
International Journal for Computational Civil and Structural Engineering, 15(4) 58-65 (2019) 

58 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

  

OPTIMIZATION OF SIMPLY SUPPORTED CASTELLATED  
I-BEAMS LOADED BY A UNIFORMLY DISTRIBUTED LOAD 

 
Oleg S. Goryachevskiy 

National Research Moscow State University of Civil Engineering, Moscow, RUSSIA 
Scientific Research Center «StaDyO», Moscow, RUSSIA 

Russian University of Transport (MIIT), Moscow, RUSSIA 
 

Abstract: The paper discusses the problem of optimizing the geometric parameters of simply supported I-beams 
in order to maximize their load carrying capacity. Numerical simulation of various types of failure of castellated I-
beams with ideal elastic-plastic steel is carried out. The stability of the wall, the strength of the welds and flanges, 
depending on the geometric parameters investigated. Using the coordinate descent method, the optimization prob-
lem is solved for nine design schemes with respect to the section height and the weld length. It was revealed that 
in short beams the section height should be less and the weld length longer, in contrast to long beams. 
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Аннотация: В статье рассматривается проблема оптимизации геометрических параметров развитых дву-
тавров с перфорированной стенкой с целью максимизации их несущей способности. Проведено числен-
ное моделирование различных типов разрушения развитых двутавров в идеальной упругопластической 
постановке. Исследована устойчивость стенки, прочность швов и полок в зависимости от геометриче-
ских параметров. Используя метод покоординатного спуска, решена проблема оптимизации для девяти 
расчетных схем относительно двух параметров: высоты сечения и длины сварного шва. Выявлено, что в 
коротких балках высота сечения должна быть меньше, а длина шва больше, чем в длинных балках. 
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INTRODUCTION 
 
Existing analytical methods for calculating 
strength, rigidity and stability of castellated I-
beams give a very approximate result [1-2]. 
These methods bad take in account a complexity 
of the geometric shape of the castellated I-
beams and plastic deformation steel in angles of 
holes. These factors can be taken account with 

sufficient accuracy only by experiment and nu-
merical methods. Of practical interest is the 
question of choosing such geometric parameters 
zigzag cutting I-beam that will provide maxi-
mum load carrying capacity of castellated I-
beam. But experiment methods are too expen-
sive and time-consuming for their application in 
full optimization problem. 
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b) 

c) 

Figure 1. Scheme method for cutting (a) and subsequent welding of halves 
(b, c) of the original I-beam. 

 
In this paper, to solve the nonlinear optimization 
problem, numerical methods are used. Stress-
strain state and buckling is calculated by the fi-
nite element method. Using FEM analysis re-
sults, the ultimate load on the castellated I-beam 
is calculated according to several criteria (more 
about the criteria will be further in the text). To 
search the optimal geometric parameters, the 
coordinate descent method is used.  
ANSYS Mechanical is used to solve the prob-
lem. APDL macros allow automated load carry-
ing capacity calculation and use powerful capa-
bilities of ANSYS in the finite element analysis 
[3]. 
There are several methods for cutting and sub-
sequent welding of halves of the I-beam. Differ-

ent methods give different relationship between 
geometric parameter. The paper adopts the 
method illustrated in the Figure 1. 
The article discusses the optimization of the 
load carrying capacity of the castellated I-beam 
composed of the lower halves of the original I-
beams (Figure 1a). In order for the holes to be 
the same in both versions of the castellated I-
beam (Figure 1b, 1c)  
 

s2 = s3. 
 
Radius of fillet in the corners due to cutting – 
r = 1cm. 
The design scheme: beam supported at its ends 
and loaded by a uniformly distributed load Q.  
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a) web buckling b) failure of the flange and web in the centre of span 
(von Mises stress field on picture)

 

с) failure of the weld and the flange near support (von Mises stress field on picture)
Figure 2. Types of failure of the castellated I-beams.

The material model (steel): ideal elastic-plastic 
(stress-strain curve with elastic modulus 
E = 206 GPa, yield strength σy = 240 MPa,
Poisson’s ratio v = 0.3).
Geometric parameters of the original I-beams 
are taken according to GOST 8239-89 [4]. 
 
 
1. LOAD CARRYING CAPACITY PARAM-

ETERS  

There are 4 types of failure of the castellated I-
beam supported at its ends and loaded by a uni-
formly distributed load: 
1. Web buckling (Figure 2a). 
2. Failure of the flange and web in the field of 

angles in the centre of span (Figure 2b).

3. Failure of the flange and web in the field of 
angles near support (Figure 2c). 

4. Failure of the weld (Figure 2c). 
For all types of failure, three parameters can be 
introduced: 
1. Fb = Fcr/1.5, where Fcr – the first critical 

load, 1.5 – safety factor [1].
2. Ff – load at which plastic strain completely 

fills the section of the flange. 
3. Fw – load at which plastic strain completely 

fills the weld between two holes. 
To automatic calculate the Fb, a buckling analy-
sis (by the Block Lanczos method, linear material 
model) was first performed. Then the first critical 
load Fcr devided by safety factor 1.5, due to the 
possible eccentricity of the load and the initial 
imperfections of the castellated I-beam.
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The top flange was fixed against possible lateral 
movement and rotation around the longitudinal 
axis, thereby simulating the mounting of the 
castellated I-beam to overlying structures. The 
top flange boundary condition us used only in 
buckling analysis, since it strongly affects the 
forms of buckling. 
To automatic calculate the Ff and Fw, a linear 
static calculation (linear material model) was 
initially performed to determine the load Fp at 
which plastic appears in the castellated I-beam 
flange. Then a load equal 1.2Fp was applied and 
the static calculation was performed with a 
nonlinear material with a load step of 0.01. The 
load 1.2Fp is likely to lead to the failure of the I-
beam, because according to analytical decisions, 
≈1.18Fp is enough. Then, in the Postprocessor, a 
special algorithm at each load step checks for 
plastic strain in the nodes of the flange and 
nodes of the weld. If at some load step in a 
some section of the flange or in the weld in all 
nodes there are plastic strain, then this load step 
is recognized as the moment of failure. So,  
 

Ff = 1.2Fp[i/100+(i-1)/100]/2, 
Fw = 1.2Fw[j/100+(j-1)/100]/2, 

 
where i – load step is recognized as the moment 
of failure flange, j – load step is recognized as 
the moment of failure weld. 
Ideal elastoplastic material behaves 
unphysically in the support zone. If fix the beam 
pointwise on the edge, then near the fastening 
large plastic strain will quickly develop and the 
solution will fall apart. Therefore, in a nonlinear 
analysis at the edges of the beam, all nodes in 
the section were fixed in the direction of 
deflection. This avoids problems with the 
boundary effects. 
 
 
2. FINITE ELEMENT MODELS  
 
Geometric and finite element model are created 
automatically using developed APDL macros 
[3]. In the area between the last holes, and also 
above them and central holes, the mesh is more 

detailed. Failure occurs in these areas. Only the 
top flange for searching for plastic strain is con-
sidered, as it does not have boundary effect of 
supports (Figure 3). 
The weld does not differ geometrically and in 
properties from the steel of original I-beam. 
Elements type – Shell 181. In the buckling anal-
ysis, to combat non-physical buckling forms, 
full integration in the wall elements was used. 
Also, a coarser grid was used in the linear and 
buckling analyses. 
 

a) 

 

b) 

 
  

Figure 3. Fragments of the finite element model. 
Number of elements: ~15-40 thousands 

depending on the length of the beam and the 
number of holes. 

 
 
3. DEPENDENCE OF Fb, Ff AND Fw  

ON GEOMETRUC PARAMETERS  
 
The important points to make about Fw and Ff 
calculations: 
 if Ff < Fw (much), then Fw cannot be calcu-

lated correctly. The fact is that with the de-
struction of the flange of the castellated I-
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beam, the entire structure suffers a collapse 
– a sharp increase in deflections and plastic 
strain. In such conditions, the solution loses 
stability and cannot give correct results; 

 if weld length s2 is large enough, then the 
weld failure does not occur under load 
1.2Fp. In this case, Fw  is not calculated.  

 if Fw and Ff changed less than 1%, when 
changing the argument, then curve Fw and 
Ff  may contain some fluctuations, because 
load step is also 1%. 

The geometric parameters of cutting significant-
ly affect both the magnitude of the Fb, Ff and Fw 
and the types of failure. For example, large val-
ues of c and hb increase stability (Fb), small val-
ues s2 decreases weld strength (Fw). However, 
many other dependencies are not obvious and 
require preliminary study (figure 4). 
Figure 4a shows the dependence of Fb, Ff and 
Fw on c. Fb is obviously increasing, Ff increas-
ing as the failure of the flange at the support is 
moving away from the support, Fw decreases as 
reduced weld length s2 (s1 is fixed). The reason-
able change c does not reveal the presence of 
extrema. 
The number of holes N affects the weld length 
s2 (if s1 is fixed), so Fw decreases (figure 4b). 
Stability almost independent of hole count N. 
Flange strength decreases after weld failure – 
two holes merge into one and the span of the 
flange increases. 
 
 
4. STATEMENT OF OPTIMIZATION 

PROBLEM OF THE CASTELLATED  
I-BEAM 

 
The problem of maximizing the load carrying 
capacity can be defined as follow [5-6]: 
 

 min , , maxb f wF F F F   
 

Objective function F depends on the geometric 
parameters, type of load and support condition.  
For the selected cutting method (Figure 1), the 
uniformly distributed load and supported at its 
ends: 

 
 1 2 3, , , , , , , ,b tF F I L c r N s s s h h    

 
where L – length of beam, I – number of profile, 
which defines a number of geometric parame-
ters of section, r – radius of fillet in the corners 
due to cutting. 
Parameter 1s  is not independent: 
 

  1 22 2 1 / 2s L c N s N    . 
 

Parameters I and L do not change during of one 
optimization problem. r=10mm for all schemes. 
In the article, we will determine c and N our-
selves, and we will optimize only for two pa-
rameters s2 and hb. Thus, for each design 
scheme: 
 

 2 , bF F s h . 
 

Only geometrically inequality constraints: 
 

   20 2 / 2 1 ,s L c N     
/ 2,bt h h   

 
where t – thickness of flange, h – height of orig-
inal I-beam. 
From a technical point of view, we can narrow the 
conditions without risking losing the optimal point: 
 

   220 2 / 2 1 10 ,mm s L c N mm      
2 2 / 5bt h h   

 
Computation the objective function using the 
finite element method has some problems. Non-
linear material properties and a difference in the 
mesh at different points introduce a small noise 
into the objective function. The presence of 
noise does not allow the use of derivative-based 
optimization methods and impairs convergence 
[7-8]. 
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a) Dependence of Fb, Ff and Fw on the c 

 50; 400c mm , step 10 mm  

130, 6 , 16, 100 , 50bI L m N s mm h mm     

b) Dependence of Fb, Ff and Fw on the N 
 6; 22N  , step 1 pc 

130, 6 , 300 , 100 , 60bI L m c mm s mm h mm     

  
c) Dependence of Fb, Ff  on the hb 

 20; 200bh mm , step 10 mm  

250, 12 , 24, 400 , 85.1I L m N c mm s mm     

d) Dependence of Fb, Ff and Fw on the s2 
 2 20; 200s mm , step 10 mm  

50, 12 , 24, 400 , 80bI L m N c mm h mm     
Figure 4. Dependence of Fb, Ff and Fw for some configuration of castellated I-beam. 

 
5. OPTIMIZATION RESULTS  
 
To search the optimal point  * *

2 , bs h , the coordi-
nate descent method was used. At each iteration, 
the golden-section search was used as the linear 
search method. The optimal point was calculat-
ed with sufficient accuracy after two iterations 
of the coordinate descent method.  
Initial point:  
 

 
min minmin min

0 0 2 2
2 , ;

2 2
b b

b
h hs ss h

 
  
 

. 

 
Tolerance of golden-section search  
 

2 2.5 ; 2.5bs mm h mm    . 
 
The optimization results are presented in Table 
1 and Figure 6. 
An important non-dimensional parameter of cas-
tellated I-beams – height increase ratio (Table 2). 
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Table 1. Optimization results. 

No. I L, m c, mm N s2, mm hb, mm F, kN 
min max opt min max opt min max 

1 
30 

4 300 10 20.0 168.9 99.6 20.4 120.0 77.5 59.73 70.70 
2 6 300 16 20.0 164.2 79.1 20.4 120.0 67.4 28.61 39.33 
3 8 300 20 20.0 179.7 93.3 20.4 120.0 57.4 19.10 22.53 
4 

40 
5 350 12 20.0 177.0 107.2 26.0 160.0 117.2 78.04 98.90 

5 8 350 16 20.0 225.5 94.9 26.0 160.0 80.9 32.57 44.96 
6 10 350 20 20.0 228.5 80.0 26.0 160.0 78.1 26.25 29.19 
7 

50 
6 400 12 20.0 216.1 122.7 30.4 200.0 156.4 89.59 115.83 

8 9 400 20 20.0 200.3 92.7 30.4 200.0 99.9 46.35 59.11 
9 12 400 20 20.0 277.2 89.6 30.4 200.0 96.3 19.74 33.78 

 
Table 2. Height increase ratio. 

No. 1 2 3 4 5 6 7 8 9 
k 1.48 1.55 1.61 1.41 1.60 1.61 1.37 1.60 1.61 

 

 
a) I30, L=4m, c=300mm, N=10 

 
b) I40, L=10m, c=350mm, N=20 

Figure 5. Several optimized castellated I-beams: No. 1 (a) and No. 6 (b) from Table 1.  
 

   2 2 1b bk h h h h h    . 
 
 
6. CONCLUSIONS 
 
Castellated I-beam load carrying capacity has 
maximum for many design schemes. However, 
for some geometric parameters, not all schemes 
have extrema. Nevertheless, the task of increas-
ing the carrying capacity remains relevant. 

Section height and weld length always have a 
maximum point, therefore, in this work, the prob-
lem of optimizing these parameters was solved.  
Based on the 9 considered design schemes (Ta-
ble 1), some conclusions can be drawn: 
 the optimal height increase ratio of castel-

lated I-beams increases with increasing 
span (Table 2) 

 the relative length of the weld decreases 
with increasing span. 

The first conclusion is explained by the fact that 
in short beams, destruction occurs in the zone of 
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supports. Wall height is a determining factor in 
its stability. However, stability can be ensured by 
installing stiffeners. It can be expected that when 
using stiffeners, the optimal solution will change. 
In long beams, destruction occurs in the middle 
of the span from the action of a bending moment. 
In such type of failure, an increase in the inertia 
moment by increasing the section height gives 
the greatest increase in the carrying capacity. 
The second conclusion is also related to the type of 
failure. Welds between end holes have the highest 
stresses. Therefore, the cause of the loss of load-
carrying ability may be the failure of the weld. In-
creasing the weld length solves this problem. 
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