such as civil engineering, bi-
ology, medicine, or forensic science, we should 
consider non-Gaussian filters concerning the 
spatial distribution of image intensities and per-
form complex analysis of the algorithm.  
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