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Abstract: The study of filtration as one of the problems of underground hydromechanics is necessary for the de-
sign and construction of tunnels, underground and hydraulic structures. Deep bed filtration of suspension in a po-
rous medium with variable porosity and permeability and with an initial deposit is considered. An asymptotic so-
lution to a model with small limit deposit is constructed; the asymptotics is compared with numerical calcula-
tion. 
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Аɧɧɨɬаɰиɹ: Иɫɫɥɟɞɨɜɚɧɢɟ ɮɢɥɶɬɪɚɰɢɢ ɤɚɤ ɨɞɧɨɣ ɢɡ ɡɚɞɚɱ ɩɨɞɡɟɦɧɨɣ ɝɢɞɪɨɦɟɯɚɧɢɤɢ ɧɟɨɛɯɨɞɢɦɨ ɩɪɢ 
ɩɪɨɟɤɬɢɪɨɜɚɧɢɢ ɢ ɫɬɪɨɢɬɟɥɶɫɬɜɟ ɬɭɧɧɟɥɟɣ, ɩɨɞɡɟɦɧɵɯ ɢ ɝɢɞɪɨɬɟɯɧɢɱɟɫɤɢɯ ɫɨɨɪɭɠɟɧɢɣ. Ɋɚɫɫɦɚɬɪɢɜɚɟɬ-
ɫɹ ɦɨɞɟɥɶ ɮɢɥɶɬɪɚɰɢɢ ɫɭɫɩɟɧɡɢɢ ɜ ɩɨɪɢɫɬɨɣ ɫɪɟɞɟ ɫ ɩɟɪɟɦɟɧɧɵɦɢ ɩɨɪɢɫɬɨɫɬɶɸ ɢ ɩɪɨɧɢɰɚɟɦɨɫɬɶɸ ɢ ɫ 
ɩɟɪɜɨɧɚɱɚɥɶɧɵɦ ɨɫɚɞɤɨɦ. ɋɬɪɨɢɬɫɹ ɚɫɢɦɩɬɨɬɢɱɟɫɤɨɟ ɪɟɲɟɧɢɟ ɩɪɢ ɦɚɥɨɦ ɩɪɟɞɟɥɶɧɨɦ ɨɫɚɞɤɟ, ɚɫɢɦɩɬɨ-
ɬɢɤɚ ɫɪɚɜɧɢɜɚɟɬɫɹ ɫ ɱɢɫɥɟɧɧɵɦ ɪɚɫɱɟɬɨɦ ɡɚɞɚɱɢ. 
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1. INTRODUCTION 
 
Filtration problems are essential in the design 
and construction of tunnels, underground and 
hydraulic structures, as well as for the concreting 
of friable rocks. During the filtration of the sus-
pension in the porous medium some of the fine 
particles pass through the pores, and part of them 
is stuck in a porous medium and forms a deposit 
[1-4]. Different physical models are used for de-
scription of the filtration depending on the prop-
erties of the suspension and the porous medium 
and the nature of their interaction [5-12]. 
In this paper the filtration of a suspension in a 
porous medium with an initial deposit is consid-

ered. This is a step of a periodic process, ac-
companied by the accumulation of the deposit. 
Filtration of the suspension (forward flow) is 
replaced by the filter wash with clean water 
(back flow), then the suspension enters the filter 
again and displaces water, etc. [13, 14]. Me-
chanical and geometric size-exclusion model of 
particle retention assumes that the suspended 
particles of the suspension pass freely through 
the large pores and get stuck at the inlets of 
pores smaller than the particle size. In contrast 
to the standard models, we assume that the po-
rosity and permeability of the porous medium 
change with the increase of the deposit. With 
the increase of deposit the number of free small 
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pores decreases and deposit accumulation slows 
down. After a long-term filtration all the small 
pores are clogged and the suspended particles 
pass freely through the porous medium without 
retention. 
Concentrations of suspended and retained parti-
cles of the suspension satisfy a quasi-linear hy-
perbolic system of two differential equations in 
partial derivatives. The first equation is the 
equation of mass transfer of suspension parti-
cles, the second kinetic equation describes the 
deposit growth in porous media [15]. The condi-
tions at the filter inlet and at the initial time de-
termine the unique solution to the problem. Ex-
act and asymptotic solutions of the filtration 
problems for a variety of filter coefficients and 
boundary conditions are obtained in [15-19]. 
The outline of the paper is as follows. Section 2 
presents the mathematical model of deep bed 
filtration with the initial deposit. In Section 3 a 
global asymptotic solution is constructed for a 
small limit deposit. The asymptotics of the 
boundary line of two phases, which is a mobile 
concentration front of suspended particles, is 
determined. Section 4 presents numerical calcu-
lations and the comparison of the asymptotic 
and numerical solutions. The results are summa-
rized in Section 5. 
 
 
2. THE MATHEMATICAL MODEL 
 
A system for one-dimensional model of deep 
bed filtration of suspension in a porous medium 
with variable porosity ( )g S  and permeability 

( )f S  consists of two equations 
    ( ) ( )

0
g S C f S C S

t x t

       ;        (1) 

( )
S

S C
t

   .                       (2) 

 
Here ( )S  is the filtration coefficient; 

( ), ( ), ( )g S f S S  are the smooth non-negative 
functions. 

It is assumed that the suspension with constant 
concentration of the suspended particles is in-
jected at the filter inlet 0x  . At the initial time 

0t   there are no suspended particles in the po-
rous medium and the concentration of the re-
tained particles 0( )s x  is distributed unevenly 
over the filter. Appropriate initial and boundary 
conditions are 
 

0
1

x
C   ;                             (3) 

0
0

t
C   ;   00

( )
t

S s x  .                (4) 

 
Conditions (3) and (4) determine a unique solu-
tion in the domain {( , ) : 0 1, 0}x t x t    . 
The concentration front of the suspended parti-
cles moves in porous media with the velocity 
   0

0

( )
( )

( )

f s x
v x

g s x
                         (5) 

 
along the characteristic , given by the equation 
 

( ), (0) 0
dx

v x x
dt

  .                  (6) 

 
The boundary  of the two phases satisfies the 
equation 
   0

00

( )
( )

( )

x g s y
t x dy

f s y
   .               (7) 

 
Since the conditions (3) and (4) have not been 
agreed at the origin, according to the theory of 
characteristics [20] on the boundary  the solu-
tion С has a strong discontinuity; and the solu-
tion S has a weak discontinuity (the break of the 
derivative). Behind the concentration front in 

S  the solution is positive 0, 0C S  ; ahead 

of the front in W  the solution 

00, ( )C S s x  . On the concentration front 

{ ( ), 0 1}t t x x      the retained particles 
concentration 
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0( )
( )

t t x
S s x  .                    (8) 

 
In S  the solution of the Goursat problem (1) – 
(3) (8) coincides with the solution of the origi-
nal problem (1) – (4). 
The system (1), (2) with constant coefficients 
 

0
C C S

t x t

       ; 

, 0
S

C
t

     , 

 
has a two-phase boundary line t x . The condi-
tions (3) and (4) determine an exact solution 
 

, ;
( , )

0, ;

xe t x
C x t

t x

     

0

0

( ) ( ) , ;
( , )

( ) , .

xt x e s x t x
S x t

s x t x

       

 
In general, the problem (1) – (4) does not have 
an analytic solution. Below an asymptotics is 
constructed, and the results of numerical simula-
tion are provided. 
 
 
3. ASYMPTOTIC SOLUTION FOR A 

SMALL LIMIT DEPOSIT 
 
Let the filtration coefficient ( ) 0S   for 

0 MS S   and ( ) 0MS  . In this case, the 
concentration of the retained particles ( , )S x t  

does not exceed the limit value MS . The block-
ing filtration coefficient has the form 
 

2 3
2( ) ( ) ( ) ( )M M MS S S S S O S S        . (9) 

 
Let 
 

2
0 1

2
0 1

( ) ( );
( ) ( ).

g S g g S O S
f S f f S O S

                 (10) 

 

The asymptotic solution for a small limit deposit 

MS  is constructed in the form 
 

2
1

2 3
1 2

1 ( );
( ).

M M

M M M

C S c O S
S S s S s O S
                  (11) 

 
Substituting the expansions (10), (11) in equa-
tions (1), (2) and equating terms with the same 
powers of MS , we obtain a system of recurrent 
equations 
 

1
1(1 )

s
s

t

    ;                     (12) 

1 1 1 1 1
0 0 1 1 0

c c s s s
g f g f

t x t x t

             ;   (13) 

22
1 1 2 2 1(1 ) (1 )

s
s c s s

t

        .       (14) 

 
Using the inequality 0( ) Ms x S  the condition 
(8) can be written as 
 

( )
( ), 0 ( ) 1Mt t x

S S q x q x    .            (15) 

 
Conditions defining the unique solution of the 
system (12)-(14) follow from (3), (15): 
 

1 ( )
( )

t t x
s q x  ;                   (16) 

1 0
0

x
c   ;                        (17) 

2 ( )
0

t t x
s   .                      (18) 

 
The asymptotics of the two phase boundary line  can be obtained by expanding the integrand in 
(7) in a series of powers of MS  
   

2
0 1

2
0 1

20 1 0 0 1
2

0 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ).

M M M

M M M

M M

g q y S g g q y S O S

f q y S f f q y S O S
g g f g f

q y S O S
f f

     
 (19) 

 
Substitution of the expansion (19) into the inte-
gral (7) gives 
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2

0

( ) ( ) ( )
x

M Mt x x S q y dy O S     ,        (20) 

 
where 2

0 0 1 0 0 1 0/ , ( ) /g f g f g f f    . 
 
The solution of the equation (12), (16) 
    ( )

1 1 1 ( ) t t xs q x e     .             (21) 

 
After the substitution of (21) into (13) the solu-
tion of (13) can be written in the form 
 

1 ( )tc e u x .                       (22) 
 
The function ( )u x  satisfies the equation 
 

( ) ( ) 0, (0) 0t xu u e K x u     ,      (23) 
  1 1 1

0

( 1 ) 1 ( ) ( )
( )

g f q x f q x
K x

f

     . 

 
From (20) the function 
 

( )

0

( )
x

t xu e K y dy                    (24) 

 
is the solution of (23) with an accuracy ( )MO S . 
From (24), (22) 
 

 ( )
1

0

( )
x

t t xc e K y dy    .            (25) 

 
Substitution of the solutions (21) and (25) into 
equation (14) gives with an accuracy ( )MO S  
 

   

 
2 ( )2

2

2

0

1 ( )

( ) 1 ( ) .

t t x

x

s
s q x e

t

K y dy q x

                       (26) 

 
The solution of (26) with the condition (18) 
 

     
 

( ) 2 ( )
2

2

0

1 ( )

( ) 1 ( ) .

t t x t t x

x

s e e q x

K y dy q x

        
          (27) 

 
The functions (21), (25), (27) are the main terms 
of the asymptotic expansions (11). These expan-
sions exactly satisfy the conditions (3) and (4); 
equation (1) is satisfied with accuracy 2( )MO S , 

equation (2) - with accuracy 3( )MO S . 
 
 
4. NUMERICAL MODELING 
 
The numerical calculation is performed by finite 
difference method for explicit TVD-scheme 
with superbee limiter function [21] for  
 

( ) 1 3 , ( ) 1 2g S S f S S    , 

0( ) ( ) , ( ) 0.5(1 )Ms x q x S q x x   , 

0.5, 0.1M MS S  , 

2 1    . 
 
The following figures illustrate the asymptotics 
(dashed line) and the numerical solution (solid 
line). 
The figures show the break of suspended parti-
cles concentration ( , )C x t  and the loss of 
smoothness of retained particles concentration 

( , )S x t  on the two-phase boundary . 
 
 
5. CONCLUSION 
 
The filtration problem with the initial deposit is 
a generalization of deep bed filtration of the 
suspension in a porous medium with size-
exclusion particle retention mechanism [15]. 
For a uniformly distributed initial deposit 

0 0( )s x s const   the substitution 0S S s   
reduces the problem to the standard model. In 
case of the uneven initial deposit 0( )s x  the 
global asymptotic solution is constructed for a 
small limit deposit MS . 



Ludmila I. Kuzmina, Yuri V. Osipov, Yuri P. Galaguz 

International Journal for Computational Civil and Structural Engineering 74 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
 

 
Figure 1. 3-D graphs of concentrations and the boundary of the two phases for 0.5MS  . 

 

    
a) 0.5t   b) 1.5t   c) 0.5x   d) 1x   

Figure 2. Graphs of the suspended particles concentration for 0.5MS  . 
 
 

    
a) 0.5t   b) 1.5t   c) 0.5x   d) 1x   

Figure 3. Graphs of the retained particles concentration for 0.5MS  . 
 

    
a) 0.5t   b) 1.5t   c) 0.5x   d) 1x   

Figure 4. Graphs of the suspended particles concentration for 0.1MS  . 
 
The asymptotics is compared with a numerical 
solution of the problem. Figures 1 – 3 show that 
the asymptotics gives good approximation of 
the solution for relatively large limit deposit 

0.5MS  ; with decreasing limit deposit an  
asymptotic approximation error tends to zero 
rapidly (see fig. 4, 5). 
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a) 0.5t   b) 1.5t   c) 0.5x   d) 1x   

Figure 5. Graphs of the retained particles concentration for 0.1MS  . 
 
The asymptotic and numerical modeling can be 
used in the planning and analysis of experi-
mental studies [22]. 
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