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Abstract: As it is known, special criteria are formulated to evaluate the obtained solution of some optimization
problems. In particular, we formulate a criterion that allows us to estimate the proximity of the decision on the
rod of the lowest weight and the restrictions on the resistance to the minimum material-intensive for rectilinear
rods for certain types of cross sections. The criterion is based on the analysis of stresses from bending moments
arising from the loss of stability. If the least critical force is not a multiple, then the form of loss of stability and
the corresponding diagram of moments are the only ones. At multiplicity of the least critical load there are mul-
tiple forms of loss of stability, and any of their linear combination is also its own form. To estimate the obtained
solution, it is necessary to form a combination of multiple forms of buckling and the corresponding diagram of
bending moments, which will serve as the basis for the use of the criterion. This paper proposes an approach that
allows to determine such a combination of multiple forms, which will be the basis for the application of the crite-
rion of proximity of the obtained solution to the minimum material-intensive.

Keywords: optimization, system minimal consumption of materials, stability, critical force, buckling,
bending moments, multiplicity, tension, evaluation criteria for solutions of optimal problems

NCIOJb30BAHUE KPUTEPUS MUHUMAJBHOMN
MATEPUAJIOEMKOCTH CTEPKHEM ITPU OTPAHUYEHU X
MO YCTONYUBOCTH JJISI CJIYUASI KPATHOHN
KPUTHUYECKOW HATPY3KHN
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Annoranusi: Kak n3BecTHo, Ul OLICHKH MOJIYYEHHOTO PELICHUs] HEKOTOPBIX 3a/ad ONTHMHU3ALUU cHOpMyIIH-
pOBaHbI CHeIHaIbHbIE KpUTEpUH. B gacTHOCTH, chopMynnpoBaH KpUTEpHH, TTO3BOIAIONINI OLCHUTD AJIS M-
MOJIMHEHHBIX CTEpXKHEH TpH ONPEICICHHBIX THUMAX IIONEPEYHBIX CEUEHHH ONM30CTh PEIICHUS O CTEp)KHE
HaMMEHBIIET0 Beca U OTPAaHMYCHUSX M0 yCTOHYMBOCTH K MHHMMAJILHO MaTepuanoeMkoMy. Kpurepuii ocHoBaH
Ha aHaJIN3€¢ HANPSHKEHUH OT M3rMOAOMMX MOMEHTOB, BO3HMKAIOIIMX IIPU MHOTepe ycroiunBocTH. Ecim
HaMMEHbIIasl KPUTHUIECKas! CHila He KpaTHast, TO (opMa MOTEpPH yCTOHUMBOCTH M COOTBETCTBYIOIIAS €1 3Miopa
MOMEHTOB €AMHCTBEHHBIC. [Ipy KpaTHOCTH HaMMEHbIIEH KPUTHYECKOW HArpy3KH BO3ZHHMKAIOT KpaTHbIE (hOPMBI
HOTEPH YCTOMYMBOCTH, U JII00ast MX JIMHEeWHass KOMOMHAIMS TaK)Ke SBIsIeTCsl COOCTBEHHOM (hopmoii. J{s onenkn
MOJIyYEHHOTO PELIeHUsI He00X0 MO chopMHUPOBATh KOMOMHAIIMIO KPATHBIX ()OPM MOTEPH YCTOHYMBOCTH U CO-
OTBETCTBYIOIIYIO €if AIIOPY M3rMOAIOIIMX MOMEHTOB, KOTOpPasi U OyJIeT CIIy>KUTh OCHOBOMW JUIsl MCIIOJb30BaHMUs
Kputepusi. B naHHOI cTaThe mpeaiaraeTcs Mmojxo/l, NO3BOJISIOIINI ONpeessiTh TaKyr0 KOMOMHAIMIO KPAaTHBIX
(dbopMm, KOoTOpasi CTaHET OCHOBOMW JIJIsl IPUMEHEHHsI KPUTEpHUs OJIM30CTH MOJTYUYEHHOTO PEIleHHs K MUHUMAJIbHO
MaTepHATIOEMKOMY.
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KurodeBblie cjioBa: oNnTUMHU3ALUs, CUCTEMBI MUHUMAIBHOW MaTepHATIOEMKOCTH, YCTOHYNBOCTD,
KpHUTHYECKas CHIIa, (POPMBI IOTEPH YCTOMUMBOCTH, N3rNOAIOIINE MOMEHTHI, KPATHOCTh, HATIPSKCHUS,
KPUTEPUHU OLICHKU PELICHUH ONTUMAJIbHBIX 3a4a4

The theoretical foundations of the creation of
rods of the lowest weight, prone to buckling,
originate from the research works of Lagrange
[1], T. Clausen [2], EL. Nikolai [2] and later
N.G. Chentsova [4]. J.L. Nudelman [5], A.F.
Smirnov [6], A.I. Vinogradov [7], N. Olkhoff
[8] and other authors.

In the contemporary literature, the considering
problem is normally formulated in terms of non-
linear mathematical programming.

Let us consider a centrally compressed straight
line rod (for example, shown in Figure 1, alt-
hough the boundary conditions in the planes of
inertia may be different).

If F(x) is the cross-sectional area of the rod, P
is the acting force, P1,,[1] and P2, [1] are the
minimum critical forces in the main inertia
planes of the section, then we need to find an
expression F'(x) at which the rod would remain
stable and the volume of the material of the rod

V- would be minimal. Thus, the objective func-
tion can be written as

/
V:jF(x)dx, (1)
0
Besides, we have the following restrictions
P< P [1]=P2,[1]. (2)

There are a considerable number of methods for
solving this problem. Most of them use finite-
dimensional approaches. The process of optimi-
zation within the implementation of such meth-
ods most often stops at a stage when the objec-
tive function in the adjacent search steps de-
creases less than a predetermined value. Such a
criterion for stopping the process of searching
for a minimum in most cases gives an accepta-
ble result. However, it does not allow researcher
to confidently estimate the proximity of the so-
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lution obtained to the solution of minimum ma-
terial consumption (minimum material-intensive
solution).

As a result of several research works [1, 2, 3]
for rectilinear centrally compressed rods with
certain types of cross sections (for example,
those in which the moment of inertia is propor-
tional to the square of the section area), a crite-
rion was formulated to estimate the proximity of
the solution to the solution of minimum material
consumption.

In [3], it was shown that in the considering case,
the rod of the smallest volume will be a bar of
equal resistance with respect to the moment di-
agram arising in the event of loss of stability.
Thus, with a loss of stability with a rod of the
smallest volume, the normal stresses in the ex-
treme fibers of the rod, found from the resulting
moment diagrams, should be the same in all sec-
tions. That is, for the case when the loss of sta-
bility occurs in the two main planes of inertia,
the criterion is written as

3)

ol(x) = const, o2(x)=const.

Under conditions (3), ol(x) and o2(x) are the
absolute values of the normal stresses in the ex-
treme fibers of the rod determined from the dia-
grams of the moments that occurred in the cor-
responding principal planes of inertia during
loss of stability.

Since the buckling modes and the corresponding
moment and stress diagrams are determined to
within a constant factor, cl(x) and c2(x) are

normalized. If the corresponding normalization
is made so that the largest values of ol(x) and

o2(x) would be equal to one, then the proximi-

ty of the obtained solution to the solution of
minimum material consumption is estimated by
the proximity of cl(x) and ¢2(x) to unity.
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Figure 1. Considering centrally compressed straight line rod.

If the first critical force is not a multiple, then
the moment diagram that occurs when stability
is lost is unique. In this case, criterion (3) can be
used on the basis of this diagram, including in
combination with some other restrictions (see,
for example, [9]).

If the first critical force is multiple, then multi-
ple buckling modes and the corresponding mo-
ment diagrams appear. It is also known that any
linear combination of multiple buckling modes
will also be proper.

The multiplicity of critical forces that occurs
when minimizing the volume of the rod for rig-
idly restrained rods was identified in [8]. How-
ever, the multiplicity of critical forces also oc-
curs in other cases, for example, when optimiz-
ing the volume under constraints on the stability
of some continuous beam schemes.

In these cases, it is necessary to establish a line-
ar combination of bending moments diagrams
corresponding to multiple buckling modes. This
combination will serve as the basis for the use
of the criterion (3).

Let us consider an approach to determination of
such combination. We represent the approach
for one main plane of inertia and threefold criti-
cal force. For the second plane and the other
multiplicity of critical forces, all actions will be
similar.

Let it be required to estimate the closeness of
the search stage for the solution of the consider-
ing optimization problem to the minimum mate-
rial-intensive one.

At the estimated stage of the search, in the con-
sidered main plane of inertia, the first critical
forces in P1_[1], P1,[2] and PI_[3] are

found, the corresponding forms of buckling and

the estimated optimal cross-section sizes and
their moments of resistance w(x).
The following steps are performed in the fol-
lowing order:
Using the three first forms of buckling found
at the estimated stage of the research, the cor-
responding diagrams of the absolute values of
the bending moments M (x), M,(x) and

M, (x) are constructed. Plots are normalized,
for example, so that

[[M o P de=1; [[M, (0  de=1;
j [M3(x)] dx =1.

2. On the basis of the assumption about the op-
timality of the found dimensions of the cross-
sections, a conditionally optimal diagram of
the absolute values of the bending moments
M, (x) is constructed, according to which re-

lation (3), that is, the condition,

O'I(x):—Mo(x) =1
w(x)
must be fulfilled. Thus, we have

M, (x) =w(x). The plot is also normalized.

3. If the considering solution is optimal, then
the combination of arising diagrams

M, (x)=a* M, (x)+Db* M, (x)+c* M,(x)
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should coincide with M (x). The equations

for finding the coefficients a, b and ¢ will
be obtained from the minimum condition of
the quadratic deviation of the diagram

M, (x) from M (x). That is, from the min-
imum condition of the integral

AM (a,b) =

= [[M, () — M, ()~ bM, () — M, (0] dx,

we get three equations

0AM (a,b,c) _0: 0AM (a,b,c) _0
oa ob
0AM (a,b,c) 0.
oc

After solution of the system, we can find the
coefficients a, b and c.
4. From the

My, (x) = aM, (x) + bM, (x) + cM;(x)

plot, we can determine

and normalize it, and by the proximity of the
stress ol(x) in sections and its average value

along the length of the rod
0
Aol = j ol(x)dx]/1
0

to one, we estimate the optimality of the so-
lution.

5. Besides, the optimality of the considering
solution can also be evaluated by the proxim-
ity of the diagrams of M (x) and M (x).

The proximity is estimated by the values of
the differences

Volume 16, Issue 1, 2020

AM ,(x) = M (x) — M, (x)

in the sections and the average value of their
absolute values along the length of the rod

AMy, = {[ sgn[ AM, (x)]AM, (x)dbx} /1

6. If the multiplicity of critical forces for the
considering system is not known in advance,
then its presence or absence is revealed in the
process of optimization. If the multiplicity is
detected, then the differences

AP ={P1, [2]— Pl [11}/ P, [1]-100%;
AP2 = {P1, [3]- P1, [11}/ P1, [1]-100%

in the limit tend to zero. Let us give an illus-
tration of the described approach with sam-
ples.

7. For a rod whose scheme is shown in Figure
1, the doubling of the critical force was con-
sidered in detail in [8]. Although the possibil-
ity of using of the criterion (3) was not con-
sidered in [8], taking into account the de-
tailed analysis in [8] of the doubly critical
load of a rigidly clamped rod, it seems ap-
propriate to illustrate the proposed approach
using other examples. Two numerical sam-
ples are considered. The first one deals with
two-time critical force, and the second one
deals with three-time critical force.

The first numerical sample. Let us consider a
rectilinear square rod, compressed by a centrally
applied longitudinal force with supporting con-
ditions in both main planes of inertia of sec-
tions, shown in Figure 2.

A preliminary analysis showed that the critical
force will be twofold.

Let /=9 meters be width of
P =3000000 N be magnitude of force;
E =206000 MPa be the modulus of elasticity of
the material. The analysis was performed on the
basis of a discrete model ([10]) of 41 fragments.

span,
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Figure 1. The first numerical sample.

For a discrete model, the objective function (1)
1s written as

V= Zn:F[i](l/n) = Z":(b[i])2 (/ny, (4

where p[i] is the size of the square section of
the rod; » is dimension of a discrete model.
Diagrams of M, (x), M,(x), M,(x), M,(x),
AM (x) are represented by M, [i], M,[i],
M;[i], M [i], AM,[i].

Since the boundary conditions in both main
planes of inertia are the same, and the critical

forces are assumed to be twofold, the stability
constraints are written as

P< Pl [1]=P1,[2]. (5)

Criterion (3) for the discrete model in this case
takes the form

oli] = const. (6)

Optimization was performed by one of the vari-
ants of the method of random search. The esti-
mation of the proximity of the solution to the
minimum material-based on criterion (6) was
carried out at several stages of the computing
(Tables 1 and 2).

Four stages were considered. The results of each
stage are presented in the corresponding col-
umns of Tables 1 and 2. Stage 0 corresponds to
the results corresponding to the first access to
the boundary of the allowable area for a rod of
constant square cross-sectional length. The re-
maining columns show the results, respectively,
at 300, 1300 and more than 40,000 tests of the

random search method. Table 1 shows the
cross-section dimensions b[i] for each stage.
The bottom five lines show the values of the
objective function — V, meters’ ; the magnitudes
of its decrease compared with stage 0 — AV, %;
the difference between the first two critical
forces — AP, %; the values of the coefficients a
and b.

Table 2 shows the values of the differences

AMo[i] = Mo[i]_Moo[i]

and stresses ofi], and in the last line the aver-
age values for each stage are the values of these
quantities AM , and Acl.

Analysis of the data in tables 1 and 2 shows that
despite the small difference in the values of the
objective function in the last two stages, the dif-
ference in cross sections between the values of
differences 4AM,[i] and stresses ofi] at these

stages of the search is more significant. At the
last stage, in almost all cross sections, the dif-
ferences AM [i] are close to zero, and the

stresses ofi] to unity.

The result obtained confirms that, even with a
double critical force, criterion (3) can estimate
the proximity of the obtained solution to the
minimum material-intensive one.

Let us consider one more example, in which,
according to preliminary calculations during
optimization, the critical force turns out to be
threefold.

Let us consider a rectilinear square rod, com-
pressed by a centrally applied longitudinal force
with supporting conditions in both main planes
of inertia of sections, shown in Figure 3.
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Table 1. Results of analysis.

b[i] by stages of search for optimum

t 0 300 1300 >40000
1 2 3 4 5

1 0.0915 0.0626 0.0420 0.0426
2 0.0915 0.0655 0.0600 0.0596
3 0.0915 0.0789 0.0696 0.0692
4 0.0915 0.0784 0.0761 0.0761
5 0.0915 0.0835 0.0806 0.0813
6 0.0915 0.0821 0.0855 0.0854
7 0.0915 0.0927 0.0878 0.0888
8 0.0915 0.0883 0.0921 0.0916
9 0.0915 0.0949 0.0943 0.0938
10 0.0915 0.0984 0.0966 0.0957
11 0.0915 0.0949 0.0960 0.0971
12 0.0915 0.0924 0.0985 0.0982
13 0.0915 0.0944 0.0982 0.0990
14 0.0915 0.1110 0.0987 0.0995
15 0.0915 0.0975 0.1000 0.0997
16 0.0915 0.1010 0.0990 0.0997
17 0.0915 0.0995 0.1000 0.0993
18 0.0915 0.0929 0.0987 0.0986
19 0.0915 0.1189 0.0988 0.0977
20 0.0915 0.1021 0.0967 0.0964
21 0.0915 0.1053 0.0944 0.0948
22 0.0915 0.0833 0.0925 0.0927
23 0.0915 0.0998 0.0905 0.0902
24 0.0915 0.0799 0.0877 0.0872
25 0.0915 0.0857 0.0829 0.0834
26 0.0915 0.0787 0.0784 0.0787
27 0.0915 0.0806 0.0724 0.0728
28 0.0915 0.0654 0.0639 0.0647
29 0.0915 0.0743 0.0522 0.0523
30 0.0915 0.0701 0.0255 0.0049
31 0.0915 0.0730 0.0524 0.0518
32 0.0915 0.0603 0.0644 0.0640
33 0.0915 0.0636 0.0731 0.0719
34 0.0915 0.0793 0.0776 0.0777
35 0.0915 0.0736 0.0828 0.0823
36 0.0915 0.0834 0.0852 0.0859
37 0.0915 0.0966 0.0899 0.0888
38 0.0915 0.1000 0.0917 0.0912
39 0.0915 0.0911 0.0924 0.0931
40 0.0915 0.0889 0.0944 0.0946
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1 2 3 4 5
41 0.0915 0.0852 0.0956 0.0957
V., meters’® 0.07539 0.06904 0.06492 0.06476
AV 0.00% 8.43% 13.89% 14.10%
AP 195.00% 130.49% 17.74% 0.03%
a 0.48987 0.83099 1.01063 1,02480
b 0.49986 0.13279 -0.01283 -0,02805
Table 2. Results of analysis.
AM [i] by stages of search for optimum o by stages of search for optimum
t 0 300 1300 | >40000 0 300 1300 | >40000
1 2 3 4 5 6 7 8 9
1 0.1396 0.0388 | 0.0008 | 0.0000 | 0.076842 | 0.135799 | 0.978754 | 0.9988
2 0.1070 0.0284 | 0.0019 | 0.0001 | 0.228466 | 0.301949 | 0.893968 | 0.9973
3 0.0757 0.0202 | 0.0024 | 0.0000 | 0.373973 | 0.476454 | 0.902065 | 0.9984
4 0.0465 0.0256 | 0.0019 | 0.0000 | 0.509501 | 0.441546 | 0.913346 | 0.9986
5 0.0202 0.0003 | 0.0010 | 0.0000 | 0.631502 | 0.597886 | 0.923345 | 0.9985
6 0.0025 0.0103 | 0.0032 | 0.0000 | 0.736850 | 0.541898 | 0.952999 | 0.9988
7 0.0210 0.0334 | 0.0064 | 0.0000 | 0.822944 | 0.718689 | 0.971152 | 0.9988
8 0.0350 0.0815 | 0.0001 | 0.0000 | 0.887779 | 0.941500 | 0.930939 | 0.9987
9 0.0441 0.0678 | 0.0041 | 0.0000 | 0.930011 | 0.827215 | 0.910997 | 0.9990
10 0.0481 0.0215 | 0.0091 | 0.0000 | 0.948989 | 0.662066 | 0.889453 | 0.9990
11 0.0472 0.0239 |0.0144 | 0.0000 | 0.944770 | 0.514969 | 1.000000 | 0.9987
12 0.0415 0.0293 | 0.0056 | 0.0000 | 0.918104 | 0.487964 | 0.907040 | 0.9989
13 0.0312 0.0782 | 0.0094 | 0.0001 | 0.870409 | 0.867698 | 0.973216 | 0.9991
14 0.0169 0.1005 | 0.0105| 0.0000 | 0.803706 | 0.381801 | 0.977651 | 0.9987
15 0.0010 0.0407 | 0.0069 | 0.0000 | 0.720548 | 0.468211 | 0.902845 | 0.9987
16 0.0218 0.0869 | 0.0025| 0.0000 | 0.623928 | 0.350193 | 0.921093 | 0.9986
17 0.0448 0.0572 | 0.0006 | 0.0001 | 0.517169 | 0.765660 | 0.929211 | 0.9991
18 0.0347 0.0903 | 0.0021 | 0.0001 | 0.564413 | 0.924885 | 0.940865 | 0.9990
19 0.0191 0.1114 |0.0039 | 0.0000 | 0.636604 | 0.402981 | 0.914728 | 0.9988
20 0.0061 0.1037 |0.0092 | 0.0001 | 0.697070 | 0.312453 | 0.888763 | 0.9984
21 0.0038 0.0158 | 0.0016 | 0.0000 | 0.743026 | 0.556928 | 0.923710 | 0.9985
22 0.0101 0.0800 | 0.0006 | 0.0001 | 0.772075 | 1.000000 | 0.928379 | 0.9992
23 0.0123 0.0377 | 0.0066 | 0.0000 | 0.782309 | 0.485707 | 0.894467 | 0.9988
24 0.0101 0.0041 | 0.0022 | 0.0001 | 0.772383 | 0.572689 | 0.918233 | 0.9982
25 0.0035 0.0387 | 0.0057 | 0.0000 | 0.741573 | 0.416936 | 0.973638 | 0.9984
26 0.0077 0.0122 | 0.0055| 0.0000 | 0.689821 | 0.669361 | 0.979892 | 0.9989
27 0.0232 0.0177 |0.0015| 0.0000 | 0.617743 | 0.497582 | 0.915495 | 0.9984
28 0.0428 0.0142 | 0.0031 | 0.0000 | 0.526627 | 0.744256 | 0.982150 | 0.9985
29 0.0661 0.0478 | 0.0002 | 0.0000 | 0.418400 | 0.256604 | 0.938477 | 0.9988
30 0.0723 0.0574 | 0.0035| 0.0000 | 0.389795 | 0.110365 | 0.055568 | -0.0546
31 0.0772 0.0454 | 0.0007 | 0.0000 | 0.366997 | 0.255342 | 0.910506 | 1.0000
32 0.0843 0.0037 |0.0032 | 0.0000 | 0.333614 | 0.644771 | 0.880962 | 0.9992
33 0.0933 0.0282 | 0.0051 | 0.0000 | 0.292105 | 0.915174 | 0.876885 | 0.9992

92

International Journal for Computational Civil and Structural Engineering




Using the Criterion of the Minimum Material Capacity of Rods Under Stability Restrictions for the Case

of Multiple Critical Load

1 2 3 4 5 6 7 8 9
34 0.0969 0.0431 |0.0044 | 0.0000 | 0.275390 | 0.343807 | 0.971364 | 0.9987
35 0.0660 0.0390 | 0.0017 | 0.0000 | 0.418961 | 0.881604 | 0.919258 | 0.9988
36 0.1541 0.0365 | 0.0028 | 0.0001 0.554891 | 0.412768 | 0.950408 | 0.9995
37 0.1713 0.0655 |0.0045 | 0.0000 | 0.679382 | 0.384630 | 0.905781 | 0.9986
38 0.1864 0.0676 | 0.0004 | 0.0001 0.788944 | 0.399366 | 0.929533 | 0.9985
39 0.1994 0.0502 | 0.0013 | 0.0001 0.880504 | 0.402443 | 0.938544 | 0.9992
40 0.2099 0.0156 | 0.0064 | 0.0000 | 0.951507 | 0.661024 | 0.899818 | 0.9987
41 0.2179 0.0131 | 0.0077 | 0.0001 1.000000 | 0.657937 | 0.968563 | 0.9983
X/n 0.0408 0.0435 | 0.0040 | 0.0000 0.6449 0.5461 0.9094 | 0.9731
P R

;;;;J
»la
<

"l

82m

Figure 2. The second numerical sample.

The second numerical sample. Let us consider
a rectilinear square rod, compressed by a cen-
trally applied longitudinal force with supporting
conditions in both main planes of inertia of sec-
tions, shown in Figure 3. The analysis was per-
formed on the basis of a discrete model ([10]) of
41 fragments.

Since the boundary conditions in the two main
planes of inertia are the same, and the critical
forces are assumed to be threefold, the stability
constraints are written as

P<PI =PI [21=P,3]. (7

In the same way as in the first sample, optimiza-
tion was performed by one of the variants of the
random search method. The estimation of the
proximity of the solution to the minimum mate-
rial-based on criterion (6) was carried out at
several stages of the calculation (Tables 3 and
4). Similarly to the first sample, four stages of
finding the optimal solution were considered.
The results are presented in the corresponding
columns of Tables 3 and 4. The designations in
these tables are the same as in the first sample.
In addition, Table 3 also lists the values of the
coefficient ¢ and the difference AP2.

Volume 16, Issue 1, 2020

Analysis of the data in Tables 3 and 4 shows
that in the last two stages of the search, the ob-
jective functions differ little.

However, at the same time, differences AM [i]

and reduced stresses ofi] show that, despite the
small difference in the values of the objective
function in the last two stages, the difference
between the values of differences AM [i] and

stresses ofi] at these stages of the search is
more significant. At the last stage, in almost all
cross sections, the differences AM [i] are close

to zero, and the stresses ofi] to unity. In sec-

tions 16 and 31, the stresses are far from unity.
This is due to the significantly smaller com-
pared with the other sizes of sections, which in
such cases reduces the accuracy of the selected
model.

From Table 3 it can be seen how the critical
forces approach each other in stages. So, if at
stage number 0 the difference AP1 is 102.54%,
and AP2 —236.62%, then at the last stage these
differences are 0.01% and 0.03%.

Table 4 shows how the mean values of differ-

ences AM , and stresses change Aol.
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Table 3. Results of analysis.

b[i] by stages of search for optimum
! 0 300 1300 >40000
1 2 3 4 5

0.0893 0.0500 0.0503 0.0513 0.0893
0.0893 0.0724 0.0711 0.0705 0.0893
0.0893 0.0745 0.0818 0.0808 0.0893
0.0893 0.0865 0.0882 0.0875 0.0893
0.0893 0.0972 0.0925 0.0920 0.0893
0.0893 0.0936 0.0951 0.0950 0.0893
0.0893 0.1072 0.0967 0.0968 0.0893
0.0893 0.0991 0.0987 0.0976 0.0893
0.0893 0.0968 0.0950 0.0973 0.0893
0.0893 0.0980 0.0951 0.0960 0.0893
0.0893 0.0990 0.0930 0.0936 0.0893
0.0893 0.0901 0.0913 0.0898 0.0893
0.0893 0.0779 0.0848 0.0842 0.0893
0.0893 0.0807 0.0765 0.0759 0.0893
0.0893 0.0637 0.0631 0.0623 0.0893
0.0893 0.0477 0.0260 0.0057 0.0893
0.0893 0.0557 0.0609 0.0618 0.0893
0.0893 0.0748 0.0758 0.0753 0.0893
0.0893 0.0872 0.0832 0.0834 0.0893
0.0893 0.0881 0.0894 0.0889 0.0893
0.0893 0.0908 0.0925 0.0925 0.0893
0.0893 0.0879 0.0943 0.0947 0.0893
0.0893 0.0967 0.0959 0.0958 0.0893
0.0893 0.0898 0.0947 0.0958 0.0893
0.0893 0.0869 0.0941 0.0947 0.0893
0.0893 0.0963 0.0922 0.0925 0.0893
0.0893 0.0867 0.0888 0.0888 0.0893
0.0893 0.0811 0.0831 0.0834 0.0893
0.0893 0.0798 0.0757 0.0753 0.0893
0.0893 0.0604 0.0622 0.0618 0.0893
0.0893 0.0457 0.0242 0.0057 0.0893
0.0893 0.0676 0.0611 0.0602 0.0893
0.0893 0.0785 0.0733 0.0731 0.0893
0.0893 0.0807 0.0811 0.0806 0.0893
0.0893 0.0884 0.0849 0.0854 0.0893
0.0893 0.0957 0.0880 0.0883 0.0893
V. meters’ 0.1149 0.1003 0.0978 0.0973

AV 0.00 12.69 14.90 15.35

AP1 102.54 31.20 5.72 0.01

AP2 236.62 71.35 9.42 0.03
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1 2 3 4 5
a 0.2813 0.8000 0.8283 0.5434
b 0.3571 0.1761 0.1846 0.4334
c 0.3932 0.0045 -0.0101 0.0516
Table 2. Results of analysis.
AM [i] by stages of search o by stages of search for optimum
for optimum
t 0 300 1300 | >40000 0 300 1300 >40000
1 2 3 4 5 6 7 8 9
1 0.1302 | 0.0087 | 0.0043 | 0.0000 0.1554 0.4562 0.9797 | 0.9995
2 0.0610 | 0.0332 | 0.0035| 0.0000 0.4501 04111 0.8332 | 0.9992
3 0.0029 | 0.0161 | 0.0075| 0.0000 0.6979 0.5343 0.8202 | 0.9991
4 0.0385 | 0.0139 | 0.0031 | 0.0002 0.8741 0.6878 0.8815 | 0.9974
5 0.0591 0.0696 | 0.0043 | 0.0002 0.9623 0.4408 0.8482 | 0.9998
6 0.0578 | 0.0032 | 0.0030 | 0.0000 0.9565 0.6429 0.8547 | 0.9988
7 0.0355 | 0.0852 |0.0131 | 0.0000 0.8616 0.4575 0.9148 | 0.9988
8 0.0042 | 0.0033 | 0.0048 | 0.0000 0.6924 0.6418 0.8495 | 0.9987
9 0.0319 | 0.0418 |0.0144 | 0.0001 0.5743 0.5161 0.9224 | 0.9984
10 0.0299 | 0.0824 | 0.0012 | 0.0001 0.5827 0.4106 0.8710 | 0.9992
11 0.0391 0.0502 | 0.0028 | 0.0001 0.5436 0.7646 0.8545 | 0.9995
12 0.0111 0.0683 | 0.0133 | 0.0001 0.6630 0.8699 0.8078 | 0.9984
13 0.0007 | 0.0358 | 0.0067 | 0.0000 0.7133 0.8247 0.8294 | 0.9985
14 0.0055 | 0.0431 | 0.0063 | 0.0000 0.6869 0.4253 0.8194 | 0.9989
15 0.0292 | 0.0192 | 0.0029 | 0.0000 0.5859 0.4439 0.8273 | 0.9990
16 0.0505 | 0.0094 | 0.0007 | 0.0000 0.4952 0.8522 1.0000 | 0.5329
17 0.0533 | 0.0249 | 0.0017 | 0.0000 0.4831 1.0000 0.8408 | 0.9987
18 0.0199 | 0.0160 | 0.0038 | 0.0000 0.6253 0.5361 0.8372 | 0.9989
19 0.0013 | 0.0875 | 0.0052 | 0.0002 0.7048 0.2975 0.8363 | 1.0000
20 0.0002 | 0.0171 |0.0114 | 0.0000 0.7092 0.5696 0.8127 | 0.9988
21 0.0053 | 0.0234 | 0.0053 | 0.0001 0.6877 0.5537 0.8886 | 0.9984
22 0.0104 | 0.0662 | 0.0010| 0.0000 0.7544 0.8805 0.8702 | 0.9989
23 0.0077 | 0.0523 | 0.0051 | 0.0000 0.7430 0.4862 0.8467 | 0.9988
24 0.0115 | 0.0459 | 0.0006 | 0.0000 0.6612 0.7939 0.8686 | 0.9986
25 0.0213 | 0.0236 | 0.0032 | 0.0001 0.6193 0.5421 0.8790 | 0.9983
26 0.0129 | 0.0406 | 0.0087 | 0.0000 0.7653 0.7485 0.9035 | 0.9990
27 0.0305 | 0.0474 | 0.0042 | 0.0001 0.8400 0.4487 0.8862 | 0.9996
28 0.0275 | 0.0163 | 0.0098 | 0.0001 0.8275 0.7107 0.9236 | 0.9993
29 0.0028 | 0.0230 | 0.0039 | 0.0001 0.7223 0.5182 0.8358 | 0.9979
30 0.0422 | 0.0090 | 0.0020 | 0.0000 0.5305 0.7365 0.8940 | 0.9990
31 0.0851 0.0091 | 0.0020 | 0.0000 0.3474 0.3901 0.3920 | 0.1702
32 0.0945 | 0.0139 | 0.0011 | 0.0000 0.3074 0.5187 0.8505 | 0.9981
33 0.0855 | 0.0221 | 0.0006 | 0.0000 0.3460 0.7489 0.8712 | 0.9984
34 0.0183 | 0.0742 | 0.0054 | 0.0000 0.6321 0.9912 0.8322 | 0.9989
35 0.0349 | 0.0245 | 0.0016 | 0.0001 0.8589 0.7232 0.8750 | 0.9993
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1 2 3 4 5 6 7 8 9
36 0.0680 | 0.0961 | 0.0004 | 0.0000 1.0000 0.3548 0.8682 | 0.9987
Y/n 0.0339 | 0.0366 | 0.0047 | 0.0001 0.6572 0.6091 0.8535 | 0.9629
So, if in the first three stages the average value Structures]. Moscow, Transzheldorizdat,

of the differences AM, is far from zero. Be-

sides, the average stress Aol is far from one.
Thus we  have  AM, =0.0001 and

Aol =0.9993 at the last stage.

The result obtained in this sample confirms that
with a triple critical force criterion (3) can esti-
mate the closeness of the obtained solution to
the minimum material-intensive one.

The approach proposed in this paper is based on
using the criterion (3) of estimating the proximi-
ty of a solution for optimizing rods with con-
straints on resistance to the least material-
intensive. This approach can be extended to
cases of multiplicity of critical forces.
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