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OPTIMIZATION PROBLEMS OF MATHEMATICAL
MODELLING OF A BUILDING AS A UNIFIED HEAT AND
POWER SYSTEM

Yuri A. Tabunshchikov, Marianna M. Brodach
Moscow Architectural Institute (State Academy), Moscow, RUSSIA

Abstract: The mathematical model of a building as a single heat energy system by the decomposition method is
represented by three interconnected mathematical models: the first is a mathematical model of the energy
interaction of a building’s shell with an outdoor climate; the second is a mathematical model of energy flows
through the shell of a building; the third is a mathematical model of optimal control of energy consumption to
ensure the required microclimate. Optimization problems for three mathematical models with objective functions
are formulated. Methods for solving these problems are determined on the basis of the calculus of variations and
the Pontryagin maximum principle. A method for assessing the skill of an architect and engineer in the design of
a building as a single heat energy system is proposed.
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OIITUMU3IAIIMOHHBIE 3ATAYH
MATEMATHUYECKOI'O MOJAEJIMPOBAHUS 3TAHUAA
KAK EIUHOU TEHVIOODHEPTETUYECKOU CUCTEMBbI

10.A. Taoynujuxos, M.M. bpooau

MOCKOBCKHH apXUTEKTypHBII HHCTUTYT (TOCyAapcTBeHHAs akaaemust), . Mocksa, POCCU

AHHoOTanmsA: MaremaTuueckass MOJENb 3JaHUS KaK E€JUHOM TEeIIOPHEPreTUYeCKOW CHUCTEMbl METOJ0M
JCKOMITO3MIIMK  TIPECTaBlIEHA TPEeMs B3aUMOCBSA3aHHBIMH MAaTEeMAaTHUYECKUMH MOJCISIMU: TIepBas —
MaTeMaTH4YeCKasi MO YPHEPTETHUECKOT0 B3aUMOICHCTBHS 000JI0UKN 3aHHSI C HAPYKHBIM KINMAaTOM; BTOPas
— MaTeMaTH4ecKas MOAEIb YHEPTeTHIECKUX TIOTOKOB Yepe3 000I0UKY 3/1aHuUs; TPEThS — MaTeMaTu4ecKas MOACTb
ONITUMAJIILHOTO YIPABICHUS PacXo0M dHEpPTUU Ha obecriedeHus Tpedyemoro Mukpokinmara. ChopMynupoBaHbI
ONITUMU3AIMOHHBIC 3a]a9H IS TPeX MaTeMaTHYeCKUX MOJAETCH ¢ IeneBbIMU GyHKIUAMHU. OnpeneneHsl METOIbI
PEIICHUS ATHX 3a/1a4 Ha OCHOBE BaPHAIMOHHOTO MCYUCIICHHS U MpUHIUIAa MakcumyMa [Tontpsruna. [Ipemioxen
METOJ OIICHKM MAaCTepCTBA AapXUTCKTOpa M HMHXCHEpPa TMPH IMPOCKTUPOBAHMM 3JaHUs KaK CIHHON
TEIUIOIHEPTETUICCKON CUCTEMBI.

KiroueBble c10Ba: 31aH1e Kak eMHAs TEIUIO3HEpreThyeckasl CUCTeMa, MaTeMaTH4eckast MOJIelb,
ONTHMHU3AIMS TEIUIONOTPEOICHNUS, HAPYKHBIH KIMMat, 000J109Ka 3aHus, TPUHIIUI MaKCHMyMa

Thermal engineering design of the building is
based on the tasks of determining the consump-
tion of thermal energy required to maintain opti-
mal or permissible thermal conditions in the
room. This problem can be considered as optimi-
zation, if we take as the objective function the
minimization of the energy expenditure spent on
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ensuring the optimal or permissible thermal re-
gime, i.e. as finding a minimum of the following
equation:

T2 Ty
Q= f Cy Qudt + j Cy Q,dt =» min, (1)
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where O, Oy are the consumption of thermal en-
ergy for heating and cooling buildings, W; C,, Cx
are the cost of a unit of heat and a unit of cold,
rubles/W; (12 — 11), (14 — 13) are building heating
and cooling periods, hours.

When minimizing energy costs, it is necessary to
understand that these costs are part of the reduced
costs related to the operational component of the
reduced costs. The criterion for choosing one or
another technical solution can be only a mini-
mum of the costs presented.

At the same time, minimizing operating costs is
a critical energy challenge. A typical situation is
this: organizing heating or cooling of a building
and considering the building as a single energy
system, we get that the required energy consump-
tion will vary greatly depending on the shape of
the building, the indicators of heat and sun pro-
tection, the type of heating or cooling system, etc.
Each option has some advantages and some dis-
advantages, and, due to the complexity of the sit-
uation, it is not immediately obvious which of
them is preferable finally and why. In order to
clarify the situation and help the decision maker,
a series of mass calculations is carried out, which
can be replaced by the solution of optimization
problems.

The mathematical model of the building as a sin-
gle heat energy system was considered in detail
in [1]. In accordance with the principles of sys-
tem analysis and decomposition, we will present
the mathematical model of the building as a sin-
gle heat energy system with the following three
mathematical models.

The first is a mathematical model of the energy
interaction of the building envelope with the di-
rected energy impact of the outdoor climate. The
heat and power characteristics of an external cli-
mate acting on a building can be expressed by the
following equations:

Qt = vam(te - tH); w
Qv = cp(t, — t,) Z Fv;,

Q=) JiFi, W

w,

(2)
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where Oy, O, Or are energy exposure to outside
air, wind and solar radiation; cp is volumetric
heat capacity of outdoor air, kJ / (m>-°C); V is
building volume, m>; F; is area of i-th outer sur-
face, m?; ts, t, are temperatures of the internal and
external air, °C; m is air exchange rate, 1/hour; v;
is air speed, m/s; J; is the intensity of the solar
radiation incident on the surface of the i-th fence,
W/m?,

The second mathematical model is a mathemati-
cal model that describes heat flows through the
shell of a building.

The third mathematical model is a mathematical
model that describes the energy contained in the
volume of a building.

In accordance with the presentation of the math-
ematical model of the building as a single energy
system and its presentation by three intercon-
nected mathematical models, we formulate the
following three optimization problems.

Here we dwell in more detail on the solution of
the first optimization problem; the solution of the
second and third optimization problems can be
found in [1].

The first task of optimally taking into account the
energy impact of the external climate on the
building envelope can be formulated as follows:
to determine the shape of the building envelope
so that the positive impact of the outdoor climate
on it can be maximized and its negative impact
can be neutralized as much as possible.

The objective function is to optimize the account-
ing for the heat and energy impact of the external
climate in the heat balance of the building.
Optimization of the shape of the building can be
performed for various climatic periods of the
year: for the coldest five-day period in order to
reduce the estimated capacity of the heating sys-
tem; for the heating period in order to reduce en-
ergy costs for heating; for the hottest month in
order to reduce the installation capacity of the air
conditioning system; for the cooling period of the
building in order to reduce energy costs for cool-
ing; for the accounting year in order to reduce en-
ergy costs for heating and cooling the building.
There may be other climatic periods, depending
on the problem being solved.
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The obtained optimization problem, which re-
duces to finding the equation of the directrix and
the height of a curved cylindrical surface, relates
to isoparametric problems of the calculus of var-
iations [2, 3]. In accordance with the methodol-
ogy of isoparametric problems [2], we need to
determine the extremum of a function that de-
scribes the heat balance of a building with a
curved surface:

Q:

21

= ZHJ [qEnc(q))(l - PW)
0

+ qw(w)Pw]Jr2(¢) +7%(p)dg

1
+ +E [Qroof(]- - Proof)
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0

where we have

q1(®) = qenc(@)(1 — Py) + qu (@) Py;

1
92 =5 [quOf(l - PrOOf) + qrgéofpmof + qﬂ];
4)

0 is the amount of heat required to maintain a
given room temperature, W; qen(@), gw(e) are
specific heat fluxes passing respectively through
the external vertical glazed and glazed enclosing
structures, calculated taking into account the di-
rected influence of solar radiation and wind (air
filtration) in polar coordinates, W/m?; Groof, ¢%roof
are specific heat fluxes, respectively, through the
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unglazed and glazed parts of the coating, calcu-
lated taking into account the effect of solar radi-
ation, W/m?; qn is specific heat flow through the
building envelope of the first floor, W/m?*; Py is
glazing coefficient of the vertical building enve-
lope; Proor 1s glazing coefficient; Fy is total floor
area of the building, m?; H is floor height, m; Z is
the number of floors; r(¢) is radius (directrix
equation), mz; ¢ is angle.

We determine the extremum of function (3) from
the equation:

2

1 2
F, =§Zf r<(@)de.
0

(5)

Here Fo, H, q1(9), g are given values; (), Z are
unknown variables that need to be determined.
In order to determine the necessary initial condi-
tion in the isoparametric problem by finding the
extremum of the function from the equation, we
present an additional function [2]:

2T 2T
J Of (1 +2Q,)dg = Of Qdgz,  (6)

where we have
Q =Q.+ 10,

1
Q1 = ZHa () [r(@) + 7(0) + 5 021 (0)
Q2 =Zr*(¢p)

(7

A is some constant to be defined.
For the additional function (6), we write the Eu-
ler equation for the variable 7():

Q0 d (6Q> —0 ®)

ar de\or’

and differential equation (6) through Z:

aj”

7 =0 9)
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As a result, we get the system of equations:

LA

1Ir2+r'2
r”(rz +r'2)—r'2 (r+r") , r
+ ZH
= q,(®) ﬁ

(q, + 2AZ)r = 0 (10)

27T

J [qu(go) r2 41 +Arzl dp =0

0
(11)

ZHq(p)

+

Therefore, to determine r (¢), Z, and A, we have
equations (10) and (11) and the isoparametric
condition (5), and to determine the unknown var-
iables C; and C; in the general solution of the Eu-
ler equation, we have boundary conditions:
r0)=r(2m), r’(0)=r'2m)
Let us take a special case of solving the optimi-
zation problem for q1(¢) = const. Then

r(¢) = const, r’(¢) = 0.

Equation (10) will be as follows:

ZHq: + (g2202)r = 0. (12)
Equations (5) and (11) lead to
Fo=nZr*; Hqr+A?=0. (13)

The solution of system (12) and (13) gives

3 |HFyqq

nq;

r =

Now we pass to the second optimization prob-
lem. Note that the second, as well as the third op-
timization task, can have different objective
functions depending on the goal set by the re-
searcher - architect or engineer.
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The peculiarity of the second optimization prob-
lem of energy flows through the building enve-
lope is due to the fact that heat transfer in winter
is determined by the stationary mode, and in the
summer there is a significantly unsteady mode.
One of our frequent decisions showed [4] that in
this case the fencing material should have a min-
imum coefficient of thermal conductivity and the
highest possible value of volumetric heat capac-
ity.

It seems that to some extent this condition is sat-
isfied by wood structures. However, here there is
an interesting technical problem of creating a ma-
terial with low thermal conductivity and high
volumetric heat capacity. An optimization prob-
lem can also be posed on the optimal arrange-
ment of layers in a multilayer structure.

You can also consider the optimization problem
associated with the fact that in summer in a warm
climate the temperature of the indoor air due to
heat from solar radiation through the windows
exceeds the temperature of the outdoor air. In this
case, the heat flux is directed from the room and
the excess of the role of thermal protection of the
fence will increase the temperature of the indoor
air. Here, the goal function is to minimize the
temperature difference between the outdoor and
indoor air and consists in finding such a ratio be-
tween the heat and sun protection of the building
envelope and the air exchange rate at which the
contribution of solar radiation to the room’s ther-
mal regime is minimized. It was found that the
value of the heat transfer resistance of the exter-
nal building envelope does not affect the thermal

regime of the room, if the following equation is
fulfilled:

Fw Pwi p Pwi
R ( L - B + ClevR W -
o,w \Xoutwl Xout,w out,wl
BFW = 0’

(14)

where Row, Fw, pw, Oou,w are the resistance to
heat transfer of the window, m?-°C/W; window
area, m?; the absorption coefficient of solar radi-
ation and the heat transfer coefficient of the outer
surface of the window, W/(m?-°C); pwl, Oloutwl are
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the absorption coefficient of solar radiation and
the heat-transfer coefficient of the outer surface
of the wall, W/(m*-°C); Cy, v, Vg are the volu-
metric heat capacity of the air (kJ / (m*-°C)), air
exchange rate (4'!), volume of the room (17°); B
is the coefficient of penetration of solar radiation
through a permeable fence, taking into account
its shadowing by a sun-protection device; J is the
average daily value of the intensity of the total
solar radiation, W/m?.

Equation (14) corresponds to such an energy
state at which the temperature inside the room is
equal to the conditional temperature of the out-
door air. And consequently, the building enve-
lope separates two media with the same temper-
ature conditions.

We now formulate the third optimization prob-
lem as follows: find such a control of energy con-
sumption Q(f) when heating or cooling a room
from temperature # to temperature #; and such a
solution to the system of equations of thermal
balance of a given building’s building as a single
energy system that satisfies the initial conditions
for t=0 T = ty, for which the functional takes the
smallest possible value.

The solution to this problem was obtained by the
method of Academician Pontryagin as a problem
of optimal control and presented in [3, 5]. Based
on the results of solving the problem of optimal
control of the energy expenditure spent on heat-
ing or cooling the room, it was concluded: the
minimization of energy costs for heating or cool-
ing the premises is achieved if the transition time
from the initial room temperature to the desired
end the room temperature is minimal (the princi-
ple of “maximum performance”).

As a result of solving optimization problems, it
becomes possible to evaluate the skill of the ar-
chitect and engineer when designing a building
as a single heat and power system using the fol-
lowing equation (for example, when choosing the
shape and orientation of a building envelope):
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N = Qefr/ Qace,

where Q. is building energy consumption with
optimal consideration of the directed action of
the outdoor climate; Qucc is energy consumption
of the building accepted for design.

If, for example, the value of n is 0.5, then we can
assume that the architect did not choose the shape
of the building well enough and did not use the
positive directional energy impact of the outdoor
climate. In the other case, if, for example, n=0.8,
then things are much better.

A similar estimate is possible for the second and
third optimization problems.
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