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STRESS-STRAIN RELATION FOR CONCRETE
IN NONUNIFORM TENSION

Michael L. Zak
Ariel University, Ariel, ISRAEL

Abstract: Discrepancy between reported in the literature tensile stress-strain relations for concrete is addressed.
A conclusion is reached that in the post-peak (softening) range of deformation the stress-strain relation is not
unique and depends on the gradient of stress. A simplified variant of such a relation, intended for analysis of
concrete beams with regard to the effect of size (the depth of section), is proposed.
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INTRODUCTION

The tensile stress (o)-strain (&) relation is one
of principal characteristics of concrete behavior.
Unfortunately, there is a considerable
uncertainty with regard to the choice of its
appropriate variant for nonlinear analysis of
concrete and reinforced concrete structures. In
particular, (a) reported in the literature (e.g. [1-
5]) relations differ essentially from each other
(see Figure 1), and (b) in deformation-controlled
direct tension tests on standard concrete
specimens the deformation localizes when the
ultimate load is attained and, therefore, the
descending branches of diagrams, like those in
Figure 1, are unrealizable (see [6, 7]).

The aim of this paper is to consider this issue
and formulate a new o-¢ relation for concrete in
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tension. The paper is organized as follows.
Firstly, a ratio m=f;z5/f; is shown to be a
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Figure 1. Tensile o-¢ diagrams for concrete:
1-[1],2-[2],3—-[3],4—[4], 5—-[5].

suitable calibration parameter. Here, f=the
strength of concrete in direct tension, f; . ;5=the
flexural tensile strength of concrete determined
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in tests on standard 15%15x60 cm concrete
beams with the third-point loading. Then, a
calibrated relation is presented and an example
given illustrating the accuracy of results
obtainable with the use of this relation in
analysis of relatively small elements. Finally, an
extended version of the same relation, intended
for analysis of bending elements of any depth, is
proposed and its applicability range discussed.
The compressive o-¢relation [8]

o _k(g/gﬁ,)—(f:/&:ﬁ,)2
£ l+(k=-2)ele,)

(1)

where f.is the concrete compressive strength, &
is the strain corresponding to f., k=E.o&/fc, Eco
is the tangent modulus of elasticity at the origin
of the o-¢ diagram, and a conventional plane
sections hypothesis are adopted in this work for
analysis of concrete elements acted upon by the
bending moment, M, and longitudinal load, P,
applied at x=x,, using the equilibrium equations

bj o(&)xdx=M +Px,, b j o(e)dx=P. (2)

Here b, d are the width and depth of section,
respectively.

1. COMPARISON OF DIAGRAMS
IN FIGURE 1

See Figure 2.
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Figure 2. m-ratios for concrete of grade C30
[8](fe=2.9MPa , E.y=33.6GPa, &.=2.04 f./ E.y)
according to diagrams in Figure 1.
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2. PROPOSED RELATION

The tensile o-¢ relation for concrete is taken in
the form similar to that adopted in [9]

o=E,¢ ife<e,=f1E,,

7(5/512)
1+(y—)ele,) "™

o=t 3)

if €>¢,.

Here y=y;5 is a parameter indicating steepness of
the descending branch of the diagram (see
Figure 3) and obtainable, as a function of the m-
ratio, from a graph in Figure 4.
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Figure 3. Proposed diagram depending on .
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Figure 4. m versus y=y;s.

In absence of experimental values of f;;;5 and
f:, this ratio can be assessed as follows

m=2.17-0.02 f.[MPa] for f, < 25.5MPa,(4)
m=1.66 for f.>255MPa.

See Figure 5.
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Figure 5. m versus f..

Values of f;4;5 and m for standard concrete
beams tested with the third-point loading are

lower than the corresponding values, f,?;ls and

m*", for identical beams tested with the center-
point loading. According to [11],
m=m"/1.09.

3. EXAMPLE

In tests [12], shown schematically in Figure 6,

| P

d=15cm

! P ™d/?
Figure 6. Schemes of tests [12].

the following data have been obtained:
Joure=350kgflem’, fi=15 2kgflem’, m“"=1.9,

P7? =3.19P,, where P, = fbd. Here P’ is
the mean experimental value of ultimate loads
for eccentrically loaded plain concrete
specimens. From the graph in Figure 4, y = 4.0
for m=m/1.09=1.74. f.~0.8 fipe , k=2.1.
P, =3.08P,

ult

deviates from P;;* by 3.4%. Note that shrinkage

of the concrete in the considered tests [12] was
prevented.

The calculated ultimate load
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4. PROPOSED RELATION:
EXTENDED VERSION

When the concrete shrinkage is prevented, f; is
practically independent of the specimen’s cross-
sectional dimensions. See Appendix and Ref.
[12]. Unlike f,, the concrete flexural tensile
strength  f,7 = 6M,y, /(bd’), where M, is the
ultimate bending moment for a plain concrete
beam of rectangular (bxd) section, depends
essentially on d. In order to reflect this size
effect, parameter y in the proposed relation is
taken as a function of d

v =751 10<d <20cm, 5)
y =max[1.01; 1+ (y,s —1)0.1“] if d > 20cm,

where a=(d[cm]-20)/30. See Figure 7.
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Figure 7. f; n/f, n.15 versus d.

5. DISCUSSION

Irrespective of the cross-sectional dimensions,
the behavior of concrete in uniform tension is
similar to that in flexural tension when d — oo.
Therefore, the shape of the tensile o-¢ diagram
depends on the stress gradient. In the proposed
simplified relation, intended for analyses of
bending elements, this dependence is taken into
account implicitly.
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CONCLUSIONS

1. A new o-¢ relation for tensile concrete is
proposed.

2. The proposed relation models ductile and
brittle modes of the concrete behavior in
shallow and deep bending elements,
respectively.

3. Based on tests of relatively small laboratory
specimens, empirical formulas, like that in
Ref. [16] for reinforced concrete beams’
deflections, may be unsafe in application to
large elements.

APPENDIX

Figure 8 presents the averaged data obtained in
direct tension tests [17] on concrete specimens
with dimensions of the working parts 10x10x30,
20x20x70 and 50x50x110 cm. In series 1 of the
tests, the specimens were sealed in order to
prevent shrinkage of the concrete. In series 2,
the specimens were not sealed. It is seen that
sealing the specimens reduces the size effect to
the level predicted by the “weakest link” theory

(e.g. [18])

L L
M =1-v ]n( _) , (6)

Ji(Ly) VL
where f/(L) is the strength of specimen of length
L, Ly=30cm, v is the variability of f,(Lo) assumed

to be in the interval (0.05, 0.1).
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Figure 8. fi(L)/fi(Ly) versus L/Ly.
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It can be concluded, therefore, that — when
shrinkage of the concrete is prevented — f;
depends moderately on L, but is practically
independent of the cross-sectional dimensions.
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