THE GENERALIZED BIFRACTIONAL BROWNIAN MOTION

Main Article Content

Charles El-Nouty

Abstract

To extend several known centered Gaussian processes, we introduce a new centered Gaussian process, named the generalized bifractional Brownian motion. This process depends on several parameters, namely  α > 0 , β>0 ,  0<H<1  and  0<K≤1 . When  K=1, we investigate its convexity properties. Then, when  2HK≤ 1, we prove that this process is an element of the QHASI class, a class of centered Gaussian processes, which was introduced in  2015

Downloads

Download data is not yet available.

Article Details

How to Cite
El-Nouty, C. (2018). THE GENERALIZED BIFRACTIONAL BROWNIAN MOTION. International Journal for Computational Civil and Structural Engineering, 14(4), 81–89. https://doi.org/10.22337/2587-9618-2018-14-4-81-89
Section
Articles

References

Kahane J-P. Some random series of func-tions. Second Edition. Cambridge studies in advanced mathematics, Cambridge Univer-sity Press, 1985.

Houdré C., Villa J. An example of infinite dimensional quasi-helix. // Comtemp. Math., 2003, Vol. 336, pp. 195-201.

Bojdecki T., Gorostiza L.G., Talarczyk A. Sub-fractional Brownian motion and its relation to occupation times // Statist. Probab. Lett., 2004, Vol. 69, pp. 405-419.

El-Nouty C., Journé J-L., The sub-bifractional Brownian motion // Studia Sci. Math. Hungar., 2013, Vol. 50, pp. 67-121.

Zili M., Generalized fractional Brownian motion, Modern Stochastics: Theory and Applications, 2017, Vol. 4, pp. 15-24.

Berman S.M. Limit theorems for the max-imum term in stationary sequences // Ann. Math. Statist, 1964, Vol. 35, pp. 502-516.

Samorodnitsky G., Taqqu M.S., Stable non-Gaussian random processes. Chap-man & Hall, 1994.

El-Nouty C., Journé J-L. Upper classes of the bifractional Brownian motion // Studia Sci. Math. Hungar, 2011, Vol. 48, pp. 371-407.

El-Nouty C., On approximately stationary Gaussian processes // International Journal for Computational Civil and Structural En-gineering, 2015, Vol. 11, pp. 15-26.

Bojdecki T., Gorostiza L.G., Talarczyk A. Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems // Electron. Comm. Probab., 2007, Vol. 12, pp. 161-172.

El-Nouty C. The increments of a bifractional Brownian motion // Studia Sci. Math. Hungar., 2009, Vol. 46, pp. 449–478.

El-Nouty C., Journé J-L., The sub-bifractional Brownian motion // Studia Sci. Math. Hungar, 2013, Vol. 50, pp. 67-121.

Russo F., Tudor C.A. On bifractional Brownian motion // Stochastic Process. Appl., 2006, Vol. 116, pp. 830-856.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.