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Abstract: We proposed a method for calculating statical indeterminacy frames taking into account plastic defor-
mations, which is based on the use of a schematized diagram of material with hardening. Two types of standard 
beams with supports are used during the implementation of the displacement method (DM) and the elastic solu-
tion of the problem: “fixed” - “pinned” and “fixed” – “fixed”, but unlike the elastic solution, standard beams con-
tain plastic zones (PZs). So as the stresses in these zones did not exceed the limit of yielding in the nonlinear 
frame calculation, we took measures to transform the PZs into equal strength plastic zones (ESPZ). The calcula-
tions were made for both types of beams for all single and load impacts. The frame calculation consists of two 
stages (elastic and plastic). At the elastic stage, we determine an elastic moment diagram and the corresponding 
load. For a practical use of the DM in a nonlinear frame calculation, we introduced a simplifying prerequisite sup-
plementing the well-known hypotheses of the classical version of the method, and formulated a Statement of the 
limiting load. According to the Statement, each length of the PZ can correspond to the lower boundary of the lim-
iting load. The plastic stage of the calculation is performed at a given length of the PZ using the method of se-
quential loadings. At each loading stage, incremental equations are written using the DM equations, which estab-
lish relations between incremental moments and the incremental load, that allows you to get the resulting moment 
diagram. This diagram represents a sum of the elastic diagram and the diagrams of incremental moments at all 
previous loading stages. According to the resulting diagram, we calculate the length of the PZ, together with the 
limiting load. The calculation is considered complete if the length of the PZ does not exceed the specified value 
within the margin of error. 
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Аннотация: Предложен метод расчета статически неопределимых рам с учетом пластических деформа-
ций, основанный на использовании схематизированной диаграммы материала с упрочнением. При реа-
лизации метода перемещений (МП), как и при упругом решении задачи, используются два типа стан-
дартных балок с закреплениями: «заделка» – «шарнир» и «заделка» – «заделка», но в отличие от упруго-
го решения стандартные балки содержат пластические зоны (ПЗ). Для того, чтобы в нелинейном расчете 
рамы напряжения в этих зонах не превышали предел текучести, проведены мероприятия по преобразова-
нию ПЗ в пластические зоны равного сопротивления (ПЗРС). Для обоих типов балок выполнены расчеты 
на все единичные и грузовые воздействия. Расчет рамы состоит из двух этапов (упругого и пластическо-
го). На упругом этапе определяются предельно-упругая эпюра моментов и соответствующая ей нагрузка. 
Для практического использования МП в нелинейном расчете рамы введена упрощающая предпосылка, до-
полняющая известные гипотезы классического варианта метода, и сформулировано утверждение о пре-
дельной нагрузке. Согласно утверждению, каждой длине ПЗ можно поставить в соответствие нижнюю гра-
ницу предельной нагрузки. Пластический этап расчета выполняется при заданной длине ПЗ по методу 
последовательных нагружений. На каждой ступени нагружения с помощью уравнений МП записываются 
инкрементальные уравнения, устанавливающие связи между приращением изгибающих моментов и при-
ращением нагрузки, что позволяет построить результирующую эпюру моментов. Эта эпюра представляет 
собой сумму предельно упругой эпюры и эпюр приращений моментов на всех предыдущих ступенях 
нагружения. По результирующей эпюре вычисляется длина ПЗ и соответствующая ей предельная 
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нагрузка. Расчет считается законченным, если длина ПЗ не превышает заданную величину в пределах 
погрешности. 
 

Ключевые слова: метод перемещений, предел текучести, напряжение, пластическая зона,  
изгибающий момент, жесткость 

 
INTRODUCTION 
 
Elastic-plastic deformations are generally ac-
counted within the framework of the limiting 
equilibrium theory (LET), which is based on the 
representation of an ideal elastic-plastic behav-
ior of the material described by Prandtl diagram. 
The theory was developed by Soviet scientist 
Gvozdev A.A., who in 1938 formulated three 
basic limiting equilibrium theorems (static, 
kinematic and duality theorems) [1]. The crea-
tion of this theory allowed to developed effec-
tive methods for calculating and designing 
many structures, especially reinforced concrete 
(RC) structures. The provisions of the LET are 
included in the main regulatory documents [2, 
3] on the calculation and design of modern 
structures. 
In scientific literature, the concept of PZs is 
used mainly in seismic construction. For the 
first time, this concept was introduced by 
Paulay T. and Bull I.N. [5] in the calculation of 
RC earthquake-resistant frames. Experts are 
long familiar with the fact that plastic defor-
mations have the ability to absorb seismic ener-
gy, transforming it into thermal energy and then 
dissipating it into the environment. The ability 
of loaded structural elements to absorb and 
dissipate energy generally ensures a decrease in 
the seismic impact on the frame. Thus, the 
structure, apart from its main designation, also 
works as an energy absorber. However, the 
operation of the structure beyond the limit of 
elasticity often leads to material degradation and 
destruction in these zones [6]. 
These developments aroused considerable inter-
est among experts; they were consolidated in 
regulatory documents (codes) of the United 
States and other countries [7–9]. Studies related 
to determining the length of the PZ, its location 
in the structure, the number of PZs, etc. In most 
cases, we are talking about the features of the 

design of the PZs in RC [10–14] and metal [15–
18] structures under cyclic loads associated with 
seismic action.  
In [10], a numerical analysis of the behavior of 
plastic hinges using the DIANA computing 
software, a calibrated FEM model was studied. 
On the extent of the rebar yielding zone, con-
crete crush zone and the real plastic hinge 
length a series of studies was conducted. 
In [11–15] discuss issues of studying the plastic 
hinge length of RC columns. Moreover, in [11] 
for 4- and 7-story flat RC frames, studies were 
carried out in the SAP2000 8 program with the 
default (based on ATC-40 document [7]) hinges 
properties at both ends of beams and columns. 
In [12], based on the use of 3D FEM, it was 
shown that the PZ length for cyclically loaded 
columns is longer than for monotonic loading. 
An empirical model of the equivalent PZ length 
is proposed, which takes into account the effect 
of changes in this length on changes in the 
number of load cycles. In [13], the same ideas 
were applied to a fiber reinforced polymer. In 
[14], under the cyclic action of lateral force, the 
problem of assigning the PZ length in a RC 
column was studied and the role of the main 
reinforcement during its deformation beyond the 
limit of yielding into the hardening range was 
noted.  
The design features of PZs in metal structures 
were considered in [15, 16], where a two-node 
super-element was developed for taking into 
account plastic deformations in steel frame 
structures in the analysis of static, cyclic [15] 
and impact [16] loads. In this case, in the super-
element uses a model with two generalized 
(concentrated) plastic hinges located at the ends 
of the elastic beam element. When analyzing 
steel frames fabricated according to the «strong 
columns – weak beams» design concept [17], 
the authors proposed a composite beam-to-
column connection, including a friction damper. 
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In [18], experimental and analytical studies of 
seismic characteristics of the device proposed in 
[17] were continued, where its resistance to 
damage was noted when the length of the PZ at 
the ends of the beam was lp = 12 cm. 
In Russia and in the post-Soviet space, this 
problem is also reflected in [19–21]. It should 
be noted that both abroad and in Russian prac-
tice, the concept of PZs is considered as an 
equal strength zone [20], since its based on 
LET. Therefore, the stresses inside these zones 
should not exceed the limit of yielding yl. 
 

 
Figure 1. Diagram of the linearly hardening 

material deformation. 
 
This article proposes a new approach to the 
calculation of statical indeterminacy frames 
using the DM, based on a physically nonlinear 
material deformation according to a hardening 
diagram (Figure 1). According to this diagram, 
when a limiting state appears in any section of 
the structure, a further load increase will lead to 
an increase in internal forces and stresses ex-
ceeding the limit yielding yl (Figure 2, a). As a 
result, a PZ of some length lp will appear in the 
vicinity of the considered section, the stresses 
on the right boundary of which correspond to 
the limiting plastic stress (section 1, Figure 2, 
b). This boundary is determined by the level of 
the plastic moment M0 = W0yl, where W0 is the 
plastic section modulus [4]. Normal stresses 
max > yl are inside this zone and in section 2 
(Figure 2, c).  
In order to ensure that the stresses in the PZ 
section do not exceed the yield strength and 
correspond to the plastic zone of equal strength 
(ESPZ), it is necessary to increase the stiffness 
of the element, requiring that the law of change 
in the stiffness of the element in this section be 

consistent with the law of change in bending 
moment. 
 
 
BASIC IDEA OF THE METHOD 
 
The solution of the problem of tranforming the 
area with nonlinear deformations into an equal 
strength plastic zone (ESPZ) should be integrat-
ed into the calculation algorithm of the method 
and performed in parallel with the nonlinear 
process of determining the limiting load for a 
given length of the PZ. 
 

 
Figure 2. Yielding state in the beam:  

a – PZ with the length of lp;  
b – stress in section 1;  
c – stress in section 2. 

 
In case of a nonlinear calculation of statical 
indeterminacy frames by the DM, as well as in 
the classical version of this method, standard 
elements are used – beams with two types of 
supports: “fixed” – “pinned” and “fixed” – 
“fixed”, which should be designed for different 
types of unit and load impacts. However, in 
these calculations, a number of additional pa-
rameters should be taken into account related to 
the presence ESPZ. This is the relative length of 
the zone, its location in the span of the beam, 
the modulus of hardening of the material, the 
law of variation of the area moment of inertia 
within the length of the zone. Then, in addition 
to the known coefficients, the calculated charac-
teristics will include additional dimensionless 
functions fj(),where  = lp/l, l – beam length, 
characterizing the nonlinear operation of the 
standard element. 
To simplify the nonlinear calculation, we intro-
duce a new prerequisite for the modulus of elas-
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ticity of the elastoplastic section located between 
the elastic and plastic stress diagrams, hereinafter 
referred to as the intermediate section (IS). This 
prerequisite supplements the known hypotheses 
of the classical DM version, allowing us to con-
trol the deformed state of the frame model at the 
IS.  
Prerequisite. For all the fibers of the intermedi-
ate section of the frame design model, the modu-
lus of elasticity is assumed to be kE, where the 
coefficient k is within k  [1, k0]. 
Specifying the values of k within k[1, k0], we 
can obtain estimates for various levels of the 
stress-strain state and limiting loads. At k = 1, the 
IS is in a purely elastic state, which corresponds 
to the lower boundary of the limiting load. The 
deformed state at k < 1 can be considered as a 
consequence of an increase in the potential 
energy of the system spent on the development 
of plastic deformations in the IS and, as a result, 
leads to an increase in the ultimate load com-
pared to its level in the elastic state of the IS.  
Statement: For a given length of the PZ, the 
limiting load of the design model will be lower 
than the actual value of the limiting load, provid-
ed that the prerequisite condition is satisfied at k 
= 1. 
Since at k = 1 the stiffness of the rod in the IS is 
higher than the real stiffness of this section, the 
potential energy will be spent only on the crea-
tion of elastic deformations. They will be lower 
than the costs for the deformation of the elasto-
plastic section at k < 1. Therefore, these levels 
will determine the lower limits of ultimate loads.  
The Statement is realized for the value of the 
plastic moment  
 

M0 = W0yl, 
 
where W0 is the plastic section modulus. The frame 
calculation consists of two independent stages 
(elastic and plastic). The elastic stage of the calcu-
lation includes determining of a bending moment 
diagram M and finding of a critical section with 
the maximum moment Mmax and the ratio 
 

 m = M0 / Mmax.  (1) 

By coefficient (1) is the ultimate elastic diagram 
of moments and ultimate load 
 

 Me = mM, F0 = mF.  (2) 
 

It should be noted that the diagram Me is condi-
tionally elastic, since, alongside with the elastic 
values of the moments, it contains the maximum 
moment equal to M0. 
The plastic stage of the calculation is performed 
at a given length lp using the method of sequen-
tial loadings. For each loading stage dF0, we use 
incremental ratios connecting the diagrams of 
incremental moments and incremental loads. 
When determining the diagram of increments of 
moments, the basic system of the DM is used. 
For the first loading stage, the initial length lp1 
can be taken based on the linear nature of the 
distribution of forces, for example, for the dia-
gram Me multiplied by the coefficient  
 

n = 1 + dF0 /F0. 
 
Based on the calculated correction (nonlinear) 
functions fj(1) we form the coefficients (reac-
tive forces) of the system of canonical equations 
and the right sides of the equations from incre-
mental loads dF0. After solving the system and 
obtaining the diagram of increments of mo-
ments dMp1, the resulting diagram is deter-
mined:  
 

Mp1 = Me + dMp1, 
 
from which we calculate the length lp2 for the 
next iteration step by the maximum value of the 
moment ( > M0). We simultaneously determine 
the current limiting load:  
 

Fp1 = F0 + dF0. 
 
The obtained length is used to determine non-
linear functions fj(2) for the second loading 
stage. In each i-th iteration, the following are 
calculated: the incremental moment diagram 
dMpi, the resulting diagram Mpi, the limiting 
load:  
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 Mpi = Mp,i–1 + dMpi,  Fpi = Fp,i–1 + dF0  (3) 
 

and the PZ length lp,i. The loading process con-
tinues until the obtained value does not reach the 
specified length lp according to the inequality: 
 

 (lp – lp,i+1)  eps.  (4) 
 
 

EQUAL STRENGTH PLASTIC ZONES 
 
As it follows from the review, during frame 
deformations caused by the seismic action, PZs 
can occur in the end parts of both horizontal 
(beams) or vertical (columns) frame elements. 
The procedure of design an ESPZ for horizontal 
frame elements is shown below (Figure 3). 
 

 
Figure 3. PZ in a beam of a seismic-resistant 

frame. 
 
So that plastic deformations do not penetrate 
into the nodes of structural elements, according 
to the regulatory documents, the PZs are de-
signed at a certain distance from the column. In 
this area (gain zone), the load-bearing capacity 
of the beam is ensured by increased rigidity. 
This is a mandatory requirement for both steel 
and RC structures [20, 21]. 
Taking into account the shape of the moment 
diagram (Figure 3), we accept the linear law of 
variation of the area moment of inertia 
 

( )i
x

xI = I l v 
,                  (5) 

 
which ensures, within the limits of length lp, an 
equal carrying capacity with stresses yl.  

For a standard beam supported according to the 
“fixed – pinned” scheme, shows all power 
characteristics from unit angle of rotation  = 1 
are given (Figure 4). The correction nonlinear 
function f1 has the form:  
 

 
Figure 4. Beam with ESPZ (“fixed” – 
“pinned”) at a unit angle of rotation. 

 
 f1 = (1 v3 ) /  + 3ibi( v  i / 2) / k0, + 

 + [bi
3 – (bi  b0)3/k] + (bi  b0)3, (6) 

 
where  
 
 bi = (v  i),  b0 = v(1 – Mel / M0) , (7) 

i = lpi / l, k0 = E0 / E, 
 
 is the stiffness coefficient of the support (gain) 
zone; b0 is the IS length. 
The dimensionless function (6) contains four 
terms, each of which takes into account the con-
tribution made to the overall ductility by the 
corresponding bar section, including the gain zone 
(1st term), the PZ (2nd term), and the IS (3 term). 
In the IS length formula (7), the elastic moment 
Mel is determined on the right IS boundary. 
The second term in (6) was obtained for a sec-
tion of the length lpi taking into account the 
variable stiffness (5):  
 

pi =
2

0

 
pi pi

vl vl
i

xvl l vl l

xl v dxx dx
E I E I

  
 =  

3

3
l
EI 3i (v  i)( v  I / 2) / k0.  
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The proposed approach is illustrated by an 
example of a static calculation of a two-story 
frame on the action of horizontal forces simulat-
ing the seismic impact. 
 
EXAMPLE 
 
The design scheme of a two-story steel frame is 
shown in Figure 5, а (F = 40 kN, F1 = –0,3F, F2 
= F, l = 300 cm, h1 = 1,9l, h2 = 1.6l). The frame 
material is С345 steel. The crossbar of the lower 
story is made of a wended I-beam № 27 (shelf – 
sheet 0,65х7,0 cm; wall – sheet 0,5х25,7 cm: Ix 
= 2287,2 cm4; Wx = 169,4 cm3); the crossbar of 
the top floor and the vertical elements are made 
of twin channels № 20 (GOST 8240-72). 
The strength characteristics are limits of yield-
ing and strength, respectively: el = 345 МPа, 
В = 490 МPа. The modulus of elasticity is E = 
2,1105 МPа, the modulus of hardening is E0 =  
647,33 МPа. The elastic moment and the plastic 
moment are, respectively: Mel = Wxyl = 58,45 
kNm, M0 = W0yl = 70,14 kNm, where W0 = 
1,2Wx; flexural stiffnesses of the bars – EI = 
4803,08 kNm2, E0I = 15,92 kNm2; the coeffi-
cient k0 = 0,0033. 
The preliminary calculation shows that the 
maximum bending moments occur in the end 
parts of the crossbar of the 1st floor. The PZ is 
designed at u = 0,05 and  = 1,5 (Figure 5, a). 
The purpose of the example is to show how the 
lower (at k = 1) boundaries of the limiting loads 
Fp are determined for the given ESPZ lengths lp 
using the DM. We consider the PZ lengths from 
2 cm to 14 cm, which are multiple to the pitch 
of 2 cm. 
Due to the frame symmetry, the main DM sys-
tem has four unknowns Zk (Figure 5, b). The 
numbering of additional bonds is shown by the 
numbers in small squares. The relative length i 
of the ESPZ is formed in a nonlinear process at 
each i-th loading stage. 
The pattern of solving the problem according to 
Statement at k = 1 is shown below. From the 
preliminary frame calculation (at F = 40 kN), 
we obtain the highest stresses in section 6 (Fig. 
5a) with a bending moment M6 = 63,43 kN 

According to the elastic calculation results (at 
(1) m =  1,106), we will obtain a moment dia-
gram (2)Me containing the moment M0 in sec-
tion 6 and the limiting load F0 = 44,229 kN (at lp 
= 0). The diagram Me is shown on the right half 
of the frame (Fig. 6, blue, the values are given 
in brackets). 
 

 
Figure 5. Design scheme of a two-story frame 

with PZs in the first-story crossbar (a);  
b – main system of the DM. 

 
In the nonlinear calculation, the system of in-
cremental canonical equations at the i-th loading 
stage has the form: 
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KdZ + RdF = 0     

where: r11 = (6,121 + 3 1
1f
) EI

l
, r12 = 1,661 EI

l
,  

r13 = 0,906
2

EI
l

, r14 = –3,115
2

EI
l

, r22 = 7,31 EI
l

, 

r23 = –r14, r24 = r14, r33 = 6,219
2

EI
l

, 

 r34 = –3,894
3

EI
l

, r44 = –r34;  

R1dF = R2dF = 0, R3dF = –0,15dF, R4dF = 0,5dF. 
 
A diagram of incremental bending moments for 
the 1st loading stage  
 

dF = 0,0016 F0 = 0,0708 kN 
 
is shown on the left half of the frame (Figure 6). 
 

 
Figure 6. Bending moment diagrams  

at the 1st loading step at lp1 = 0.405 cm:  
to the left – incremental dMp1;  

to the right – resulting Mp1 (elastic Me ). 

 At the initial stage:  
 

lp1 = vl(1 – M0/M6) = 0,145 cm, 
 
where  
 

M6 = 1,0005M0, 
 
we form the correction function (6) f1 = 1,399. 
After solving the system of the canonical equa-
tions of the DM, we obtain the diagram of incre-
mental moments dMp1 (shown on the left half of 
the frame, Figure 6) and the resulting diagram  
 

Mp1 = Me + dMp1 
 
(shown on the right half of the frame, Figure 6). 
According to the results of the 1st iteration, the 
ESPZ length was lp2 = 0,405 cm, the load was  
 

Fp1 = F0 + dF = 44,3 kN. 
 
At the next loading steps for a given length lp = 
2 cm, the following results were obtained: lpi = 
2,002 cm, Fpi = 44,79 kN. The final nonlinear 
moment diagram Mp is shown on the left half of 
the frame (Figure 7).  
The bending moment at the left end of the ESPZ 
(section 6) was  
 

M6 = 70,64 kNm > M0 = 70,14 kNm. 
 
The stresses were:  
 
1 = –202,3 MPa, 4 = 200,6 MPa;  

5 = 243,8 MPa < yl = 345 MPa. 
 

The moment diagram Mp for the length lp = 14 
cm obtained at the limiting load Fp = 59,8 
(65,18) kN is shown on the right half of the 
frame (Figure 7). The results in brackets were 
obtained at the IS stiffness corresponding to the 
coefficient k = 0,5. The stresses were:  
 

1 = 306,5 (344,7) MPa, 
4 = 303,7 (342,4) MPa, 
5 = 305,5 (305,5) MPa. 

1111 12 13 14

2221 22 23 24

3 331 32 33 34

4 441 42 43 44

= 0,

    
    

     
    

        

dF

dF

dF

dF

r r r r RdZ
r r r r RdZ

dZr r r r R
dZr r r r R
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Figure 7. Bending moment diagrams Mp at the 

ESPZ length: lp = 2 cm (to the left);  
lp = 14 cm (to the right; in brackets  

the results are at k = 0,5). 
 
Figure 8 gives a general picture of the change in 
the lower boundary of the limiting loads de-
pending on the ESPZ lengths obtained for the 
perfect elastic state of the IS (at k = 1).  
 

 
Figure 8. Limiting loads for the corresponding 

ESPZ: lower boundary (k = 1);  
limiting load boundary at the intermediate  

section stiffness coefficient k = 0,5. 

When the IS stiffness decreases (at k = 0,5), the 
boundary of the limiting loads increases. The 
failure load P0 = 74,07 kN calculated by the 
limiting equilibrium method is presented as a 
black horizontal straight line. 
Thus, when designing an ESPZ of a given 
length, we proposed an approach to the nonline-
ar calculation of statical indeterminacy frames 
based on the DM, using a one-sided assessment 
in the analysis of the stress-strain state of the 
design models. In addition to the limiting equi-
librium method, this approach can be used in the 
design of structural systems in regions of an 
increased seismic activity.  
 
 
CONCLUSIONS 
 
1. An algorithm is proposed for the elastoplastic 

calculation of statical indeterminacy frames 
using the DM based on Statement 1, which 
allows us to determine the lower boundary of 
the limiting load for a given ESPZ length; 

2. The calculations according to the proposed 
methodology allow us to estimate more ef-
fectively the limiting loads for the specified 
zones of yielding and, thereby, to create more 
cost-effective and reliable structures; 

3. The calculation method when creating a PZ 
of equal resistance can be recommended 
when designing earthquake-resistant frames; 

4. The proposed methodology can be used in 
the educational process when studying the 
discipline “Nonlinear Problems of Structural 
Mechanics”. 
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