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E$ ���'�: The Generalized Bounding Surface Model (GBSM) for saturated cohesive soils is a fully three-
dimensional, time and temperature-dependent model that accounts for both inherent and stress induced 
anisotropy. To better simulate the behavior of cohesive soils exhibiting softening, the model employs a non-
associative flow rule. The GBSM synthesizes many previous bounding surface constitutive models for saturated 
cohesive soils and improves upon their predictive capabilities. For those cases where the use of the more 
complex forms of the GBSM is not justified, the model can be adaptively changed to simpler forms, thus 
reducing the number of associated parameters, giving flexibility to the simulations and reducing the 
computational cost. Following a brief overview of the GBSM, the model's performance in simulating the 
response of soft, saturated cohesive soils is assessed under both axisymmetric and true triaxial conditions. 
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k����	��i: Обобщенная модель ограничивающей поверхности (GBSM) для насыщенных связных почв 
является полностью трехмерной моделью, зависящей от времени и температуры, которая учитывает как 
собственную, так и вызванную напряжением анизотропию. Чтобы лучше моделировать поведение связных 
почв, проявляющих размягчение, модель использует неассоцированное правило потока. GBSM синтезирует 
многие предыдущие модели ограничивающей поверхности для насыщенных связных грунтов и улучшает их 
прогнозные возможности. Для тех случаев, когда использование более сложных форм GBSM неоправданно, 
модель может быть адаптивно изменена на более простые формы, тем самым уменьшая количество 
связанных параметров, обеспечивая гибкость моделирования и уменьшая вычислительные затраты. После 
краткого обзора GBSM эффективность модели при моделировании реакции мягких, насыщенных связных 
грунтов оценивается как в осесимметричных, так и в истинных трехосных условиях. 

m����j������j	: ограничивающая поверхность, упругопластичность, вязкопластичность,
связные грунты, мягкие грунты
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The Generalized Bounding Surface Model 
(GBSM) synthesizes many previous bounding 
surface constitutive models for saturated 
cohesive soils and improves upon their 
simulative and predictive capabilities. In a 
recent paper [1], a detailed description of the 

GBSM was presented. Although some model 
simulations were also presented, they were, out 
of necessity, rather general in scope. As such, 
this paper supplements the earlier work [1]. 
Following a brief overview of the bounding 
surface concept and the GBSM, the model's 
performance in simulating the response of soft, 
saturated cohesive soils is assessed. 
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Some general aspects of the bounding surface 
concept in stress space are presented in this 
section. Additional details pertaining to 
theoretical aspects of this concept are given by 
Dafalias [2]; Kaliakin et al. [1] present a more 
specialized discussion of the concept as it 
applies to the GBSM. In the subsequent 
development tensorial quantities are presented 
in indicial form with the indices obeying the 
summation convention over repeated indices. 
The material state is defined in terms of 
effective stresses  and a set of proper internal 
variables  that embody the past loading 
history. In the subsequent development tensorial 
quantities are presented in indicial form with the 
indices obeying the summation convention over 
repeated indices. The single subscript on the  
is not a tensorial index but denotes the plurality 
of these internal variables. 
The existence of a smooth and convex bounding 
surface in effective stress space is assumed 
[2,3]. The surface always encloses the origin 
and is origin-convex; i.e., any radius emanating 
from the origin intersects the surface at only one 
point (Figure 1). Similar to a yield surface, the 
bounding surface is analytically given by 

  (1) 

where  indicates an “image” point on the 
bounding surface. The actual stress point 
always lies within or on the surface. To each  
a unique  is assigned by a properly defined
“mapping” rule that becomes the identity 
mapping if  lies on the bounding surface 
(i.e., if  ) [2].
Dafalias [4] introduced a very simple “radial 
mapping” form of the model that does not 
require an explicit definition of a yield surface. 

Figure 1. Schematic illustration of the bounding 
surface, a loading surface and radial mapping 

rule in multiaxial stress space. 

In the radial mapping form of the model, shown 
schematically in Figure 1, it is assumed that the 
projection center aij lies always within the 
bounding surface and never crosses it. The aij
evolves according to a proper rate equation, and 
is one of the . It does not, however, enter into 
equation (1). Using aij as the projection center, 
the “image” stress is obtained by the radial 
projection of the actual stress ( ) onto the 
surface according to the following mapping rule: 

  (2) 

which becomes the identity mapping if  is on 
the surface (Figure 1). The dimensionless 
positive parameter b ( ) is determined 
in terms of the material state by substituting the 
“image” stress from equation (2) into an explicit 
form of equation (1), and solving the resulting 
expression for b.
The essence of the bounding surface concept is 
the hypothesis that inelastic deformations can 
occur for stress states either within or on a 
properly defined bounding surface. The extent 
of these deformations depends on the Euclidean 
distance � between  and an associated 
“image” stress that is defined using equation 
(2). Thus, unlike classical yield surface 
elastoplasticity, inelastic states are not restricted 
only to those lying on an outer loading or 
bounding surface [2].
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To complete the formulation, a general state-
dependent relation between the plastic modulus 
Kp (associated with the actual stress point) and 
the “bounding” plastic modulus  associated 
“image” stress points must be established as a 
function of the properly chosen distances � and 
r shown in Figure 1 according to 

(3) 

where r can be related to b through the relation 

r/� = b/(b - 1). 

The “bounding” plastic modulus is obtained 
from the consistency condition; i.e., . In 
equation (3), sp  is a model parameter 
that defines the extent of the elastic nucleus (a 
region of purely elastic response), such that (r –
sp�) 0 (Figure 1), and the dimensionless 
parameter b  1.0 is as previously defined. The 
quantity  denotes a proper scalar shape 
hardening function of the state that is 
independent of the explicit form of equation (1). 
The exact definition of  requires the 
identification and experimental determination of 
certain material parameters [5]. Finally, the 
symbols < > denote Macaulay brackets, which 
imply that, for some quantity d,  

< d > = d if d > 0 and < d > = 0 if d 0.

Equation (3), which is by no means unique, 
embodies the meaning of the bounding surface 
concept. If � < r and  is not approaching 
infinity, the concept allows for plastic 
deformations to occur for points either within or 
on the surface at a progressive pace that 
depends upon �. The closer to the bounding 
surface is the actual stress point ( ), the 
smaller is Kp (it approaches the corresponding 
“bounding” plastic modulus), and the greater is 
the plastic strain increment for a given stress 
increment. Thus,  and its associated 
parameters are intimately related to the material 

response for states within the bounding surface 
(i.e., for � > 0). As such, they constitute 
important elements of the present formulation 
that differentiate it from ones based on classical 
yield surface elastoplasticity. 

."�):PL:*PX�)R�=pP�8H?G�

In its most general form, the GBSM for 
saturated cohesive soils is a fully three-
dimensional, temperature and time-dependent 
model that accounts for both inherent and stress 
induced anisotropy. To better simulate the 
behavior of cohesive soils exhibiting softening, 
the model employs a non-associative flow rule. 
The microfabric-inspired rotational hardening 
rule associated with the model was developed 
after a thorough review of past modeling 
practice. In addition, the shape hardening 
function used in the GBSM was developed 
simplifying earlier versions without 
compromising the model's predictive 
capabilities. In both cases, the selected 
functional form simplified earlier versions 
without compromising the GBSM's predictive 
capabilities. 

."+"�(6Q&!&�&@!�@Q�*!7��&�!� "�
The GBSM accounts for both inherent and 
stress-induced anisotropy. The mathematical 
representation of the latter requires the use of 
rotational hardening [6]. Due to the fact that the 
GBSM employs either an associative or non-
associative flow rule, the rotation of both the 
plastic potential surface (PPS) and the bounding 
surface (BS) must be quantified. The material 
state is thus determined by the state of effective 
stress and by a suitable measure of anisotropy 
[7]. The rotation of both surfaces is described by 
the symmetric second-order anisotropic tensors 
�ij and �ij, respectively [1].
In the GBSM, reduced invariants of the 
effective stress tensor are used, thus ensuring 
the proper analytical treatment of anisotropic 
forms of the model [8]. Decomposing  into 
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the sum of the deviatoric stress tensor sij and the 
hydrostatic stress gives 

        (4) 

where  is the Kronecker delta. The reduced
deviatoric stress tensors associated with the PPS 
and BS are thus 

 (5) 

respectively. The PPS is thus analytically 
described by the following invariants: 

 (6) 

and 

(7) 

where I is the first invariant of the effective 
stress tensor, J� is the square root of the second 
invariant of s�ij, and �� is the reduced Lode 
angle  

( ).

In a similar manner, the BS is analytically 
described by the following invariants: 

(8) 

(9) 

where I is as defined in equation (6), J� is the 
square root of the second invariant of s�ij, and ��

is the reduced Lode angle. For �� and ��, the 
values of  correspond to conditions of 

axisymmetric triaxial compression and 
extension, respectively. 
In isotropic forms of the GBSM, both the PPS 
and BS are analytically defined by I, as given in 
equation (6) and (8), and by the following 
isotropic invariants: 

(10) 

where sij is as defined by equation (4), and 
.

In axisymmetric triaxial (p'-q) stress space, 
where p' = I/3 is the mean normal effective 
stress and is the deviator stress, the 
measures of the anisotropic tensors �ij and 
�ij are defined by the scalar measures � and �,
respectively, where 

(11) 

These quantities characterize the rotation of the 
PPS and the BS, respectively. 
The radial mapping rule given by equation (2) is 
next specialized by explicitly defining aij, as 
well as its evolution. For monotonic loading, aij
must be an isotropic tensor with a principal 
value on the I-axis in invariant stress space. The 
radial mapping rule then becomes [1] 

(12) 

where b is as previously defined, C ( )
is the dimensionless projection center 
parameter, and Io represents the point of 
intersection of the BS with the positive I-axis in 
invariant stress space (Figure 3). The inclusion 
of C into the formulation introduces the 
possibility of using a projection center IPC = CIo
different form the origin in stress space [9], thus 
allowing for the prediction of immediate 
negative (dilational) pore pressure development 
for heavily overconsolidated samples sheared 
under undrained conditions. With the projection 
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center at the origin (i.e., for C = 0), the older 
and generally more restrictive and inaccurate
formulation is retrieved [10,11], with initially 
positive pore pressures always being predicted, 
even for highly overconsolidated samples. 
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In its most general form, the GBSM employs a 
non-associative flow rule. It thus requires that a 
PPS be defined in addition to the BS. Both 
surfaces must be smooth and convex [2,3]. The 
most general form of the PPS associated with 
the GBSM is given by 

(13)

where barred quantities are values of I and J�
associated with the “image” point on the PPS. 
The quantity I� is the value of I at  

,
where                  .

The value of I� is adjusted so that equation (13) 
is satisfied for the current “image” stress point 

 on the PPS. Kaliakin and Nieto-Leal 
[13] give explicit expressions for I� associated 
with the various forms of the GBSM. The 
dimensionless model parameter R ( ) 
controls the shape of the PPS [13]. Finally, � is 
given by the following generalized expression: 

(14) 

where the dimensionless anisotropic variable �
is as previous defined in equation (11).  
The quantity M is the slope of the failure surface 
which, in a meridional section (i.e., for a 

specific value of �� in p' - q space, is assumed to 
be a straight line that coincides with the critical 
state line [14]. The counterpart of M in I - J�
space is  

.

Both M and  vary with �� according to  

and  

,

where the quantity  

,

with  

Me = M(-�/6) and Mc = M(�/6) 

being the values of M associated with 
axisymmetric triaxial extension and 
compression, respectively. The dimensionless 
function g = g(��, kM) is given by [15] 

(15) 

which has been shown to be more robust than 
earlier functional forms of g [1]. Figure 2 shows 
the variation of the PPS and failure surface with 
Lode angle within the octahedral plane for 
anisotropic forms of the GBSM. 
The PPS given by equation (13) must satisfy two 
fundamental requirements. For a given value of 
Lode angle (��), it must pass through the “image” 

stress point . In addition, it must give

at its intersection with the critical state (failure) 
line, as defined by��; the latter requirement is in 
keeping with the concept of a critical state [14].
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Figure 2. Plastic potential surface (PPS) and 
failure envelope for anisotropic form of the 

GBSM employing a non-associative flow rule. 

Turning the attention to the definition of the BS, 
the results of an extensive study into suitable 
analytical expressions for bounding surfaces [3] 
showed that an elliptical form avoids potential 
difficulties associated with either previously used 
composite forms [9] or higher-order expressions. 
In light of this finding, the following elliptical BS 
is used in the GBSM model: 

(16) 

where R is as previously defined, and barred 
quantities are values of I and J� associated with 
the “image” point on the BS. The quantity Io is 
as previously defined (Figure 3).  
The parameter N defines the shape of the BS; its 
counterpart in stress invariant space is 

.

Both N and  vary with �� according to 

and 

Figure 3. Schematic illustration of elliptical 
bounding surface and radial mapping rule  

in meridional section in stress invariant space 
for isotropic forms of the GBSM.

,

where the quantity  

,

with Ne = N(-�/6) and Nc = N(�/6) being the 
values of N associated with axisymmetric 
triaxial extension and compression, 
respectively. The dimensionless function g is 
given by equation (15), with ���and kN replacing 
���and kM, respectively. Due to the fact that the 
GBSM is intended to be adaptive, specialization 
of equation (16) results in specific expressions 
appropriate for an associative flow rule and for 
the isotropic forms of the model [13]. 

."."�?���&!�(6'@<�@ &�&@!"�
The infinitesimal strain rate tensor is additively 
decomposed as 

(17) 

where the superscripts e, i, v and p denote its 
elastic, inelastic, viscoplastic (delayed) and 
plastic (instantaneous) components, 
respectively, and a superposed dot denotes a 
material time derivative or rate. 
The internal variables (qn) include proper 
measures of inelastic deformation that quantify 
the hardening of the bounding surface. An 
additive decomposition of  into a delayed or 



Simulating the Behavior of Soft Cohesive Soils Using the Generalized Bounding Surface Model 

Volume 15, Issue 3, 2019 61 

viscoplastic part ( ) and an instantaneous or 
plastic part ( ) is assumed [16]; viz., 

(18) 

Both parts are, in general, incrementally
irreversible. The , which accounts for the 
delayed deformation of the cohesive soil, 
depends only upon the state; it can, under 
certain conditions, be zero. The , on the other 
hand, depends upon the state and the rates  
and ; it is non-zero only if the scalar loading 
(L) index is positive. This is done in order to 
emphasize the general coupling that exists 
between plastic and viscoplastic processes, 
whereby in addition to the , the  may 
affect the plastic loading process [17].
Since it does not enter into equation (1), the 
projection center tensor aij (Figure 1) is one of 
the internal variables. It evolves according to 
the rate equation 

(19) 

where  and  being the viscoplastic (delayed) 
and plastic (instantaneous) parts of aij. 
The elastic response is assumed to be independent 
of the rate of loading and to be unaltered by 
inelastic deformation. The elastic constitutive 
relations, in direct and inverse form, are 

(20)

where Bijkl and Dijkl are the fourth-order tensors 
of elastic compliance and moduli, respectively. 
To date, bounding surface models for cohesive 
soils have exclusively assumed elastic isotropy. 
The explicit forms for Bijkl and Dijkl are thus 
typically written in terms of a non-linear elastic 
bulk modulus (K) and the shear modulus (G),
with the latter often computed from K and a 
specified value of Poisson’s ratio (�).
The viscoplastic response is based upon a 
generalization of Perzyna’s elastic/viscoplastic 
theory [18]. The associated rate equations are 

(21) 

where Rij, rn and rij are proper tensorial 
functions of the state. The symbols < > again 
denote Macaulay brackets. In forms of the 
GBSM employing a non-associative flow rule, 
Rij is the gradient of the PPS; i.e.,  

.

If an associative flow rule is assumed, then  

F = Q. 

In equation (21), � is a continuous scalar 
“overstress” function. Although several explicit 
functional forms for �(F) have been proposed 
[13}, perhaps the most commonly used form is 
the following “power” form: 

(22) 

where n and V are positive model parameters, 
and  is a “normalized overstress” [16]. In 
equation (22) r is as defined in Figure 1, sv (> 1) 
is a dimensionless model parameter, and  is the 
Euclidean distance between  and a second 
“image” stress  on the boundary of a second 
elastic nucleus that is associated with the 
viscoplastic response and is homologous with 
the bounding surface. This elastic nucleus 
assumes the role of the “static” yield surface 
proposed by Perzyna [18]. Since the material is 
assumed to be inviscid in the elastic region,  
becomes zero when ; i.e., when  is 
either on or within the second elastic nucleus. 
The definition of the plastic response is 
predicated on four expressions associated with 
the bounding surface concept. First, the BS 
defines the direction of inelastic loading-
unloading (Lij). In particular, the expression for 
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Lij at the actual stress point ( ) is defined as 
the gradient of F at the “image” point (Figure 
1); viz.,  

.

Secondly, a scalar loading index (L) must be 
defined in terms of Lij, the rate of the effective 
stress tensor, and the plastic moduli Kp; viz. 
[17], 

(23) 

where Lij and the dimensionless parameter b are 
as previously defined, and Kp is given by 
equation (3), which constitutes the third of the 
aforementioned expressions associated with the 
bounding surface concept. The presence of rn
and rij in equation (23) shows that L couples the 
plastic-viscoplastic hardening response for 
states on and within the bounding surface. 
Additional details pertaining to the terms 
appearing in this equation are given elsewhere
[13,16].
When the stress point lies on the bounding 
surface, � = 0 (Figure 1),

,  

and equation (23) simplifies accordingly. As 
noted in conjunction with equation (3), an 
explicit expression for , which is the fourth 
expression associated with the bounding surface 
concept, is determined from the consistency 
condition . Additional details pertaining 
to the determination of  are given elsewhere 
[13]. 
The rate equations for plastic response are given 
by

(24) 
where Rij, rn, and rij are as previously defined. 

."�"�p��;6!&!I�L#%6 "�
In all forms of the GBSM, the BS hardens 
isotropically along the I-axis. The proper 
simulation of stress-induced anisotropy for 
anisotropic forms of the GBSM also requires 
that the BS and PPS undergo rotational 
hardening (RH) [7]. 
The isotropic hardening is controlled by a single 
scalar internal variable that measures the 
increment in inelastic volumetric strain; viz., 

(25) 
where                 .

It is convenient to relate the evolution of the BS 
to the increment in inelastic volumetric strain 
through the value of Io (recall Figure 3). The 
resulting analytical expression describing the 
isotropic hardening is [9,13] 

(26) 

where the critical state parameters � and � are 
equal to the negative of the slopes of the virgin 
consolidation and swell/recompression lines, 
respectively, in a plot of void ratio (e) versus the
natural logarithm of I [14], and ein represents the 
initial total void ratio corresponding to the
reference configuration with respect to which 
engineering strains are measured; for natural 
strains, it represents the current total void ratio. 
The nonzero limiting “transitional” stress IL is 
included in equation (26) so that for I < IL the 
relation between I and the elastic part of the 
void ratio (ee) changes continuously from 
logarithmic to linear [9]. The singularity of the 
elastic stiffness near I = 0, resulting from 
excessive material softening, is thus removed. 
The quantity IL is not a model parameter; its 
value is typically taken equal to one-third of the 
atmospheric pressure (Pa) [1]. 
The evolution of the stress-induced anisotropy 
during shearing is mathematically accounted for 
by RH of the BS (through the anisotropic tensor 
bij) and, if applicable, the PPS (through the 
anisotropic tensor aij). Recently [19], robust RH 
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rules for the BS and PPS, that were inspired by 
earlier formulations and by experimental 
observations of microfabric evolution of 
cohesive soils, were proposed. Nieto-Leal et al. 
[19] give additional details pertaining to these 
RH rules. 

."0"�=�6�?���6�p��;6!&!I�R#!'�&@!"�
The positive hardening function  defines the 
shape of the response curves during inelastic 
hardening (or softening) for points within the 
BS [2]. It relates the plastic modulus Kp to its 
“bounding” value in the manner given by 
equation (3). For the GBSM, 

(27) 

where ein, �� �, and Pa are as previously defined. 
For brevity, the partial derivative with respect to 
an invariant is denoted with a comma followed 
by the symbol of the invariant as a subscript. 
The definition of the dimensionless variable z
varies depending on the form of the GBSM 
used. For, example, for the anisotropic form of 
the GBSM employing a non-associative flow 
rule, z is given by  

(see Figure 3).
The dimensionless quantity  in equation 
(27) has the general form ,
where kh = he/hc, with he = h(-�/6) and hc =
h(�/6) being the values of h associated with 
axisymmetric triaxial extension and 
compression, respectively. The dimensionless 
function g is given by equation (15), with ���and 
kh replacing ���and kM, respectively. 
Finally, the expression for fn appearing in 
equation (27) is a generalization of the form 
given by Nieto-Leal and Kaliakin [5]; viz., 

(28) 

where a (> 1.0) is a dimensionless model 
parameter [13], and nI is the component, in the  
direction, of the unit outward normal to the 
bounding surface in stress invariant space. For 
the anisotropic form of the GBSM with a non-
associative flow rule, 

(29) 

If an associative flow rule is used instead,  
is replaced by  in equations (27) and (29) 
and in the definition for z. Finally, if an 
isotropic form of the GBSM is used,  is 
replaced by  in the aforementioned equations. 

�"�=pP�*>*=*EK�GE=PL*EK�?=E=P�

The definition of the initial state for all forms of 
the GBSM requires knowledge of the initial 
value (ein) of the void ratio, which is one of the 
internal variables. In addition, the initial stress 
state is defined in terms of values of the total 
confining stresses, the total stresses associated 
with the maximum past preconsolidation 
pressure, and the initial excess pore fluid 
pressure.  
Anisotropic forms of the GBSM require the 
specification of the inherent anisotropy. This is 
achieved by specifying the initial values of the 
anisotropic tensor, which is another type of 
internal variable. These values are commonly 
determined from the results of laboratory tests on 
anisotropically consolidated specimens. For the 
special case of a transversely anisotropic (or 
“cross-anisotropic”) soil in which the x1 direction 
is taken normal to the plane of isotropy, .
For this case, the stress ratio (� = q/p') in 
axisymmetric triaxial space is given by 

,
where                   

is the effective stress ratio. Recalling the 
definition of the scalar representation (�) of �ij
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in axismmetric triaxial space given by equation 
(11), it is relatively well established [20] that the 
value of � determined using an anisotropic 
constitutive model will be less than �. Thus,  

� = �/A, where . 

For transversely anisotropic soils, the inherent 
(initial) values of �ij are thus given by 

(30) 

with

. 

Here  denotes the constant initial effective 
stress ratio to which a soil has been subjected in 
a drained axisymmetric triaxial (isotropic) or 
oedometer (anisotropic) test.
In the anisotropic form of the GBSM employing 
a non-associative flow rule, �ij represents the 
rotation of the PPS. The rotation of the BS is 
quantified through the symmetric anisotropic 
tensor �ij. The measure of this tensor in 
axisymmetric triaxial stress space is defined by 
the scalar �, given by equation (11). Since the 
value of �� associated with loading at a
prescribed stress ratio � is purported to be equal 
to this ratio [20], the initial values of �ij,
corresponding to a transversely anisotropic 
stress, will be 

(31) 

with . 

where  is as previously defined. The initial 
values of �ij is again given by equation (30).

�
0"�=pP�G)(PK�DELEGP=PL?�

Since the GBSM includes both isotropic and 
anisotropic formulations, together with both 

associative and non-associative flow rules, the 
number of parameter values to be determined 
depends on the specific form of the model that 
is being used. To facilitate the subsequent 
discussion, the anisotropic forms of the GBSM 
employing non-associative and associative flow 
rules are referred to as GBSMan and GBSMaa, 
respectively; the isotropic forms of the model 
employing non-associative and associative flow 
rules are referred to as GBSMin and GBSMia, 
respectively. 
The model parameters associated with all forms 
of the GBSM are grouped by their type as 
follows: The critical state parameters �, �, Mc
and Me; the elastic parameters G or �; the 
surface configuration parameters R, Nc, and Ne,
the projection center parameter C; the elastic 
nucleus parameter sp; the shape hardening 
parameters hc, he, and a; the rotational 
hardening parameters ��, �1, and ��, and the 
viscoplastic parameters sv, V, and n. All of the 
above parameters are positive; with the 
exception of G and V, all parameters are 
dimensionless. Table 1 summarizes the model 
parameters associated with the most general
forms of each of the forms of the GBSM. 
With the exception of the viscoplastic 
parameters sv, V, and n, values for all other 
(elastoplastic) parameters are determined from 
results of standard laboratory tests of short 
enough duration to ensure that time and rate 
effects are negligible. With some exceptions, 
the elastoplastic model parameters are identical 
to those used in conjunction with previous rate 
independent bounding surface formulations. 
Most of the model parameter values are 
determined by curve-fitting; the availability of 
high-quality experimental data is thus requisite 
for obtaining accurate parameter calibrations. 
Although it would perhaps be desirable to 
determine the model parameter values from 
closed-form formulas, such expressions are rally 
available. Even when such expressions exist, the 
results they give are not always reliable. Thus, 
although curve fitting may be viewed as being 
somewhat simple-minded, with the proper 
guidelines it gives a safe and intuitive way in 
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which to determine values for the model 
parameters. The values typically selected for the 
model parameters either are fixed for most soils, 
or fall within fairly narrow ranges. Furthermore, 
the values of some of these parameters can be 
determined from standard soil test parameters. 

Table 1. Parameters Associated with the GBSM. 
GBSMan GBSMaa GBSMin GBSMia

�� � � �
� � � �

Mc Mc Mc Mc
Me Me Me Me

G or � G or � G or � G or �
R R R R
Nc - Nc -
Ne - Ne -
C C C C
sp sp sp sp
hc hc hc hc
he he he he
a a a a
�� �� �� ��
�1 �1 - -
�2 �2 - -
sv sv sv sv
V V V V
n n n n

To establish the values of the necessary 
parameters associated with the most general
form of the GBSM, a minimum of eight
laboratory tests are required, namely: (a) A 
single isotropic or anisotropic (one-
dimensional) consolidation or drained 
compression test with both loading and 
unloading phases, (b) Consolidated-undrained 
(preferable) or drained axisymmetric triaxial 
compression and extension tests (with pore 
pressure measurements) on anisotropically or 
isotropically consolidated specimens in the 
normally, lightly, and heavily overconsolidated 
regions (a total of six tests), and (c) At least one 
long term test such as undrained or drained 
triaxial creep or stress relaxation. 

If a less general form of the bounding surface 
model is acceptable, both the number of model 
parameters involved and the number of 
laboratory tests required can be significantly 
reduced. For example, if only time independent 
analyses are to be considered, values of the 
three viscoplastic model parameters, as well as 
the long-term experiment(s) used in their 
determination, are no longer required. 
Furthermore, if the model is only to be used for 
the time-independent analysis of isotropically 
consolidated normally consolidated soils loaded 
in triaxial compression or extension, the number 
of required model parameters reduces to five, 
and only data from a consolidation test and a 
single triaxial test are required for the model 
calibration. Similar reductions in the number of 
required model parameters can be realized for 
overconsolidated soils by neglecting the 
difference between hardening parameters in 
compression and extension. 

4"�E??P??GP>=�)R�DPLR)LGE>9P�

To assess the simulative and predictive 
capabilities of the GBSM and to illustrate its 
flexibility, four soils were simulated using the 
model. All of the simulations and predictions 
shown in this section were generated using the 
CALBR8 computer program [21]. 
The simulative capabilities of the simplest
(GBSMia) form of the GBSM, as applied to 
isotropically consolidated undrained 
compression (CIUC) test experimental results 
for normally consolidated Bangkok clay, were 
recently assessed [1]. Even though only five 
model parameters �, �, Mc, �, and R) are active 
in such applications, the agreement between 
GBSMia simulations and experimental results 
was excellent. 

4"+�?&<#%��&@!�@Q�=�&�6&�?&%�A�9%�A"�
In light of the aforementioned simulation effort, 
the ability of the GBSM to simulate the more 
complex anisotropic, softening response is thus 
first assessed herein. Since the proper 
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simulation of softening requires the use of a 
non-associative flow rule [20], the present 
simulations require the use of the most complex 
form of the model; i.e., the anisotropic non-
associative version (GBSMan). 
The soil considered is Taipei silty clay (TSC). 
The data set used in the present assessment of 
the GBSMan form of the model was generated 
by Chin and Liu [22], who performed a set of 
axisymmetric triaxial CK0UC and CK0UE tests 
on samples with OCRs of 1.0, 2.0, and 4.0. The 
TSC tested had a liquid limit (wL) of 40% and a 
plasticity index (Ip) of 22%. 
The following values for the critical state 
parameters were obtained directly from the data 
of Chin and Liu [22]: ��= 0.17, ��= 0.02, Mc = 
1.05, and Me = 0.95. The Poisson's ratio equal to
0.29 was assumed. A value of R = 2.50 was 
determined by matching the experimental 
undrained stress paths for the normally 
consolidated samples. A value of 0.65 for the
projection center parameter (C) was determined 
from a best fit of the undrained stress paths for 
OCRs of 2.0 and 4.0. Values for the shape 
hardening parameters hc = 5.0, he = 25.0, and a
= 1.5 were determined from a best fit of the 
deviator stress versus axial strain response for 
these same OCR values. A value of 1.0 for the 
elastic nucleus parameter sp, which reduces the 
nucleus to a point, was found to be adequate. 
Values of the configuration parameters Nc and
Ne equal to 0.90 and 1.13, respectively, were 
determined by matching the response in 
compression and extension for the normally 
consolidated sample. Finally, the rotational 
hardening parameters were assigned values of 
���= 1.5, �1 = 200.0 and �2 = 50.0.  
The time-independent model simulations were 
obtained using the aforementioned parameter 
values. Figure 4 compares the simulations of 
anisotropically consolidated samples with 
experimental values. From this figure, it is 
evident that the agreement between the 
simulated and experimental normalized 
undrained stress paths is quite good. The 
normalized deviator stress versus axial strain 
simulations are somewhat less accurate than the 

undrained stress paths. Chin and Liu [22] did 
not report any experimental values for excess 
pore pressure. 

4"-"�?&<#%��&@!�@Q�8�#!;&�6�9%�A"
Since the GBSM is formulated in terms of three 
stress invariants, its predictive capabilities under 
true triaxial (TT) states of stress are next 
investigated. In TT tests, the values of the three 
principal stresses can be varied independently. 
The relative magnitude of the intermediate 
principal stress ( ) is typically expressed by 
means of the following ratio between principal 
stress differences: ,
where it is assumed that . The 
ratio bTT is zero (0.0) for axisymmetric triaxial 
compression, where ; it is equal to unity 
(1.0) for axisymmetric triaxial extension, where 

. Based on the results of past TT tests 
[23-30], the relative magnitude of the 
intermediate principal stress has a significant 
influence on the three-dimensional stress-strain, 
strength, and volume change or pore pressure 
characteristics of cohesive soils. 
Lade and Musante [25] experimentally studied 
the influence of the intermediate principal stress 
on the stress-strain, pore pressure and strength 
characteristics of a remolded clay under 
undrained conditions. In this study, 
consolidated-undrained axisymmetric triaxial 
compression tests and TT tests with independent 
control of all three principal stresses on cubical 
specimens were performed. 
The soil used in all tests performed by Lade and 
Musante [25] was called “Grundite” clay, which 
is a trade name used by the Illinois Clay 
Products Company. Grundite is composed 
primarily of the clay mineral illite, and is mined 
in the Goose Lake area of Illinois [31]. The 
particle size distribution indicated that the clay 
consisted of about equal amounts of silt and 
clay size particles. The wL and IP of the soil 
were equal to 54.8% and 30.1%, respectively. 
Lade and Musante did not report the specific 
gravity of solids (Gs) for Grundite clay. 
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Figure 4. Comparison of simulated and experimental undrained response of anisotropically 
consolidated samples of TSC for data of Chin and Liu [22]. 

However, in their experimental study of the 
same soil, Perloff and Osterberg [32] and 
Kondner and Horner [33] reported a value of Gs
equal to 2.74 (they also reported wL and IP
values equal to 54.5% and 28.5%, respectively, 
which are very close to the values reported by 
Lade and Musante). Consequently, a value of Gs
equal to 2.74 was used to compute initial values 
of void ratio (described below) for all numerical 
simulations reported herein. 
All specimens of Grundite clay used in Lade 
and Musante's study were produced from a 
slurry with a water content of 90%. The uniform 
slurry was consolidated in a double draining 
consolidometer at a vertical pressure smaller 
than the final isotropic consolidation pressure to 
be used in the subsequent tests. After 
consolidation, specimens were thoroughly 
remolded to eliminate the inherent anisotropy 
due to the initial K0 consolidation. Specimens 
with the respective shapes were next trimmed, 
installed in the testing apparatus, and 
consolidated isotropically at 98.0 kPa, 147.0 
kPa, and 196.0 kPa, corresponding to water 
contents of 34.4, 31.9 and 30.1%, respectively. 
For a value of Gs equal to 2.74, the associated 
values of initial void ratio (ein) are 0.943, 0.874 
and 0.825. With the exception of triaxial 
compression, Lade and Musante [25] presented 

experimental results only for a confining stress 
of 147.0 kPa. 
Following the above preliminary tests, three 
series of consolidated-undrained tests were 
performed in a cubical triaxial apparatus similar 
to that described by Lade and Duncan [34]. This 
apparatus was designed to permit application of 
three unequal principal stresses to a cubical 
specimen. The side dimensions of the specimen 
were 76 mm. Each test in the series was 
conducted with constant confining pressure . 
The horizontal and vertical deviator stresses 
were increased proportionally until the 
specimen failed. The ratio: bTT between the 
deviator stresses was maintained constant in 
each test. For each consolidation pressure, the 
values of: bTT used in the tests were chosen so 
that the failure surface, the stress-strain 
relations, and the pore pressure response could 
be determined over the full range of the 
intermediate principal stress. Lade and Musante 
[25] noted that the response of specimens of 
remolded Grundite clay was essentially 
isotropic. The strengths of test specimens with 
bTT values equal to 0.95 (i.e., near triaxial 
extension) were approximately the same 
whether they failed horizontally or vertically. 
Lade and Musante [25] did not show 
consolidation data for Grundite clay. However, 
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based on laboratory data [35] for two isotropic 
compression tests and one K0 consolidation test
performed on Grundite clay, an average value of 
� equal to 0.152 was determined. Since no 
rebound data was available, the aforementioned 
work of Perloff and Osterberg [32] and Kondner 
and Horner [33] was consulted. Perloff and 
Osterberg [32] performed isotropic compression 
tests with loading and rebound phases on 23 
specimens of Grundite clay. The average values 
of ��and � associated with these tests were 
0.152 and 0.076, respectively. Consequently, 
these values were used in the present 
simulations of Grundite clay. 
The determination of the slope of the critical 
state line in triaxial compression (Mc) and 
extension (Me) requires the values of the 
effective friction angle for both states. In the 
case of triaxial compression (bTT = 0.0) of 
cubical samples, Lade and Musante [25] 
computed effective friction angles  of 30.6, 
28.2 and 27.4o for consolidation stresses of 98.0 
kPa, 147.0 kPa, and 196.0 kPa, respectively. In 
axisymmetric triaxial tests performed on the 
same soil [35],  values equal to 29.6, 30.1 and 
30.1o were computed for tests with a 
consolidation stress of 98.0 kPa. In two tests 
with a consolidation stress of 147.0 kPa,  
values of 29.3 and 28.7o were computed. 
Finally, in two tests with a consolidation stress 
of 196.0 kPa,  values of 27.9 and 28.2o were 
computed. The overall average of these values 
is 29.1o. Using this friction angle gives 

(32) 

In two true triaxial tests near extension (bTT =
0.95), Lade and Musante [25] obtained effective 
friction angles of 30.6 and 31.2o for a
consolidation stress of 147.0 kPa. The results of 
additional true triaxial tests at consolidation 
stresses of 98.0 kPa and 196.0 kPa yielded  
values of 35.1 and 31.0o, respectively. The 
overall average of these values is 31.0o. Using 
this friction angle gives 

(33) 

The ratio Me/Mc is thus equal to 0.774. For the 
similar illitic clay tested by France and Sangrey 
[36] this ratio was equal to 0.76.
A value of Poisson's ratio � equal to 0.27 was 
assumed. This is consistent with the empirical 
relation presented by Lade [37] for an Ip of 
approximately 30%.
Since the Grundite clay specimens were 
purported to be normally consolidated, the 
bounding surface shape parameter R would 
normally be determined from the three 
undrained triaxial compression tests (i.e., for bTT
= 0.00) at consolidation stresses of 98.0 kPa, 
147.0 kPa, and 196.0 kPa. However, a plot of 
the associated undrained stress paths showed 
that these more closely resembled ones for 
lightly overconsolidated specimens. While this 
is likely due to the fact that the soil was 
repeatedly remolded, it nonetheless requires that 
these tests be modeled as slightly 
overconsolidated. As such, the 
overconsolidation ratio was numerically
estimated to be approximately 1.5. This ratio 
was maintained in all of the numerical 
simulations of Grundite clay. Since the 
specimens are lightly overconsolidated, the 
magnitude of the projection center parameter C
influences the simulations. From the shape of 
the undrained stress paths for the three tests at 
bTT = 0.00, it was determined that a value of C
equal to 0.20 was appropriate. 
A value for the shape hardening parameter 
associated with triaxial compression (hc) was 
determined by best matching the experimental 
results for bTT = 0.21 and 0.40. The value for the 
shape hardening parameter associated with 
triaxial compression (he) was determined by 
matching the experimental results for bTT =
0.95. As in the case of many other soils, the 
remaining shape hardening parameter (a) was 
taken equal to 1.2. Finally, values of the 
configuration parameters Nc and Ne equal to 
1.125 and 0.870, respectively, were determined 
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by matching the experimental results for bTT =
0.00 and 0.95. 
Using the aforementioned parameter values in 
conjunction with the GBSMin form of the 
GBSM, the TT tests performed by Lade and 
Musante [25] were simulated numerically. 
Following the actual experimental procedure, in 
each simulation the minor principal total stress 
( 3) was maintained constant. The major and 
intermediate total stress were increased in such 
a manner so as to maintain the experimental 
values of bTT (i.e., 0.00, 0.21, 0.40, 0.70, and 
0.95) constant. Figures 5 to 8 summarize the 
results of these time-independent simulations 
and compare them to the experimental results. 
In these figures, experimental results are 
depicted by discrete symbols. The simulated 
results are depicted by continuous curves; in the 
legends these results are denoted by the “(sim)”.
Figure 5 compares the simulated principal 
effective stress difference  versus 
major principal strain  response with 

experimental values. Although the experimental 
results for bTT = 0.40 are somewhat under 
predicted, the overall agreement between 
simulated and experimental results is quite 
good. 
Figure 6 compares the simulated excess pore 
pressure versus  response with experimental 
values. Although the  response for bTT = 0.21 
is under predicted, the overall agreement 
between simulated and experimental results is 
quite good. 
In Figures 7 and 8 are shown the comparisons 
between the simulated and experimental 
principal strain response. From Figure 7 it is 
evident that the simulated  versus  response 
is somewhat under predicted for bTT = 0.21. The 
agreement between the simulated and 
experimental response for the other values of 
bTT is, however, much better. Similar 
conclusions are drawn in the case of the major (

) versus minor principal strain ( ) response 
(Figure 8). 

Figure 5. Comparison of simulated and experimental principal stress difference vs. major principal 
strain response of TT tests on samples of undrained Grundite clay [37].
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Figure 6. Comparison of simulated and experimental excess pore pressure vs. major principal 
strain response of TT tests on samples of undrained Grundite clay [37].

Figure 7. Comparison of simulated and experimental intermediate vs. major principal strain 
response of TT tests on samples of undrained Grundite clay [37].



Simulating the Behavior of Soft Cohesive Soils Using the Generalized Bounding Surface Model 

Volume 15, Issue 3, 2019 71 

�
Figure 8. Comparison of simulated and experimental minor vs. major principal strain response of 

TT tests on samples of undrained Grundite clay [37].
�
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The Generalized Bounding Surface Model 
(GBSM) synthesizes many previous forms of 
the bounding surface model for cohesive soils 
and improves upon many aspects of these 
models. The GBSM is a fully three-dimensional, 
time-dependent model that accounts for both 
inherent and stress induced anisotropy through a 
suitable rotational hardening laws. In addition, 
the model employs either an associative or non-
associative flow rule. This paper assessed the 
model's performance in simulating the response 
of soft, saturated cohesive soils. Based on 
comparisons with experimental results for two 
different saturated cohesive soils, the GBSMan 
and GBSMin forms of the GBSM were shown 
to realistically simulate the time-independent, 
isothermal response of such soils when 
subjected to monotonic loading. 
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