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Abstract: The paper discusses the problem of optimizing the geometric parameters of simply supported I-beams
in order to maximize their load carrying capacity. Numerical simulation of various types of failure of castellated I-
beams with ideal elastic-plastic steel is carried out. The stability of the wall, the strength of the welds and flanges,
depending on the geometric parameters investigated. Using the coordinate descent method, the optimization prob-
lem is solved for nine design schemes with respect to the section height and the weld length. It was revealed that
in short beams the section height should be less and the weld length longer, in contrast to long beams.
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AHHoTanus: B cTatee paccMarpuBaeTcs npodiemMa ONTHUMHU3AIMHA TeOMETPHUECKUX MTapaMeTPOB Pa3BUTHIX JBY-
TaBpOB C NEePPOPUPOBAHHOIN CTEHKOH C LIeJIbI0 MAaKCUMU3AIMU UX Hecylleil cnocoOHocTh. [IpoBeneHo uucieH-
HO€ MOJICIMPOBAHHUE PA3JIMYHBIX THIOB Pa3pYILICHUS Pa3BUTHIX ABYTABPOB B MIEATbHOM YIPYyTOMIaCTHUYECKOH
mocraHoBke. VccrienoBaHa yCTOWYMBOCTh CTEHKH, MPOYHOCTH IIBOB M IOJIOK B 3aBUCHMOCTH OT T€OMEeTpHde-
CKHX TapamMeTpoB. VcHoiap3ys METOA MOKOOPAMHATHOTO CIIyCKa, pelIeHa MpobiieMa ONTUMHU3AIMK I AEBATH
pPacUeTHBIX CXEM OTHOCHTENBHO JABYX MapaMeTPOB: BBICOTHI CEYCHHUS U JUIMHBI CBAPHOTO IIBa. BBIABIEHO, YTO B
KOpPOTKHMX OaJIKax BBICOTa CEUEHHMS TOJDKHA OBITh MEHBIIIE, a JUIMHA IIBa OOJIbIIe, YeM B JUIMHHBIX OaJikax.

KuroueBbie cjioBa: pa3BUThIE ABYTaBPbl, YUCIEHHOE MOJEIUPOBAHNE, ONTUMHU3ALUS,
N/ICUTBHBIH yIPYroIacTH4eCKUi MaTepua

INTRODUCTION

Existing analytical methods for calculating
strength, rigidity and stability of castellated I-
beams give a very approximate result [1-2].
These methods bad take in account a complexity
of the geometric shape of the castellated I-
beams and plastic deformation steel in angles of
holes. These factors can be taken account with
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sufficient accuracy only by experiment and nu-
merical methods. Of practical interest is the
question of choosing such geometric parameters
zigzag cutting I-beam that will provide maxi-
mum load carrying capacity of castellated I-
beam. But experiment methods are too expen-
sive and time-consuming for their application in
full optimization problem.
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Figure 1. Scheme method for cutting (a) and subsequent welding of halves
(b, c) of the original I-beam.

In this paper, to solve the nonlinear optimization
problem, numerical methods are used. Stress-
strain state and buckling is calculated by the fi-
nite element method. Using FEM analysis re-
sults, the ultimate load on the castellated I-beam
is calculated according to several criteria (more
about the criteria will be further in the text). To
search the optimal geometric parameters, the
coordinate descent method is used.

ANSYS Mechanical is used to solve the prob-
lem. APDL macros allow automated load carry-
ing capacity calculation and use powerful capa-
bilities of ANSYS in the finite element analysis
[3].

There are several methods for cutting and sub-
sequent welding of halves of the I-beam. Differ-
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ent methods give different relationship between
geometric parameter. The paper adopts the
method illustrated in the Figure 1.

The article discusses the optimization of the
load carrying capacity of the castellated I-beam
composed of the lower halves of the original I-
beams (Figure la). In order for the holes to be
the same in both versions of the castellated I-
beam (Figure 1b, Ic¢)

S2 = 83.
Radius of fillet in the corners due to cutting —
r=Icm.
The design scheme: beam supported at its ends

and loaded by a uniformly distributed load Q.
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Figure 2. Types of failure of the castellated I-beams.

The material model (steel): ideal elastic-plastic
(stress-strain  curve with elastic modulus
E =206 GPa, yield strength oy =240 MPa,
Poisson’s ratio v = 0.3).

Geometric parameters of the original I-beams
are taken according to GOST 8239-89 [4].

1. LOAD CARRYING CAPACITY PARAM-
ETERS

There are 4 types of failure of the castellated I-

beam supported at its ends and loaded by a uni-

formly distributed load:

1. Web buckling (Figure 2a).

2. Failure of the flange and web in the field of
angles in the centre of span (Figure 2Db).

3. Failure of the flange and web in the field of
angles near support (Figure 2c).

4. Failure of the weld (Figure 2c).

For all types of failure, three parameters can be

introduced:

1. Fp = F/1.5, where F. — the first critical
load, 1.5 — safety factor [1].

2. Fr — load at which plastic strain completely
fills the section of the flange.

3. Fw — load at which plastic strain completely
fills the weld between two holes.

To automatic calculate the Fy,, a buckling analy-

sis (by the Block Lanczos method, linear material

model) was first performed. Then the first critical

load F., devided by safety factor 1.5, due to the

possible eccentricity of the load and the initial

imperfections of the castellated 1-beam.
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The top flange was fixed against possible lateral
movement and rotation around the longitudinal
axis, thereby simulating the mounting of the
castellated I-beam to overlying structures. The
top flange boundary condition us used only in
buckling analysis, since it strongly affects the
forms of buckling.

To automatic calculate the Fy and F), a linear
static calculation (linear material model) was
initially performed to determine the load F), at
which plastic appears in the castellated I-beam
flange. Then a load equal /.2F, was applied and
the static calculation was performed with a
nonlinear material with a load step of 0.0/. The
load 1.2F), is likely to lead to the failure of the I-
beam, because according to analytical decisions,
~].18F, is enough. Then, in the Postprocessor, a
special algorithm at each load step checks for
plastic strain in the nodes of the flange and
nodes of the weld. If at some load step in a
some section of the flange or in the weld in all
nodes there are plastic strain, then this load step
is recognized as the moment of failure. So,

Fy= 1.2F,[i/100+(i-1)/100]/2,
F, = 1.2F,[j/100+(-1)/100]/2,

where i — load step is recognized as the moment
of failure flange, j — load step is recognized as
the moment of failure weld.

Ideal elastoplastic material behaves
unphysically in the support zone. If fix the beam
pointwise on the edge, then near the fastening
large plastic strain will quickly develop and the
solution will fall apart. Therefore, in a nonlinear
analysis at the edges of the beam, all nodes in
the section were fixed in the direction of
deflection. This avoids problems with the
boundary effects.

2. FINITE ELEMENT MODELS

Geometric and finite element model are created
automatically using developed APDL macros
[3]. In the area between the last holes, and also
above them and central holes, the mesh is more
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detailed. Failure occurs in these areas. Only the
top flange for searching for plastic strain is con-
sidered, as it does not have boundary effect of
supports (Figure 3).

The weld does not differ geometrically and in
properties from the steel of original I-beam.
Elements type — Shell 181. In the buckling anal-
ysis, to combat non-physical buckling forms,
full integration in the wall elements was used.
Also, a coarser grid was used in the linear and
buckling analyses.
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Figure 3. Fragments of the finite element model.
Number of elements: ~15-40 thousands
depending on the length of the beam and the
number of holes.

3. DEPENDENCE OF F;, FAND F,,
ON GEOMETRUC PARAMETERS

The important points to make about F,, and Fy

calculations:

e if Fy<F, (much), then F, cannot be calcu-
lated correctly. The fact is that with the de-
struction of the flange of the castellated I-
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beam, the entire structure suffers a collapse
— a sharp increase in deflections and plastic
strain. In such conditions, the solution loses
stability and cannot give correct results;

o if weld length s, is large enough, then the
weld failure does not occur under load
1.2F,. In this case, F,, is not calculated.

e if F), and Fy changed less than 1%, when
changing the argument, then curve F), and
Fy may contain some fluctuations, because
load step is also 1%.

The geometric parameters of cutting significant-
ly affect both the magnitude of the F}, Frand F,,
and the types of failure. For example, large val-
ues of ¢ and 4, increase stability (), small val-
ues s, decreases weld strength (F),). However,
many other dependencies are not obvious and
require preliminary study (figure 4).
Figure 4a shows the dependence of F, Fy and
F,, on c. F} is obviously increasing, Fr increas-
ing as the failure of the flange at the support is
moving away from the support, F, decreases as
reduced weld length s, (s; 1s fixed). The reason-
able change ¢ does not reveal the presence of
extrema.
The number of holes N affects the weld length
s, (if s; 1s fixed), so F,, decreases (figure 4b).
Stability almost independent of hole count M.
Flange strength decreases after weld failure —
two holes merge into one and the span of the
flange increases.

4. STATEMENT OF OPTIMIZATION
PROBLEM OF THE CASTELLATED
I-BEAM

The problem of maximizing the load carrying
capacity can be defined as follow [5-6]:

F=min(F F

s f,Fw) — max

Objective function F depends on the geometric
parameters, type of load and support condition.
For the selected cutting method (Figure 1), the
uniformly distributed load and supported at its
ends:
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F=F(I,L,c,r,N,s,,s,=s3,h,=h,),

where L — length of beam, / — number of profile,
which defines a number of geometric parame-
ters of section, » — radius of fillet in the corners
due to cutting.

Parameter s, is not independent:
s, =(L-2c—(2N-1)s,)/2N .

Parameters / and L do not change during of one
optimization problem. »=/0mm for all schemes.
In the article, we will determine ¢ and N our-
selves, and we will optimize only for two pa-
rameters s, and A, Thus, for each design
scheme:

F=F(s,,h,).
Only geometrically inequality constraints:

0<s, <(L—2c)/(2N—1),
t<h,<h/2,

where ¢ — thickness of flange, /# — height of orig-
inal I-beam.

From a technical point of view, we can narrow the
conditions without risking losing the optimal point:

20mm < s, <(L-2c)/(2N —1)—10mm,
2t<h,<2h/5

Computation the objective function using the
finite element method has some problems. Non-
linear material properties and a difference in the
mesh at different points introduce a small noise
into the objective function. The presence of
noise does not allow the use of derivative-based
optimization methods and impairs convergence
[7-8].
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Figure 4. Dependence of Iy, Fyand F,, for some configuration of castellated I-beam.

5. OPTIMIZATION RESULTS

To search the optimal point (s;,hz ) , the coordi-

nate descent method was used. At each iteration,
the golden-section search was used as the linear
search method. The optimal point was calculat-
ed with sufficient accuracy after two iterations
of the coordinate descent method.

Initial point:
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0 0 B S;nln + S;nm ) h;mn + hbl’nll’l
Sy, hy )= 5 ; 2 .

Tolerance of golden-section search

As, <2.5mm;  Ah, <2.5mm.

The optimization results are presented in Table
1 and Figure 6.

An important non-dimensional parameter of cas-
tellated I-beams — height increase ratio (Table 2).
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Table 1. Optimization results.

No.| I |[LLm|c¢c,mm| N . 52, mm . hb, mm - F, kN
min | max opt min | max opt min | max
1 4 300 | 10 | 20.0 | 1689 | 99.6 | 20.4 | 120.0 | 77.5 | 59.73 | 70.70
2 130] 6 300 | 16 | 20.0 | 1642 | 79.1 | 204 | 120.0 | 67.4 | 28.61 | 39.33
3 8 300 | 20 | 200 | 179.7 | 933 | 204 | 120.0 | 57.4 | 19.10 | 22.53
4 5 350 | 12| 20.0 | 177.0 | 107.2 | 26.0 | 160.0 | 117.2 | 78.04 | 98.90
5140 8 350 | 16 | 20.0 | 2255 | 949 | 26.0 | 160.0 | 80.9 | 32.57 | 44.96
6 10 350 | 20 | 20.0 | 228.5 | 80.0 | 26.0 | 160.0 | 78.1 | 26.25 | 29.19
7 6 400 | 12 | 20.0 | 216.1 | 122.7 | 30.4 | 200.0 | 156.4 | 89.59 |115.83
8 150| 9 400 | 20 | 20.0 | 200.3 | 92.7 | 30.4 | 200.0 | 99.9 | 46.35 | 59.11
9 12 400 | 20 | 20.0 | 277.2 | 89.6 | 30.4 | 200.0 | 96.3 | 19.74 | 33.78
Table 2. Height increase ratio.
No. 1 2 3 4 5 6 7 8 9
k 1.48 1.55 1.61 1.41 1.60 1.61 1.37 1.60 1.61

k=2(h—h,)/h=2(1-h,/h).

a) 130, L=4m, ¢c=300mm, N=10

6. CONCLUSIONS

b) 140, L=10m, c=350mm, N=20
Figure 5. Several optimized castellated I-beams: No. I (a) and No. 6 (b) from Table 1.

Castellated I-beam load carrying capacity has
maximum for many design schemes. However,
for some geometric parameters, not all schemes
have extrema. Nevertheless, the task of increas-
ing the carrying capacity remains relevant.
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Section height and weld length always have a
maximum point, therefore, in this work, the prob-
lem of optimizing these parameters was solved.
Based on the 9 considered design schemes (Ta-
ble 1), some conclusions can be drawn:

e the optimal height increase ratio of castel-
lated I-beams increases with increasing
span (Table 2)

e the relative length of the weld decreases
with increasing span.

The first conclusion is explained by the fact that

in short beams, destruction occurs in the zone of
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supports. Wall height is a determining factor in
its stability. However, stability can be ensured by
installing stiffeners. It can be expected that when
using stiffeners, the optimal solution will change.
In long beams, destruction occurs in the middle
of the span from the action of a bending moment.
In such type of failure, an increase in the inertia
moment by increasing the section height gives
the greatest increase in the carrying capacity.

The second conclusion is also related to the type of
failure. Welds between end holes have the highest
stresses. Therefore, the cause of the loss of load-
carrying ability may be the failure of the weld. In-
creasing the weld length solves this problem.
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