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MODELING OF BLAST EFFECTS
ON UNDERGROUND STRUCTURE
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Abstract: Modeling of the impact of a point explosion shock wave on a soil mass and an underground structure
at different locations of the explosion epicenter from the ground surface was performed. The study of the stress-
strain state of soils was carried out using a nonlinear dynamic method and a fully coupled numerical model, in-
cluding various models of materials. The result of numerical modeling showed the adequacy of the adopted nu-
merical calculation methods. The findings showed that solving the problem in a nonlinear dynamic formulation
allows obtaining the parameters of the shock wave at different depths from the explosion center, as well as ob-
taining a complete picture of the interaction of the shock wave with the underground structure in surface and un-
derground explosions.
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MOJIEJTUPOBAHUME BO3JEVMCTBUS YIAPHOM BOJIHBI
HA NOA3EMHOE COOPYXEHUE

O.B. Mkpmuwiues, A.FO. Casenkos
HanumonaneHelii nccnenoBaTesibckuii MOCKOBCKUHM TOCYIapCTBEHHBIN CTPOUTENbHBIH YHUBEPCUTET,
r. MockBa, POCCHU S

AHHOTanus: BBINOIHEHO MOAEIMPOBAHUE BO3JCHCTBUS yNapHOW BOJHBI TOYEUHOIO B3pbIBA HAa IPYHTOBBIH
MacCUB U IOJ3EMHOE COOPYKEHHE MIPU PA3IMUYHOM PACIIOJIONKEHUH MULEHTPA B3pbIBA OT IIOBEPXHOCTU I'PYHTA.
HccnenoBanue HanpsiKeHHO-Ie()OPMUPOBAHHOIO COCTOSIHUSI TPYHTOB OCYLIECTBIISUIOCH C UCTIOJIb30BAaHHEM He-
JIMHEHHOTO AMHAMHYECKOTO METOJAA U IMOJHOCTbIO CBSA3aHHOM YHMCIEHHOW MOJENH, BKIIOYAIOUIEH pa3IUYHbIC
MOJIENIM MaTepHanoB. Pe3ynbTaT YMCIEHHOTO MOAEIUPOBAHUS MOKA3al aAeKBATHOCTb MPHUHATHIX UYUCICHHBIX
METOAMK pacueTa. ChaelaHHbIE BBIBOJBI MMOKA3alld, YTO PELICHHE 3a7aYd B HEIMHEHHON AMHAMHYECKON IOCTa-
HOBKE TI03BOJISIET MOJYYNTh MTapaMeTphl YAApHOHW BOJHBI HAa Pa3IMYHBIX INIyOMHAX OT LEHTPa B3pHIBA, a TAKXKE
MOJyYHUTh TMOJIHYIO KapTHUHY B3aMMOJIEHCTBUS yAapHON BOJHBI C MOJ3E€MHBIM COOPYKEHHEM IIPH MOBEPXHOCT-
HOM U MOJI36MHOM B3pBIBE.

KiioueBble cjioBa: B3PLIBHBIC BOSI[CfICTBHH, YaapHas BOJIHA, BOJIHA CXKaTus, HEJIUHEHHAs JWUHAMUKa,
HaHpS[)KCHHO—IIGQ)OI)MH];)OB&HHOG COCTOAHHME, TOA3EMHOE COOPYKECHUEC, TPYHTOBAasA MOJICITb

1. INTRODUCTION

Currently, various industrial undertakings are
being built, relating to oil and gas and space in-
dustries, as well to nuclear power facilities,
which include underground structures. Such un-
derground structures include repositories, shel-
ters, civil defense shelters, command posts, etc.

The current design standards [1-4] require the
calculation of such structures for emergency ac-

tions, including explosions. At the same time,
the structures located on the surface have been
thoroughly studied and there are a sufficient
number of approved calculation methods for
them, including the explosion triggered progres-
sive collapse, earthquake loads, and fires [5-8].
For example, the most common methods are
equivalent-static, linear-spectral, as well as di-
rect dynamic methods of calculation [9-11],
while there are not enough methods for under-
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ground structures and they are in great demand,
in which case the problem is complicated, since
it is necessary to take into account the soil sur-
rounding the underground structure. Therefore,
there is a need to find and study new approaches
to solving the problem of the interaction of
shock waves with a structure.

1.1. Work relevance.

The relevance of the work lies in solving the
problem of the interaction of a point explosion
shock wave with an underground structure using
a nonlinear dynamic method of calculation and
a fully coupled numerical model, including the
model of the soil, air, and an underground struc-
ture.

1.2. Study objective.

The primary objective of this study is to investi-

gate the soil strain-stress state and the response

of an underground structure soil under various
explosion scenarios. To achieve this goal, the
specific objectives of the study include:

e analysis of soil behavior under explosive
loads;

e analysis of soil models used in the calcula-
tion of underground structures for explosive
loads;

e a study of the strain-stress state of the soil
mass in the propagation of shock and seismic
waves; and

e modeling of loads on an underground struc-
ture.

2. MATERIALS AND METHODS

2.1. Soil model.

Soils tend to have a complex structure consist-
ing mainly of mineral particles that form the soil
skeleton. The space between the solid particles
is filled with air and/or water. When the pores
between the solid particles are filled with air,
the soil is of the dry type. When the pores are
filled with water containing a small proportion
of air, the soil is called saturated soil. Therefore,
in general, soils can be called three-phase soils
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(Figure 1). Relative volume fractions of the
three constituent materials of the soil are usually
quantitatively determined by the porosity a and
the saturation degree f.

- ‘Water
p

Figure 1. Soil element.

e For many processes with a low loading rate
(under static loads), the overall macroscopic
behavior of the soil skeleton can be deter-
mined within the framework of the principles
of continuum mechanics, which makes it
possible to simplify modeling and apply the-
ories and methods of continuum mechanics.
Under conditions of fast loading, which are
typical for explosions, soil models should in-
clude constitutive models of three phases
necessary for determining the soil behavior;
thus, different soil behavior should be taken
into account, namely:

e Dilatancy/contraction: Shear strains in soils
can lead to volume changes. This determines
the relationship between the shear strength of
the soil and its strain properties. This effect
was first described by Osborne Reynolds in
1885-1886 and was called dilatancy and the
decrease in volume is called negative dila-
tancy or contraction. In dense sand and over-
compacted clay, with a displacement, the
height of the sample is increased by a certain
amount, thereby increasing the soil volume,
and in loose sand and normally compacted
clay, a decrease in volume can be observed.
Thus, the shear stress initially rises rapidly to
a peak value with a relatively low displace-
ment value with a corresponding increase in
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volume. With this new volume, the blocking
is reduced, and, therefore, as the displace-
ment continues, the shear stress decreases
and, finally, is aligned with the final residual
value.

Such a nature of strain is explained by the
fact that when one part of the soil is dis-
placed relative to another, its shear strength
is determined by sliding friction. To over-
come the adhesion forces, it is necessary to
extend and uplift them to a certain level, in
which case loosening occurs in the shear
zone, which is accompanied by a decrease in
its shear strength. Thus, dense soils become
looser, as a result of dilatancy, and loose
soils become denser, as a result of contrac-
tion.

Plasticity: An increase in the applied stress
usually results in some irreversible strain,
with no signs of cracking or failure. Most
soils have a very small elastic area and show
plasticity from the beginning of loading.
Hardening/softening (thixotropy): It is the abil-
ity of soils to reduce their viscosity (to liquefy),
as a result of mechanical damage, and increase
the viscosity at rest. Freundlich found that
thixotropy is manifested in soils, in which the
content of clay particles exceeds 2%. It is sug-
gested that all clay soils are potentially thixo-
tropic, but for a specific manifestation of thix-
otropy, certain conditions and, first of all, quite
intense exposures are necessary (Figure 2).
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Figure 2. Response of soil with respect
to shearing.
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¢ High strain rate behavior: Soils with different

water content exhibit different behavior at
high strain rates. In experiments with different
soils from sands to clays, it was noted that
with a decrease in the loading time (an in-
crease in the loading rate), the compressive
strength increases. Thus, in clay soils, when
comparing experiments with a loading rate of
0.02 s with tests at a loading rate of 10 min,
the strength increased by 1.5-2 times and
smaller values were obtained for more durable
clays. In sandy soils, the effect of loading rate
was significantly lower and the strength in-
crement did not exceed 15% of the static val-
ue.

With repeated impulses and vibrations, all
observations and experiments show the op-
posite picture, a significant reduction in the
soil shear resistance in some cases.

Effects of drainage and volume changes: In
saturated soils, an increase in the applied
compressive stress causes an increase in the
pore pressure of water. If drainage is possi-
ble, water outflows to the surrounding areas,
where the water pore pressure is lower. The
outflow rate depends on the soil permeabil-
ity; in gravel and sand, it is relatively fast and
in silts and clays, it is slow. When the excess
pressure of the pore water is dissipated, the
applied stress is transferred from the pore
pressure to the effective stress.

It should be noted that there are also other
characteristics of soil behavior, such as creep
and temperature dependence. These aspects
are not discussed here, since they are beyond
the scope of this study.

The mechanical behavior of soils can be
modeled at many levels. Hooke’s law of lin-
ear isotropic elasticity can be considered as
the simplest of the available stress-strain re-
lations, but, as a rule, it is too rough to grasp
the main characteristics of the soil behavior.
On the other hand, several researchers have
proposed a large number of soil models to
describe the soil behavior in various aspects
in detail. However, the number of soil mod-
els that are suitable for implementation in
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advanced software systems using finite ele-
ment methods is rather limited.

Let us consider the most commonly used soil
models that can predict the soil behavior de-
scribed above. These models include elastic,
perfectly plastic soil models, hardening-
plastic soil models, elastic-viscous soil mod-
els, three-phase soil models, viscoplastic soil
models, SFG unsaturated soil model, and un-
saturated plasticity models of the bounding
surface.

The most commonly used soil models that can

predict the soil behavior described above are:

Elastoplastic soil models:

e Mohr-Coulomb model;

¢ Drucker-Prager model.

e Hardening soil models;

e (Cam-clay tent model (for some soils it is re-
quired that they were tent-like, so that there
would be a limitation on the resulting hydro-
static pressure);

e Three-phase soil models;

e Viscoplastic soil models.

Among them, the most commonly used in prac-

tice is the Mohr-Coulomb model. In further

work we will accept it as the main one.

A classical Mohr-Coulomb model is described

by the following strength conditions, which

have a different appearance under different test
conditions. The first strength condition:

T =o0,tge’ +c (1)
— consolidated-drained shear;
T= (0, —u)tge +c (2)
— consolidated-undrained shear;
T=Cy 3)

— unconsolidated-undrained shear (for water-
saturated soils);

7= (ug —wWitge? + (o, —Wtge' + ¢’ (4)

— consolidated-untrained shear, sedentary soils;
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T = 0ptger + ¢y (%)

— in the case of large shear strains.

wheret is a shear stress, upon reaching which
the destruction of the ground will occur; o, — is
an effective normal stress; ¢’ — is an effective
angle of internal friction; ¢ — is a drained angle
of internal friction; ¢ — are drained specific ad-
hesion forces; ¢’ — is effective specific adhesion
forces; u, — is a pore air pressure; # — 1s a pore
water pressure; ¢, is an angle of internal fric-
tion, depending on the magnitude of the matrix
suction; ¢, — is a residual angle of internal fric-
tion; ¢, — are residual specific adhesion forces;
and c¢,, — is an undrained strength.

Second strength condition:

. 0, — 03 6
sing = ——
¢ 01 + 03 ©)

— for gravel, sandy and coarse soils;

01 — O3

(01 + 03 + 2cctgy) - e )

— for clay soils.
With a three-dimensional stress-strain state, the
equation takes the following form:

loy = 03| = (2cctge — 01 — 07)sing
o, — 03| = (2cctgy — 0, — o3)sing ¢ (8)
o — 01| = (2cctgy — o3 — 01)sing

According to this equation, the Mohr-Coulomb
yield surface in the space of primary stresses
has the form of a hexagonal pyramid (Figure 3),
with a vertex at the point with coordinates.
{cctge; cctge; cctgp}

As is obvious, this model describes different
types of soil, with different water saturation. But
in addition to the classical model, there are other
modifications of the model used for certain spe-
cific tasks.

International Journal for Computational Civil and Structural Engineering



Modelling of Blast Effects on Underground Structure
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Figure 3. Mohr-Coulomb yield surface
in the space of primary stresses.

For example, the Mohr-Coulomb model based
on the works of A.J. Abbo and S.W. Sloan per-
formed in 1995 [12,13], taking into account all
the above-mentioned soil behaviors, as well as
the removal of elements, which is typical for
explosive loads [14,15]. Therefore, we will use
this version of the Mohr-Coulomb model.

The usual Mohr-Coulomb yield surface is de-
scribed by the function:

F = —Psing + K(H)\/]—Z —ccosp=0 (9

where P is a mean pressure; ¢ is an angle of
internal friction; K (@) is a function of the angle

0 in the deviator plane; \/]—2 is a square root of
the second invariant of the stress deviator; and
C is an adhesion.

The modified yield surface is a hyperboloid “fit-
ted” to the Mohr-Coulomb surface. The modi-
fied surface equation has the following form:

F = —Psing + \/]ZK(G)Z + a?sin?@

10
—ccosp =0 (10)

where “a” is a parameter that determines the ap-
proximation of the modified surface to the ordi-
nary Mohr-Coulomb surface.
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2.2. Air model.
The model used in the calculation is described
by a polynomial equation:

P = CO + Cll’l+ Czuz + C3M3 + (C4_ + C6 (11)

+ C;u)E
1
=——1 12
h=y (12)

where V - relative volume, E - internal energy.

2.3. Model of an explosive.
The explosive model is described by the Jones-
Wilkins-Lee (JWL) equation of state:

w w
p=a(1-7=) e +B(1--)
RV R,V (13)
e R2V +w_E
v

2.4. Modeling methods.

Since the explosion in the ground has a highly
linear character, for this purpose the best option
is to apply a numerical calculation method using
arbitrary ALE Lagrangian-Eulerian meshes,
where Eulerian meshes were used for air, soil,
and explosive and Lagrangian meshes were
used for an underground structure.

To solve the problem, we will use the LS-
DYNA software suite, which allows solving
such problems in a nonlinear dynamic formula-
tion, using the central difference method [16-
18].

For approximation of the equations in this work,
the second-order Godunov method was used.
The time integration of the equations was car-
ried out using an explicit second order accuracy
scheme (central difference method) with the ob-
servance of the scheme stability condition ac-
cording to the Courant criterion.

A differential equation of motion of a system
with a finite number of degrees of freedom:

Mii+ Cu+ Ku=f*¢ (14)
for an explicit scheme, it looks like this:
M1, + Ciy + Ku, = f2 (15)
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Figure 5. Results of the finite element mesh convergence study with dimensions. a) 0,3 m, b)
0,25 m; c) 0,2 m; d) 0,15 m (where A,B,C,D,E — numbers of reference points).

Acceleration vector: Accounting for various types of non-linearities
is performed through the internal force vector
ar = M7H(fE = ) (16) {Fj:
where fE*t — external force vector; int r cont 17
™ — internal force vector. fe = Z .[Q [B"]{o}dQ + {Feo™} ) (A7)
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where B — deformation—displacement matrix; ¢ —
displacement vector; F°™ — contact force vector.
The velocity and displacement vectors in the
corresponding step are determined as follows:

Verat/2 = Ve-atjz T acAt (18)
Aty + Atpynr  (19)
Upsar = Ut + Vesne)2 - 2
3. STUDY RESULTS

For the analysis of soil strain-stress state, a
computational model was created with dimen-
sions of 20.0 x 20.0 x 20 m (h) (Figure 4). In

Pressure
3183006

2878440
2573874
2269308

1964741
1660175

1355609 __
1051043
746477
441911
137345
167221
471787
776353

-1080919 _|

c) d)

this model, the ground and air areas, as well as
an explosive weighing 200 kg were modeled
using solid elements.

When using the central difference method, the
accuracy of the calculations largely depends on
the size of the region to be broken, in other
words, in our case, on the size of the solid finite
elements. Several computational models with
variable size of solid finite elements from 0.3 m
to 0.15 m were considered.

The optimal model was chosen with a cell size
of 0.2 m, in which the difference with the refer-
ence diagram of 0.15 m did not exceed 5%. The
structure is located at a depth of 3 m (Figure 5).
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Figure 6. Isopoles of pressures at time points: a) 0,0077 s; b) 0,022 s, c) formation of explosive

crater; d) propagation of air shock waves and compression wave.
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Figure 7. Isopoles of pressures at time points: a) 0,0077 s; b) 0,026 s, c) 0,056 s;
d) formation of explosive crater.
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Figure 8. Isopoles of pressures at time points: a) 0,0077s; b) 0,01s; c) 0,022s; d) 0,05s.
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3.1. Explosion on the ground surface.

The propagation of a shock wave during an ex-
plosion on the ground surface is considered
(Figure 6), where it can be seen that immediate-
ly after detonation, spherical shock waves prop-
agated in the air from the charge epicenter,
which was on the ground surface. Shock waves
penetrated the ground in the form of hemispher-
ical waves, forming a crater in the ground, fol-
lowed by the propagation of seismic waves.

3.2. The explosion at a depth of 1m.

Next, an explosion at a depth of 1 m from the
ground surface was considered (Figure 7).
Taking into account the results of these two
loading cases, it can be concluded that the most
dangerous case is an explosion at a depth of 1
m, since the propagating seismic waves have a
greater depth and blast pressure.

3.3. Impact of an explosion on an under-
ground structure at a depth of 1 m.

Figure 8 shows the impact of an explosion on an
underground structure at a depth of 1 m. The
wave front reached the surface of the structure
within 7 ms from the beginning of the explo-
sion. The blast pressure was 1.7 MPa.

4. CONCLUSIONS

The parameters of the shock wave in an explo-
sion on the surface and at a depth of 1 m were
compared with empirical values using the for-
mulas [19] and the calculation results with accu-
racy of 5-10% coincide, which proves the ade-
quacy of the adopted numerical calculation
methods. Solving the problem in a nonlinear
dynamic formulation makes it possible to obtain
the parameters of a shock wave at different
depths from the explosion center, as well as to
get a complete picture of the shock wave inter-
action with the underground structure during a
surface and underground explosion.
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