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Abstract: The special properties of optimal systems have been already identified. Besides, criteria has been for-
mulated to assess the proximity of optimal solutions to the minimal material consumption. In particular, the cri-
teria were created for rods with rectangular and I-beam cross-section with stability constraints or constraints for
the value of the first natural frequency. These criteria can be used for optimization when the cross sections of a
bar change continuously along its length. The resulting optimal solutions can be considered as an idealized ob-
ject in the sense of the limit. This function of optimal design allows researcher to assess the actual design solu-
tion by the criterion of its proximity to the corresponding limit (for example, regarding material consumption).
Such optimal project can also be used as a reference point in real design, for example, implementing a step-by-
step process of moving away from the ideal object to the real one. At each stage, it is possible to assess the
changes in the optimality index of the object in comparison with both the initial and the idealized solution. One
of the variants of such a process is replacing the continuous change in the size of the cross sections of the rod
along its length with piecewise constant sections. Boundaries of corresponding intervals can be selected based on
an ideal feature, and cross-section dimensions can be determined by one of the optimization methods. The dis-
tinctive paper is devoted to criteria that allow researcher providing reliable assessment of the endpoint of the op-
timization process, and the second part of the material presented contains corresponding numerical examples,
prepared in accordance with the theoretical foundations given in the first part.

Keywords: criterion, optimization, special properties, stability, frequency, critical force, buckling,
eigenmode, reduced stresses, verification

KPUTEPUU OIIEHKH OIITUMAJIBHBIX PEIIEHUN
IMPU ®OPMUPOBAHUU CTEP)KHEUN
C KYCOYHO-TTIOCTOSSHHBIMUA YUYACTKAMM,
HA KAJKJIOM M3 KOTOPBIX TIONNEPEYHBIE CEYEHUSA
HE MEHSIOTCS, IPU OTPAHUYEHUSAX
IO YCTOMYNBOCTHU UJIN HA BEJJUMUHUHY NEPBOMN
COBCTBEHHOM YACTOTHI
YACTD 2: IPUMEPBI PACUETA

JI.C. JIaxosuu ', IT.A. Akumos ">>*, b.A. Tyx¢pamynnun'

AHHOTalIl/Iﬂ: Panee ObLIM BEISBICHEI 0COOBIE CBOMCTBA ONTHMAJIbHBIX CHCTEM U C(l)OpMyJ'II/IpOBaHI)I KpUTCPUH,
OLICHUBAIOIIUC OJIM30CTh ONTHMANIBHBIX peHIeHI/Iﬁ K MUHHUMAJIbHO MAaTCPUATIOCMKOMY. B uactHOCTH OBLIH CO-
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3[aHBI KPUTEPHUH, AT CTEP>KHEH C MPSIMOYTOJIBHBIM U JBYTaBPOBBIM IIOTIEPEIHBIM CEUEHNUEM MPU OTPAHUUCHUAX
10 YCTOIYMBOCTH WJIM Ha BEJIMYMHY NEPBOH YaCTOTHI COOCTBEHHBIX KOJIEOAHUH. DTN KPUTEPUN IPUMEHHUMBI TIPH
ONTUMU3AIMHY, KOT/Ia ONIEPEeYHbIE CEUEHUs CTEPKHS HEMIPEPBIBHO N3MEHSIOTCA o ero jyuHe. [loaydenHsle npu
5TOM ONTHUMAJbHBIE PEIICHHSI MOTYT pacCMaTpUBaThCs KaK UI€alTM3UPOBAHHBIA OOBEKT B CMBICIIE TIPENEIBHOTO.
Ora (QyHKUUS ONTHMAIbHOTO MPOEKTA ITO3BOJISIET OLEHUBATh PEAbHOE KOHCTPYKTOPCKOE pEelIeHHE MO KpHTe-
pHIO ero OMM30CTH K NpelesbHOMY (HamnpuMep, M0 MaTepHaloeMKOCTH). Takoi ONTUManbHBIA HPOEKT TaKKe
MOJKET MCIOJIB30BATHCSA U KaK OPUEHTUP IpPHU PeaJbHOM IPOEKTUPOBAHHUM, HANpHMeEp, peau3ys MO3TamHbII
MPOLIECC OTXO0Ja OT UACAIBHOTO 00beKTa K peatbHOMy. [Ipy 3TOM Ha KaKZAOM dTare MOSIBISETCS BO3MOKHOCTD
OLIEHKH M3MEHEHUS M0Ka3aTels ONTUMAIBHOCTH OOBEKTA 110 CPABHEHMIO, KaK C HA4aJIbHBIM, TaK U C WACATH3HU-
poBaHHBEIM perneHreM. OIHN U3 BApHAHTOB TAKOTO MPOIIECCa COCTOUT B 3aMEHE HETPEPHIBHOTO M3MEHEHUS pas3-
MEpOB TIONIEPEYHBIX CEYEHHH CTEP)KHS 10 €T0 JUIMHE KyCOYHO-TIOCTOSIHHBIMHM yY9acTKaMH. | paHWIBI y4acTKOB
MOTYT BBIOMPAThCS HA OCHOBE HACAITHFHOTO OOBEKTa, a pa3Mephl OMEPEUHBIX CEUCHUH ONMPEACIATHCS OAHUM H3
METOJIOB ONTHMH3ALWK. B maHHOI cTaThe mpeiararoTcs KpUTEPHH, MO3BOJSIONINE HAIEKHO OLCHUBATH MO-
MEHT OKOHYaHHsI Mpolecca TaKOW ONTHMHU3AINH, IPUUEM IpeJCcTaBisieMasl BTopas 4acTh MaTepuana Imyoimka-
UM COJIEPKUT MPUMEP pacyeTa B COOTBETCTBUU C U3JI0KEHHBIMHU B IIEPBON YAaCTH TEOPETUIECKUMHU OCHOBAMH.

KaioueBble ci1oBa: kputepuii, onTuMu3anus, ocoOble CBOMCTBA, YCTONYMBOCTD, YACTOTA, KPUTHYECKAs! CUIIA,
(hopMBI OTEPH YCTOWINBOCTH, (POPMBI COOCTBEHHBIX KOJIeOaHMIl, NPUBEICHHBIC HATIPSDKEHHSI, BEpHUKaIIHs

EXAMPLE 1

Let us consider a straight cantilever rod (struc-
ture), the span of the structure of rectangular
cross section is equal to /=6m. Let the struc-
ture be loaded with a longitudinal force
P=300000 N and corresponding intensity of
distributed mass is equal to m(x) =75 kg/m. Af-
ter the transition to corresponding discrete mod-
el (including 25 segments), the nodal mass is be
equal to 18kg. Specific mass is equal to
p = 2400 kg/m’. The given value of the first cir-

cular natural frequency is equal to @, =20 s,

the elastic modulus of the material is equal to
E =24000 MPa (Figure 4a) [8, 9].

Since the boundary conditions in both main
planes of inertia are the same, when optimizing
the cross-section should be square.

Let us first consider the use of criterion (22) for
evaluating optimization stages [1-7, 9, 10] for
the case when the cross sections change contin-
uously. Optimization is performed by random
search. For the initial approximation, a rod of
constant cross-sectional length is taken with the
ratio b[i]/b7[i]=1/1. The values of the desired

parameters at the first exit to the boundary of
the region of feasible solutions turned out to be

equal to b’[i]=5h)[i]=0.3039 m. In this case,
the  objective  function is equal to
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V, =0.5543 m’. The results of the three stages of

the search are summarized in Table 1. The re-
sults of the first stage are obtained after
n=1000 attempts of the random search meth-
od, the second after n=1500 attempts, the
third when 7 >2000. The second column of
Table 1 shows the values of the cross-sectional
dimensions at the first exit to the boundary of
the region of feasible solutions
b[i]=b;[i]=0.3039 m. The penultimate row of
the table shows the values of the objective func-
tion ¥, at each stage, and the last one shows its

percentage reduction compared to the initial
one. Columns 3, 5, 7 show the sizes of the cross
sections obtained at each stage, and in columns
4, 6, 8 the values of criterion (22). The table
shows that the values of the objective function
in comparison with the first stage are almost not
reduced. The differences concern only the
fourth significant digit. The difference in the
size of some sections concerns the third signifi-
cant digits. However, the values of criterion (22)
in the first and second stages indicate that the
optimization process is not completed.

The values of criterion (22) at the third stage are
close to unity, which allows researcher to confi-
dently make a decision about stopping the opti-
mization process at this stage.
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Figure 4. About the first example.
Table 1. Information about solution of the first example.
1 Optimization stages
Initial The first »=1000 The second n =1500 The third #n > 2000
Nol | plilm | blilm | ofli]l | Bllm | ol | Blilm | ol
1 0.3039 0.3072 0.8359 0.3065 0.8414 0.3076 0.9997
2 0.3039 0.3057 0.7926 0.3050 0.8019 0.3038 0.9996
3 0.3039 0.2983 0.8491 0.2986 0.8513 0.2998 0.9997
4 0.3039 0.2995 0.7622 0.2973 0.8012 0.2956 0.9996
5 0.3039 0.2917 0.8206 0.2886 0.8722 0.2912 0.9996
6 0.3039 0.2865 0.8249 0.2883 0.7992 0.2865 0.9996
7 0.3039 0.2815 0.8224 0.2867 0.7404 0.2815 0.9995
8 0.3039 0.2754 0.8447 0.2761 0.8280 0.2762 0.9997
9 0.3039 0.2723 0.7922 0.2693 0.8456 0.2706 0.9996
10 0.3039 0.2653 0.8185 0.2639 0.8354 0.2646 0.9995
11 0.3039 0.2599 0.7917 0.2562 0.8666 0.2582 0.9999
12 0.3039 0.2529 0.7966 0.2515 0.8218 0.2515 0.9997
13 0.3039 0.2425 0.8649 0.2403 0.9168 0.2442 0.9998
14 0.3039 0.2383 0.7819 0.2390 0.7693 0.2364 0.9998
15 0.3039 0.2238 0.9477 0.2265 0.8634 0.2281 0.9996
16 0.3039 0.2217 0.7673 0.2196 0.8155 0.2193 0.9998
17 0.3039 0.2071 0.9186 0.2112 0.7779 0.2097 0.9997
18 0.3039 0.1972 0.9097 0.2022 0.7275 0.1995 0.9996
19 0.3039 0.1885 0.8326 0.1898 0.7655 0.1885 0.9997
20 0.3039 0.1739 0.9330 0.1717 1.0000 0.1765 1.0000
21 0.3039 0.1598 1.0000 0.1636 0.7799 0.1634 0.9996
22 0.3039 0.1486 0.8121 0.1481 0.8078 0.1486 0.9994
23 0.3039 0.1328 0.6891 0.1320 0.7145 0.1315 0.9993
24 0.3039 0.1181 0.1642 0.1134 0.4544 0.1099 0.9988
25 0.3039 0.0964 -0.6147 0.0889 -0.3683 0.0761 0.9994
V.. m 0.5543 0.3397 0.3391 0.3384
% 0 38.71% 38.83% 38.95%
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Table 2. Information about variants of solution of the first example.

Bapmuanr 1 Bapuanr 2
1 2 3 5 6 7
No. by [i], m o, li] S,[i] bli],m i li] S,[i]
1 0.2901 0.4123 0.9999 0.2956 0.3627 0.9999
2 0.2901 0.3811 0.9999 0.2956 0.3357 0.9999
3 0.2901 0.3502 0.9999 0.2956 0.3090 0.9999
4 0.2901 0.3198 0.9999 0.2956 0.2827 0.9999
5 0.2901 0.2900 0.9999 0.2956 0.2570 0.9999
6 0.2901 0.2609 0.9999 0.2956 0.2319 0.9999
7 0.2901 0.2327 0.9999 0.2956 0.2075 0.9999
8 0.2901 0.2053 0.9999 0.2956 0.1838 0.9999
9 0.2901 0.1790 0.9999 0.2956 0.1610 0.9999
10 0.2901 0.1536 0.9999 0.2956 0.1390 0.9999
11 0.2901 0.1293 0.9999 0.2956 0.1179 0.9999
12 0.2901 0.1060 0.9999 0.2346 0.4226 0.9998
13 0.2901 0.0837 0.9999 0.2346 0.3539 0.9998
14 0.2190 0.4363 1.0000 0.2346 0.2888 0.9998
15 0.2190 0.3496 1.0000 0.2346 0.2275 0.9998
16 0.2190 0.2685 1.0000 0.2346 0.1702 0.9998
17 0.2190 0.1934 1.0000 0.2346 0.1167 0.9998
18 0.2190 0.1242 1.0000 0.2346 0.0670 0.9998
19 0.2190 0.0609 1.0000 0.1570 1.0000 1.0000
20 0.1474 1.0000 0.9998 0.1570 0.6696 1.0000
21 0.1474 0.6081 0.9998 0.1570 0.3794 1.0000
22 0.1474 0.2761 0.9998 0.1570 0.1370 1.0000
23 0.1474 0.0145 0.9998 0.1570 -0.0541 1.0000
24 0.1474 -0.1737 0.9998 0.1570 -0.1948 1.0000
25 0.1474 -0.2925 0.9998 0.1570 -0.2900 1.0000
Vo m’ 0.3630 0.3645
% 34.52% 34.24%

The values of criterion (22) at the third stage are
close to unity, which allows researcher to confi-
dently make a decision about stopping the opti-
mization process at this stage.

The results obtained determine the core of min-
imal material consumption. The shape of the
cross-sectional dimensions of this rod (4,[7]) is

shown in Figures 35 and 3c.

If technological requirements do not allow such
a law to change the size of cross sections, but
allow a piecewise-constant change in cross sec-
tions, then the choice of the boundaries of such
sections is determined not only by technological
requirements knowledge, but also the desire to
come closer to a minimally material-intensive
solution. Suppose that technological require-
ments are allowed for the design of the rod from
three sections, in each of which the dimensions
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of the cross sections do not change. Suppose
that additional restrictions are also imposed on
the length of sections, for example, such as

2.8m<1[2]<3.8m;
LM =13]=0-1[2])/2.

Let us consider two options for the boundaries
of the segments. Variants of the boundaries of
the segments and the corresponding segment
sizes obtained by optimization are shown in
Figures 4b and 4c¢ and are shown in Table 2.

Columns 2 and 5 show the cross-sectional di-
mensions b, [i]=b,,[i] of the respective op-

tions. Columns 3 and 6 show the values of crite-
rion (28), and columns 4 and 7 of criterion (24).
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Figure 5. About the second example.

Both criteria are given because, as noted above,
in each piecewise constant segment, criterion
(24) is implemented as the average value of cri-
terion (28) per unit length of the segment.

The values of criterion (24) in both cases turned
out to be close to unity, which indicated the
possibility of completing the optimization pro-
cesses.

The objective function of the minimum materi-
al-intensive solution (Table 1, column 7) is
equal to ¥, =0.3384 m’, which is 38.95% less

than the original version, which has
V, =0.5543 m’ (Table 1, column 2). In the first

version of the boundaries of piecewise constant
resizing, the objective function is equal to
V, =0.3630 m’, which is 34.52% less than the

original version. In the second version, the ob-
jective function is equal to ¥, =0.3645 m,

which is 34.24% less than the original version.
Thus, the first option for choosing the bounda-
ries of the plots is less material-intensive. Note
that the minimally material-intensive option
contributed to the selection of the boundaries of
the segments, allowing researcher to choose op-
tions that are closest to it.

EXAMPLE 2
Let us consider an example of the use of criteri-

on (50) for the case when stability constraints
are introduced.

Volume 15, Issue 4, 2019

Particularly let us consider a straight-line simply
supported rod of an I-section with a span
/=6m loaded with longitudinal force
P =9000000 H (Figure 5a). The modulus of
elasticity of the material is equal to
E =206000 MPa . I-section height is equal to

b, =029m, wall thickness 1is equal to
0, =0.009m, shelves thickness is equal to
6, =0.014n.

It is required to determine the shape of the
shelve of the I-beam in such a way that the criti-
cal force would not be greater than the acting
force, and the volume of material of the shelf
would be minimal.

The stability constraint can be written as

P=P

-~ (52)
Besides, the objective function has the form
(37). We will carry out optimization by a ran-
dom search method based on a discrete model
from 25 segments.

Let's consider three versions. Within the initial
version a shelf of constant section length is tak-
en. The values of its sizes are determined at the
first exit to the boundary of the region of feasi-
ble solutions. They turned out to be equal to

b)[i]1=0.2737 m. In this case, the objective
function is equal to ¥, = 0.0460 »’ . The results

of this version are presented in the second col-
umn of Table 3 and in Figure 5b.
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Table 3. Information about variants of solution of the second example.

No. by[i], m by li], m o, li] by [i], m o, li] Si[7]

1 2 3 5 6 7

1 0.2737 0.009 0.7308 0.1233 0.0153 1.0000
2 0.2737 0.0581 0.9994 0.1233 0.1351 1.0000
3 0.2737 0.1075 1.0000 0.1233 0.3596 1.0000
4 0.2737 0.1524 0.9986 0.1233 0.6605 1.0000
5 0.2737 0.1926 0.9976 0.1233 1.0000 1.0000
6 0.2737 0.2277 0.9999 0.3139 0.2564 0.9992
7 0.2737 0.2584 0.9997 0.3139 0.3220 0.9992
8 0.2737 0.2843 0.9994 0.3139 0.3852 0.9992
9 0.2737 0.3057 0.9985 0.3139 0.4426 0.9992
10 0.2737 0.3220 0.9997 0.3139 0.4908 0.9992
11 0.2737 0.3341 0.9976 0.3139 0.5274 0.9992
12 0.2737 0.3412 0.9975 0.3139 0.5501 0.9992
13 0.2737 0.3435 0.9979 0.3139 0.5578 0.9992
14 0.2737 0.3412 0.9975 0.3139 0.5501 0.9992
15 0.2737 0.3341 0.9976 0.3139 0.5274 0.9992
16 0.2737 0.3220 0.9997 0.3139 0.4908 0.9992
17 0.2737 0.3057 0.9985 0.3139 0.4426 0.9992
18 0.2737 0.2843 0.9994 0.3139 0.3852 0.9992
19 0.2737 0.2584 0.9997 0.3139 0.3220 0.9992
20 0.2737 0.2277 0.9999 0.3139 0.2564 0.9992
21 0.2737 0.1926 0.9976 0.1233 1.0000 1.0000
22 0.2737 0.1524 0.9986 0.1233 0.6605 1.0000
23 0.2737 0.1075 1.0000 0.1233 0.3596 1.0000
24 0.2737 0.0581 0.9994 0.1233 0.1351 1.0000
25 0.2737 0.009 0.7308 0.1233 0.0153 1.0000

V., m’ 0.0460 0.0372 0.0399
% 0 19.20% 13.18%

In the second version, a continuous change in
the size of the width of the shelf is considered.
Here, the criterion for stopping the optimization
process is the proximity of the normalized value
of criterion (32) to unity. In sections 1 and 25,
the criterion is significantly different from unity,
which is explained by the achievement of the
width of the shelf the size of the wall thickness
and the optimization process stopping in these
sections. The results of this option are shown in
columns 3 and 4 of Table 3 and in Figure 5bh.
The objective function in this version is equal to

V, =0.0372.m°, which is 19.20% less than the

original version.

In the third version, a piecewise constant change
in the width of the shelf is considered. As noted
above, the choice of the boundaries of segments
where sizes do not change is determined by both
technological requirements and the desire to get
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as close as possible to a minimally material-
intensive solution, in this example, a solution
according to the second version. Let us assume
that the technological requirements allow the
design of the rod from three sections. Since the
purpose of the example is to illustrate the crite-
rion (50), then, given the limitation of the size
of the paper, we consider only one option for
choosing the boundaries of the segments (Figure
5).

The optimization results of this version are
shown in columns 5, 6, 7 of Table 3 and in Fig-
ure 5b. The values of criterion (50) (column 7 of
Table 3) in all sections are close to unity, which
allows the optimization process to be stopped.
The goal function in this version is equal to

V, =0.0399 »*, which is 13.18% less than the
original version.
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Figure 6. About the third example.
EXAMPLE 3 are presented in the second column of Table 4

Let us consider an example illustrating the ap-
plication of criteria for multi-span rods.

In particular, let us consider a two-span rod of
an I-section, loaded with longitudinal force
P =5000000 H and bearing a distributed mass

m(x)=200kg/m (Figure 6a).

The modulus of elasticity of the material is
equal to E =206000 MIla, specific gravity is
equal to p=7850kg/m’. I-section height is
equal to b, =0.29m, wall thickness is equal to
0, =0.009m, shelves thickness is equal to
6, =0.014m.

It is required to determine the shape of the
shelve of the I-beam in such a way that the first
frequency of natural vibrations would be no

more than a given value @, =90sec™', and the

volume of material of the shelf would be mini-
mal. Optimization can be done by a random
search method based on a discrete model from
40 segments (sections).

Let us consider three versions. For the initial
version, a shelf of constant section length is tak-
en. The values of its sizes are determined at the
first exit to the boundary of the region of feasi-
ble solutions. They turned out to be equal

b)[i]1=0.2934 m. In this case, the objective
function is equal to. The results of this option

Volume 15, Issue 4, 2019

and in Figure 6b.

In the second version, a continuous change in
the size of the width of the shelf is considered.
Here, the criterion for stopping the optimization
process is the proximity of the normalized value
of criterion (32) to unity. In sections 7 and 22,
the criterion differs significantly from unity,
which is explained by the achievement of the
width of the shelf size close to the wall thick-
ness and the optimization process stopping in
these sections. The results of this option are
shown in columns 3 and 4 of table 4 and in Fig-
ure 6b. The objective function in this version is

equal to V, =0.0758 »°, which is 23.10% less

than the original version.

In the third version, a piecewise constant change
in the width of the shelf is considered. As noted
above, the choice of the boundaries of areas
where sizes do not change is determined by both
technological requirements and the desire to get
as close as possible to a minimally material-
intensive solution. Given the limitation of the
volume of the paper, we consider only one op-
tion for choosing the boundaries of the segments
(Figure 6).

The optimization results of this option are
shown in columns 5, 6, 7 of Table 4 and in Fig-
ure 6b. The values of criterion (50) (column 7 of
Table 4) in all sections are close to unity, which
allows the optimization process to be stopped.

107



Leonid S. Lyakhovich, Pavel A. Akimov, Boris A. Tukhfatullin

Table 4. Information about variants of solution of the third example.

No. bi[i],m b,[i], m 0[] by [i], m o, li] Sil7]

1 2 3 4 5 6 7

1 0.2934 0.3400 0.9962 0.2772 0.6888 0.9994
2 0.2934 0.2842 0.9961 0.2772 0.4922 0.9994
3 0.2934 0.2243 0.9974 0.2772 0.3177 0.9994
4 0.2934 0.1610 0.9948 0.2772 0.1743 0.9994
5 0.2934 0.0939 0.9982 0.0706 0.7387 0.9994
6 0.2934 0.0254 0.9766 0.0706 0.1250 0.9994
7 0.2934 0.0099 0.2779 0.0706 -0.0121 0.9994
8 0.2934 0.0574 1.0000 0.0706 0.2994 0.9994
9 0.2934 0.1116 0.9900 0.0706 0.9401 0.9994
10 0.2934 0.1556 0.9955 0.2199 0.2063 0.9997
11 0.2934 0.1906 0.9971 0.2199 0.3243 0.9997
12 0.2934 0.2168 0.9976 0.2199 0.4317 0.9997
13 0.2934 0.2350 0.9930 0.2199 0.5129 0.9997
14 0.2934 0.2439 0.9950 0.2199 0.5574 0.9997
15 0.2934 0.2451 0.9914 0.2199 0.5605 0.9997
16 0.2934 0.2370 0.9954 0.2199 0.5232 0.9997
17 0.2934 0.2206 0.9963 0.2199 0.4523 0.9997
18 0.2934 0.1958 0.9960 0.2199 0.3589 0.9997
19 0.2934 0.1625 0.9945 0.2199 0.2561 0.9997
20 0.2934 0.1206 0.9986 0.1046 0.5722 0.9989
21 0.2934 0.0722 0.9970 0.1046 0.2569 0.9989
22 0.2934 0.009 0.0091 0.1046 -0.0045 0.9989
23 0.2934 0.0778 0.9993 0.1046 0.2657 0.9989
24 0.2934 0.1657 0.9938 0.1046 1.0000 0.9989
25 0.2934 0.2407 0.9946 0.3908 0.1419 0.9998
26 0.2934 0.3030 0.9947 0.3908 0.2415 0.9998
27 0.2934 0.3528 0.9972 0.3908 0.3473 0.9998
28 0.2934 0.3916 0.9955 0.3908 0.4472 0.9998
29 0.2934 0.4192 0.9959 0.3908 0.5300 0.9998
30 0.2934 0.4364 0.9962 0.3908 0.5868 0.9998
31 0.2934 0.4436 0.9962 0.3908 0.6115 0.9998
32 0.2934 0.4410 0.9962 0.3908 0.6017 0.9998
33 0.2934 0.4281 0.9974 0.3908 0.5588 0.9998
34 0.2934 0.4057 0.9943 0.3908 0.4876 0.9998
35 0.2934 0.3714 0.9967 0.3908 0.3961 0.9998
36 0.2934 0.3264 0.9945 0.3908 0.2946 0.9998
37 0.2934 0.2686 0.9960 0.3908 0.1942 0.9998
38 0.2934 0.1987 0.9944 0.1365 0.8821 1.0000
39 0.2934 0.1163 0.9988 0.1365 0.3351 1.0000
40 0.2934 0.0250 0.9633 0.1365 0.0382 1.0000

v, m’ 0.0986 0.0758 0.0813
% 0 23.10% 17.57%

The goal function in this version is equal to REFERENCES
V, =0.0813 %, which is 17.57% less than the
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