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E$ ���'�: In the present paper, the force driven dynamic response of a nonlinear plate embedded in a 
viscoelastic medium, damping features of which are described by the Kelvin-Voigt fractional derivative model, 
is studied. The motion of the plate is described by three coupled nonlinear differential equations with due 
account for the fact that the plate is being under the conditions of the internal combinational resonance 
accompanied by the external resonance, resulting in the interaction of three modes corresponding to the mutually 
orthogonal displacements. A comparative analysis of numerical calculations for the cases of free and forced 
vibrations has been carried out. 
  

M6AS@�; : Nonlinear vibrations of thin plates, interaction of internal and external resonances, fractional 
derivative viscoelastic surrounding medium, combinational internal resonance 
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k����	��i: Исследованы нелинейные вынужденные колебания тонких пластинок в вязкоупругой среде, 
демпфирующие свойства которой задаются с помощью модели Кельвина-Фойгта с дробной производной. 
Колебания пластинки в вязкоупругой среде описываются в декартовской системе координат тремя 
дифференциальными уравнениями, с учетом того, что пластинка находится в условиях внутреннего 
комбинационного резонанса, сопровождаемого внешним резонансом. Приведен сравнительный анализ 
численных исследований свободных и вынужденных колебаний при наличии различных комбинационных 
внутренних резонансов для различных геометрических параметров пластинки.
 

m����j������j	: нелинейные колебания пластинок, сочетание внутреннего и внешнего резонансов,
дробная производная, комбинационный резонанс
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Recently the interest to nonlinear dynamic 
response of viscoelastic plates or elastic plates 
vibrating in a viscoelastic surrounding medium 
has been greatly renewed due to the appearance 
of advanced materials exhibiting nonlinear 
behaviour, and a comprehensive review in the 
field, including experimental results, could be 

found in [1-6]. In so doing the damping forces 
are usually taken into account via the 
Rayleigh's hypothesis [1,7], resulting in the 
modal damping [8], i.e. it is assumed that each 
natural mode of vibrations possesses its own 
damping coefficient dependent on its natural 
frequency. For describing the viscoelastic 
features of plates, the Kelvin-Voigt model [4] 
or standard linear solid model [5] are of 
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frequent use in engineering practice 
considering either linear or nonlinear springs in 
viscoelastic elements [9]. 
The analysis of free undamped [10] and damped 
[4] vibrations of nonlinear systems is of great 
importance for defining the dynamic system's 
characteristics dependent on the amplitude-
phase relationships and modes of vibration. 
Moreover, nonlinear vibrations could be 
accompanied by such a phenomenon as the 
internal resonance, resulting in strong coupling 
between the modes of vibrations involved [10-
15] and hence in the energy exchange between 
the interacting modes. 
The internal resonance could be observed in the 
case of some combination of natural frequencies 
of one and the same type of vibrations. Thus, 
nonlinear vibrations of rectangular plates, 
dynamic behaviour of which is described by von 
Karman equations in terms of the plate's 
deflection and stress function, have been 
considered in [12] by reducing the governing 
equations to a set of two modal equations 
applying the Galerkin procedure. The case of 
the one-to-one internal resonance (when 
frequencies of two modes of flexural vibration 
are equal to each other) accompanied by the 
external resonance (when the frequency of the 
harmonic force is close to one of the natural 
frequency) has been studied. 
The one-to-one internal resonance has been 
investigated also in [13] and [14] for nonlinear 
vertical vibrations of rectangular plates under 
the action of harmonic forces acting in the 
plate's plane [13] and out of the plate's plane 
[13,14], in so doing a set of three equations in 
terms of two in-plane displacements and 
deflection and a set of five equations 
considering the shear deformations have been 
used in [13] and [14], respectively. However, 
considering the inertia forces only for vertical 
vibrations and utilizing the Galerkin procedure, 
in both papers a set of two nonlinear equations 
has been obtained in terms of two flexural 
modes, which are assumed to be coupled via the 
one-to-one internal resonance. 

For the first two natural modes of flexural 
vibrations, the cases of the 1:2 and 1:3 internal 
resonances have been also studied in [14]. 
Another type of the internal resonance has been 
investigated by Rossikhin and Shitikova [15-
18], when one frequency of in-plane vibrations 
is equal (the 1:1 internal resonance [17,18]) or 
two times larger (the 1:2 internal resonance 
[15,18]) than a certain frequency of out-of-plane 
vibrations. As this takes place, a set of three 
nonlinear differential equations in terms of three 
mutually orthogonal displacements has been 
used considering inertia of all types of 
vibrations, what allows the authors to study 
further the combinational resonances of the 
additive and difference types [16,19-20]. 
Combinational types of the internal resonance 
result in the energy exchange between three or 
more subsystems. It should be noted that 
investigations in this direction were initiated by 
Witt and Gorelik [21], who pioneered in the 
theoretical and experimental analysis of the 
energy transfer from one subsystem to another 
using the simplest two-degree-of-freedom 
mechanical system, as an example. 
Moreover, in order to study nonlinear free 
damped vibrations of a thin plate, the 
viscoelastic Kelvin-Voigt model involving 
fractional derivative [22] has been utilized, 
since this model possesses the advantage over 
the conventional Kelvin-Voigt model [10-14], 
because it provides the results matching the 
experimental data. Thus, for example, 
experimental data on ambient vibrations study 
for the Vincent-Thomas [23] and Golden Gate 
[24] suspension bridges have shown that 
different modes of vibrations possess different 
magnitudes of damping coefficients. Besides, 
the increase in the natural frequency results in 
the decrease in the damping ratio. In order to 
lead the theoretical investigation in the 
agreement with the experiment, in 1998 it was 
suggested in [25] to utilize the fractional 
derivatives to describe the processes of internal 
friction occurring in suspension combined 
systems, what allowed the authors in a natural 
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way to obtain the damping ratios, which depend 
on natural frequencies. 
Nowadays fractional calculus is widely used for 
solving linear and nonlinear dynamic problems 
of structural mechanics, what is evident from 
numerous studies in the field, the overview of 
which could be found in the state-of-the-art 
articles by Rossikhin and Shitikova [26,27], 
wherein the examples of adopting the fractional 
derivative Kelvin-Voigt, Maxwell and standard 
linear solid models are provided for single-mass 
oscillators, rods, beams, plates, and shells. 
In particular, linear vibrations of Kirchhoff-
Love plates with the Kelvin-Voigt fractional 
damping were considered for rectangular and 
circular plates, respectively, in [28] and [29]
using one equation for vertical vibrations, while 
utilizing three equations of in-plane and
transverse vibrations in [7,30], and later 
multiplate systems were analyzed in [26,31]. It 
has been proved [27,32] that if viscoelastic 
properties of plates are described by the Kelvin-
Voigt model assuming the Poisson’s ratio as the 
time-independent value (though for real 
viscoelastic materials the Poisson's ratio is 
always a time-dependent function [33]), then 
this case coincides with the case of the dynamic 
behaviour of elastic bodies in a viscoelastic 
medium. Thus, the authors of [28,29], and not 
only them, replaced one problem with another, 
namely: a problem of the dynamic response of 
viscoelastic Kirchhoff-Love plates in a 
conventional medium with a problem of 
dynamic response of elastic Kirchhoff-Love 
plates in a viscoelastic medium, damping 
features of which are governed by the fractional 
derivative Kelvin-Voigt model. The vibration 
suppression of fractionally damped thin 
rectangular simply supported plates subjected to 
a concentrated harmonic loading has been 
studied recently in [34] in order to minimize the 
plate deflection, in so doing the vibration 
suppression is accomplished by attaching 
multiple absorbers modelled as the Kelvin-
Voigt fractional oscillators, i.e. generalizing the 
approach suggested in [26,31].

As for the analysis of nonlinear vibrations of 
plates, then except the above mentioned papers 
[15-20], the fractional derivative Kelvin-Voigt 
model was used in [35-40] and fractional 
derivative standard linear solid model in 
[6,41,42] but without considering the 
phenomena of the internal resonance. Thus, free 
and forced vertical vibrations of an orthotropic
plate have been studied in [35] considering first 
four modes of flexural vibrations, and during 
the analysis of force driven vibrations the 
frequency of a harmonic force was assumed to 
be equal to one of natural frequencies. The von 
Karman plate equation with fractional derivative 
damping was utilized in [36] for analyzing the 
cases of primary, subharmonic and 
superharmonic resonance conditions, when the 
harmonic force frequency, respectively, is 
approximately equal, three times less or larger 
than the first or second natural frequency of 
vertical vibrations. Nonlinear random vibrations 
of the same plate was studied in [39]. Dynamic 
nonlinear response to random excitation of a 
simply supported rectangular plate based on a 
foundation, damping features of which are 
described by the fractional derivative Kelvin-
Voigt model, has been considered in [38]. The 
analysis of chaotic vibrations of simply 
supported nonlinear viscoelastic plate with 
fractional derivative Kelvin-Voigt model has 
been carried out in [40] for the case when the 
plate is subjected to an in-plane harmonic force 
in one direction and a transverse harmonic  
force. The Galerkin decomposition has been 
used to obtain the modal equation of the system,
in so doing the authors restricted themselves 
only by the first mode. The fractional derivative 
standard linear solid model has been utilized in 
[42] for a viscoelastic layer for active damping 
of geometrically nonlinear vibrations of smart 
composite plates using the higher order plate 
theory and finite element method with 
discretizing the plate by eight-node 
isoparametric quadrilateral elements.  
In the present paper, the approaches suggested 
in [18] for solving the problem on free nonlinear 
vibrations of elastic plates in a viscoelastic 
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medium, damping features of which are 
governed by the Riemann-Liouville derivatives 
of the fractional order, and in [43] for studying 
the dynamic response of the fractional Duffing 
oscillator subjected to harmonic loading are 
generalized for the case of forced vibrations of a 
simply-supported nonlinear thin elastic plate 
under the conditions of different combinational 
internal resonances, when three natural modes 
corresponding to mutually orthogonal 
displacements are coupled. 
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Let us consider the dynamic behavior of a 
simply supported nonlinear thin rectangular 
plate, vibrations of which in a viscoelastic 
fractional derivative medium are described by 
the following three differential equations in the 
dimensionless form [44, 45]:
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where # $, ,u u x y t� , # $, ,v v x y t� , and 

# $, ,w w x y t�  are the displacements of points 
located in the plate's middle surface in the x-, y-,
and z-directions, respectively, �  is the Poisson's 
ratio, 1 /a b� �  and 2 /h a� �  are the 
parameters defining the dimensions of the plate, 
a and b are the plate's dimensions along the x- 
and y-axes, respectively, h is the thickness, t is 
the time, 

# $0 0
ˆ ( ) ( )cos FF F x x y y t� �� " " ;

is the harmonic force applied at the point with 
the coordinates 0 0,x y , F̂  and F;  are its 
amplitude and frequency, respectively, �  is the 
Dirac delta function,  

æ =i i i
�N' O # $1,2,3i �

are damping coefficients, N  is a small 
dimensionless parameter of the same order of 
magnitude as the amplitudes, i'  are finite 
values, iO  is the relaxation time of the ith
generalized displacement, 0D�

� is the Riemann-
Liouville fractional derivative of the � -order 
[46], an overdot denotes the time-derivative, 
and lower indices label the derivatives with 
respect to the corresponding coordinates. 

For solving nonlinear governing equations of 
motion (1)-(3), the procedure resulting in 
decoupling linear parts of equations has been 
proposed with the further utilization of the 
method of multiple scales [18,44,45], in so 
doing the amplitude functions are expanded into 
power series in terms of the small parameter and 
depend on different time scales. It has been 
shown that the phenomenon of internal 
resonance could be very critical, since in the 
thin plate under consideration the internal 
resonance is always present. Moreover, its type 
depends on the order of smallness of the 
viscosity involved into consideration [18]. The (4) 
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following types of the internal resonance have 
been revealed: 
of the order of N : 
the two-to-one internal resonance (1:2) 

# $
# $
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the one-to-one-to-two internal resonance 
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of the order of 2N :
the one-to-one internal resonance (1:1) 
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the one-to-one-to-one internal resonance 
# $1:1:1 �

1 2 3� � �� � ; (8) 
 
the combinational resonance of the additive-
difference type 

3 1 22 ,� � �� � (9) 

3 1 22 ,� � �� "  (10) 

3 2 12 ,� � �� "  (11) 
 
where  1�  and 2�  are the frequencies  of certain 
modes of in-plane vibrations in the x- and y-
axes, respectively, and 3�  is the frequency of a 
certain mode of vertical vibrations. 
Note that the cases of the internal resonances 
(4)-(7) have been studied recently by the authors 
in [44,45,47,48]. Thus, below we will examine 
in detail all possible cases of the combinational 
resonances (8)-(10). 
�
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Now let us consider the case of the additive 
internal combinational resonance (8) 
accompanied by the external resonance, i.e.,  

2
3 1 22 = 2� � � N  � �

and

2
3F F� N  ; � � ,

where   is the detuning parameter 
characterizing the nearness between the natural 
frequencies of the coupled modes, and F  is the 
second detuning parameter defining the 
difference between the frequency of vertical 
vibrations and the frequency of the external 
force F; .
Using the set of solvability equations to 
eliminate secular terms similarly to the case of 
free vibrations considered in [18] and adding the 
external resonance, we obtain the following 
solvability equations for the case of force driven 
vibrations: 
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where 2 2/D T� ! !  is the time-derivative due to 
the utilization of the generalized method of 
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multiple time scales [18], # $2jA T # $1,2,3j �
are unknown complex functions, 1Q , 2Q , 13Q , 23Q
are coefficients depending on the plate 
dimensions and numbers of excited modes [18], 
# $1,2,...8pk p �  are coefficients depending on 

the natural frequencies of plate, and f  is a 
finite value. 
To eliminate # $1 2exp 2i T (  from equations 
(11)-(13), let us introduce the substitution 

# $ # $3 2 3 2expA T A i T � " . (15) 
 
Representing the functions 2( )iA T  in equations 
(11)-(13) in the polar form     
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where a dot denotes differentiation with respect 
to 2T , ia  and i4  are amplitudes and phases, 
respectively,  

3 2 1= 2� 4 4 4" "

is the phase difference,  

1= sin ,i i i is � �' O � �" = / 2� �� ,
1= cos ,i i i i
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The set of Eqs. (15)-(20) describes the phase-
amplitude modulations at nonlinear forced 
vibrations (1)-(3) in the case of the additive 
combinational resonance (8), and it is the 
generalizations of the case of free vibrations 
considered in detail in [19].  
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Now let us consider the difference 
combinational resonance (9) accompanied by 
the external resonance, i.e. when 
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Then eliminating secular terms, we obtain the 
following solvability equations: 
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Applying to (21)-(23) the same procedure as it 
has been done above for (11)–(13), as a result,
we have 
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where 3 2 1= 2� 4 4 4� "

is the phase difference. 
The set of Eqs. (24)-(29) describes the phase-
amplitude modulations at nonlinear forced 
vibrations (1)-(3) in the case of the difference 
combinational resonance (9).   

-"�"� 9@<$&!��&@!�%� �6 @!�!'6 � @Q� ��6�
;&QQ6�6!'6��A�6� 3 2 12� � �"2 1� �2 12 1 ��
Now let us consider the difference 
combinational resonance (10) subjected to the 
external resonance, i.e. when 

2
3 2 12 = 2� � � N  " �  

 
and

2
3F F� N  ; � � .

In this case the solvability equations have the 
form 

# $ # $
# $

1 2 1 1 1 1 1 1 5 7 1 3 3

2
1 8 2 3 2

2 2

2 exp 2 = 0,
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� "
 (31)

# $ # $
# $

2 2 2 2 2 2 2 2 6 8 2 3 3

2
2 5 1 3 2

2 2

2 exp 2 = 0,

i D A i A k k A A A

k A A i T

�� ' � O Q

Q  

� � � �

�
 (32) 

# $
# $ # $
# $ # $

# $ # $
# $

3 2 3 3 3 3 3

2
13 1 2 23 3 4 3 3

13 5 7 1 1 3 23 6 8 2 2 3

13 8 23 5 1 2 3 2

2

2

2 2

exp 2

2 exp = 0.F

i D A i A

k k k k A A

k k A A A k k A A A

k k A A A i T

f i T

�� ' � O

Q Q

Q Q

Q Q  

 

� �

� � � � �0 -/ ,
� � � � �

� � " "

"

(33)

 
Applying to (29)-(31) the same procedure as it has 
been done above for (11)–(13), as a result, we 
have 
 

# $.2 2 1 2
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where 3 1 2= 2� 4 4 4� "   
 
is the phase difference. 
The set of Eqs. (33)-(38) describes the phase-
amplitude modulations at nonlinear forced 
vibrations (1)-(3) in the case of the difference 
combinational resonance (10).     
 
 
."�>qGPL*9EK�9EK9qKE=*)>?�

The differential equations (15)-(20), (24)-(29)
and (33)-(38) describing the phase-amplitude 
modulation for the additive and difference 
combinational resonances (8)-(10) have been 

solved numerically using the Runge-Kutta 
fourth-order algorithm at different magnitudes 
of the fractional parameter γ. The geometrical 
parameters of the plate utilized for calculations 
are given in Table 1 for three types of the 
combinational resonance for three types of 
plates: square, rectangular and oblong.  
The envelopes of the amplitudes for all nine 
examples presented in Table 1 are shown in 
Figures 1-9 for free ( 0f � ) and forced ( 0f P )
vibrations, wherein solid, dotted and dashed  
lines correspond to the functions # $3 2a T , # $2 2a T

and # $1 2a T , respectively, allowing one to trace 
the energy exchange between three interacting 
modes coupled by the additive-difference 
combinational resonances (8)-(10).  
The time 2T -dependence of the amplitude 
envelopes for a rectangular plate with the 
dimensions a = 0.57 m and b = 0.1425 m (cases 
№ 1, 4 and 7 in Table 1) are shown in Figures 1, 
4 and 7 at 10f � for three types of the 
combinational resonance. It is seen that the most 
unfavorable is the difference combinational 
resonance  

3 2 12� � �"2 1� �2 12 1 ,

Table 1. Plate parameters which satisfy the combinational resonance condition.
№ 1� 1m 1n 2� 2m 2n 3� 3m 3n a,

m
b,
m

h,
m

�

Combinational resonance: 3 1 22� � ��1 2� �1 21 2� and force amplitude level 10f �
1 15.7 3 1 9.29 3 1 13.33 6 1 0.57 0.1425 0.0513 0.3
2 37.83 9 1 44.953 3 3 41.668 3 3 1.14 0.1425 0.0285 0.3
3 16.92 5 2 11.9 4 5 14.25 4 3 0.25 0.25 0.05 0.3

Combinational resonance: 3 1 22� � �"1 2� �1 21 2 and force amplitude level 10f �
4 42.15 6 3 14.985 1 2 13.324 6 1 0.57 0.1425 0.0513 0.3
5 100.58 1 4 14.985 1 1 41.65 3 3 1.14 0.1425 0.0285 0.3
6 32.345 9 5 4.156 1 2 14.245 4 3 0.25 0.25 0.05 0.3

Combinational resonance: 3 2 12� � �"2 1� �2 12 1 and force amplitude level 1f �
7 26.842 3 2 47.639 9 6 10.51 5 1 0.57 0.1425 0.0513 0.3
8 25.328 1 1 61.783 9 4 18.3 1 2 1.14 0.1425 0.0285 0.3
9 7.025 1 1 13.142 5 5 2.85 2 1 0.25 0.25 0.05 0.3
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Figure 1. Amplitude envelopes of (a) free and (b) forced vibrations for plate №1 at the initial 
amplitudes 0 0.5ia � .

 

Figure 2. Amplitude envelopes of (a) free and (b) forced vibrations for plate №2 at 0 0.5ia � .
 

Figure 3. Amplitude envelopes of (a) free and (b) forced vibrations for plate №3 at 0 0.5ia � .
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Figure 4. Amplitude envelopes of (a) free and (b) forced vibrations for plate №4 at 0 0.5ia � .

Figure 5. Amplitude envelopes of (a) free and (b) forced vibrations for plate №5 at 0 0.5ia � .
 

Figure 6. Amplitude envelopes of (a) free and (b) forced vibrations for plate №6 at 0 0.5ia � .
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Figure 7. Amplitude envelopes of (a) free and (b) forced vibrations for plate №7 at 0 0.5ia � .
 

Figure 8. Amplitude envelopes of (a) free and (b) forced vibrations for plate №8 at 0 0.5ia � .
                               

Figure 9. Amplitude envelopes of (a) free and (b) forced vibrations for plate №9 at 0 0.5ia � .
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since it provides the essential increase in 
dimensionless amplitudes, resulting in high 
level of stresses and strains.    
The time 2T -dependence of the amplitude 
envelopes for an oblong plate with dimensions 
a=1.14 m and b=0.1425 (cases 2, 5 and 8 in 
Table 1) is presented in Figures 2, 5 and 8 at 

10f � , whence it follows that the additive 
combinational resonance is the most 
unfavorable, while the difference resonances 
result in the monotonic variation of 
dimensionless amplitudes.  
As for a square plate (cases 3, 6 and 9 in Table 
1), then all types of the combinational resonance 
influence equally on the amplitudes variation 
with time.  

4. 9)>9Kq?*)>�

In the present paper, nonlinear force driven 
vibrations of thin plates in a viscoelastic 
medium have been studied, when the motion of 
the plate is described by a set of three coupled 
nonlinear differential equations subjected to the 
condition of the combinational resonance 
accompanied by the external resonance.
Nonlinear sets of resolving equations in terms of 
amplitudes and phase differences have been 
solved numerically using the Runge-Kutta 
fourth-order algorithm. The influence of 
viscosity on the energy exchange mechanism 
between interacting modes has been analyzed. It 
has been revealed that plates of different 
dimensions behave in a different manner under 
the additive and difference combinational 
resonances. Rectangular plates are more 
sensitive to plate’s dimensions than square ones.  

Rq>(*>8�
�
This research has been supported by the 
Ministry of Education and Science of the 
Russian Federation (Project 9.5138.2017/8.9). 

LPRPLP>9P?�
�
1. E<�$&%&� G" Nonlinear vibrations of 

rectangular plates with different boundary 
conditions: theory and experiments. // 
Computers & Structures, 2004, 82, pp.
2587-2605.

2. E<�$&%&� G" Nonlinear Vibrations and 
Stability of Shells and Plates. Cambridge 
University Press, London, 2008, 391 pages.

3. H�6 %�7 BA�*"(", E<�$&%&�G", K6I��!;�G"
Physically and geometrically non-linear 
vibrations of thin rectangular plates. //
International Journal of Non-Linear 
Mechanics, 2014, Vol. 58, pp. 30-40.

4. E<�$&%&� G" Nonlinear vibrations of 
viscoelastic rectangular plates. // Journal of 
Sound and Vibration, 2016, Vol. 362, pp.
142–156.

5. E<�$&%&� G" Nonlinear damping in 
nonlinear vibrations of rectangular plates: 
Derivation from viscoelasticity and 
experimental validation. // Journal of the 
Mechanics and Physics of Solids, 2018,
Vol. 118, pp. 275–292.

6. E<�$&%&� G" Nonlinear damping in large-
amplitude vibrations: modelling and 
experiments. // Nonlinear Dynamics, 2018,
Vol. 93(1), pp. 5–18.

7. L@  &B�&!� O#"� E", ?�&�&B@7�� G":" Thin 
bodies embedded in fractional derivative 
viscoelastic medium. // Dynamic response,
In: Encyclopedia of Continuum Mechanics,
edited by H. Altenbach, A. Ochsner,
Springer, Berlin, Heidelberg, 2019.

8. 9%@#I�� L"X", D6!C&6!� N" Dynamics of 
Structures. McGraw-Hill, New York, 1975.

9. p6;�&�� M"L", ?&<@!@7&'� N"(" Structural 
analogies on systems of deformable bodies 
coupled with non-linear layers. //
International Journal of Non-Linear 
Mechanics, 2015, Vol. 73, pp. 18-24.

10. L&$6&�@� D", D6�A�� G" Nonlinear free 
vibration of isotropic plates with internal 
resonance // International Journal of Non-
Linear Mechanics, 2000, Vol. 35, pp. 263-
278.



Analysis of Forced Vibrations of Nonlinear Plates in a Viscoelastic Medium Under the Conditions of the Different 
Combinational Internal Resonances 

Volume 15, Issue 3, 2019 143 

11. >�AQ6�� E"p. Nonlinear interaction: 
Analytical, computational, and 
experimental methods. New York, Wiley, 
2000.

12. 9��!I� ?"*", H�5�5�E"M", M�@# I�&%%� 9"G"
Non-linear vibrations and chaos in 
harmonically excited rectangular plates 
with one-to-one internal resonance. // 
Nonlinear Dynamics, 1993, Vol. 4(5), pp 
433-460.

13. E!%� �8", P%$6A%&�)" Nonlinear vibrations 
of a simply supported rectangular metallic 
plate subjected to transverse harmonic 
excitation in the presence of a one-to-one 
internal resonance. // Nonlinear Dynamics,
2002, Vol. 30(1), pp. 1-28.

14. p�@� O"�", V��!I� X", N&� �"K" Nonlinear 
dynamic response of functionally graded 
rectangular plates under different internal 
resonances. // Mathematical Problems in 
Engineering, 2010, Vol. 33, Article ID 
738648.

15. L@  &B�&!� O#"E", ?�&�&B@7�� G":" Free 
damped non-linear vibrations of a 
viscoelastic plate under the two-to-one 
internal resonance. // Materials Science 
Forum, 2003, Vols. 440-441, pp. 29-36.

16. L@  &B�&!� O#"E"J� ?�&�&B@7�� G":"J�
)7 5�!!&B@7��P"*" Free damped vibrations 
of a nonlinear rectangular thin plate under
the conditions of internal combinational 
resonance. // Nonlinear Acoustics at the 
Beginning of the 21st Century, Proceedings 
of the 16th International Symposium on 
Nonlinear Acoustics (O.V. Rudenko and 
O.A. Sapozhnikov, eds.), August 19-23,
2002, Moscow, Russia, Vol. 2, pp. 693-696.

17. L@  &B�&!�O#"E", ?�&�&B@7��G":"�Analysis 
of free non-linear vibrations of a 
viscoelastic plate under the conditions of 
different internal resonances. // 
International Journal of Non-Linear 
Mechanics, 2006, Vol. 2, pp. 313-325.

18. L@  &B�&!�O#"E", ?�&�&B@7��G":"J >I6!C&�
N"9%" A new approach for studying 
nonlinear dynamic response of a thin plate 
with internal resonance in a fractional 

viscoelastic medium. // Shock and 
Vibration, 2015, Article ID 795606.

19. L@  &B�&!�O#"E", ?�&�&B@7��G":"J >I6!C&�
N"9%" Phenomenological analysis of the 
additive combinational internal resonance 
in nonlinear vibrations of fractionally 
damped thin plates. // WSEAS Transactions 
on Applied and Theoretical Mechanics,
2015, Vol. 10, pp. 260-276.

20. L@  &B�&!�O#"E", ?�&�&B@7��G":", >I6!C&�
N"9%. Fractional calculus application in 
problems of non-linear vibrations of thin
plates with combinational internal 
resonances. // Procedia Engineering, 2016, 
Vol. 144, pp. 849-858.

21. X&���E"E", 8@�6%&B�8"?" Oscillations of an 
elastic pendulum as an example of the 
oscillations of two parametrically coupled 
linear systems. // Journal Technical 
Physics, 1933, Vol. 3(2-3), pp. 294-307.

22. L@  &B�&!� O#"E", ?�&�&B@7�� G":"�
Applications of fractional calculus to 
dynamic problems of linear and nonlinear 
hereditary mechanics of solids. // Applied 
Mechanics Reviews, 1997, Vol. 50, pp. 15-
67.

23. E$;6%28��QQ��� E"G", p@# !6�� 8"X" 
Ambient vibration tests of suspension 
bridge. // Journal of the Engineering 
Mechanics Division, 1978, Vol. 104(5), pp. 
983-999.

24. E$;6%28��QQ��� E"G", ?'�!%�!� L"p"
Ambient vibration studies of Golden Gate 
bridge: I. Suspended structure. // ASCE
Journal of Engineering Mechanics, 1985,
Vol. 111, pp. 463-482.

25. L@  &B�&!� O#"E", ?�&�&B@7�� G":"
Application of fractional calculus for 
analysis of nonlinear damped vibrations of 
suspension bridges. // Journal of 
Engineering Mechanics, 1998, Vol. 124, 
pp. 1029-1036.

26. L@  &B�&!� O#"E", ?�&�&B@7�� G":"�
Application of fractional calculus for
dynamic problems of solid mechanics: 
novel trends and recent results. // Applied 



Marina V. Shitikova, Vladimir V. Kandu 

International Journal for Computational Civil and Structural Engineering144 

Mechanics Reviews, 2010, Vol. 63, Article 
ID 01081. 

27. L@  &B�&!� O#"E", ?�&�&B@7�� G":"�
Fractional calculus in structural mechanics, 
In: Handbook of Fractional Calculus with 
Applications. Vol 7: Applications in 
Engineering, Life and Social Sciences, Part 
A, edited by D. Baleanu, A.M. Lopes (De 
Gruyter, Berlin, 2019), pp. 159-192.

28. (?�67�!@7&') p6;�&� M" Partial fractional 
differential equations of creeping and 
vibrations of plate and their solutions (First 
part). // Journal of Mechanical Behavior of 
Materials, 2005, Vol. 16, Issue 4-5, pp.
305-314.

29. *!I<�!� (", ?#C;�%!&� BA� N" Response of 
viscoelastic plate to impact. // ASME 
Journal of Vibration and Acoustics, 2008,
Vol. 131(7), pp. 763-767.

30. L@  &B�&!�O#"E", ?�&�&B@7��G":" Analysis 
of damped vibrations of linear viscoelastic 
plates with damping modeled with 
fractional derivatives. // Signal Processing,
2006, Vol. 86(10), pp. 2703-2711.

31. (?�67�!@7&') p6;�&�� M" Dynamics of 
coupled systems. // Nonlinear Analysis: 
Hybrid Systems, 2008, Vol. 2, pp. 310-334.

32. L@  &B�&!�O#"E", ?�&�&B@7��G":", =�#!I�
D"=" Application of the fractional derivative 
Kelvin–Voigt model for the analysis of 
impact response of a Kirchhoff-Love plate.
// WSEAS Transactions on Mathematics,
2016, Vol. 15, pp. 498-501.

33. p&%�@!� p"p" Implications and constraints 
of time-independent Poisson ratios in linear 
isotropic and anisotropic viscoelasticity. //
Journal of Elasticity, 2001, Vol. 63(3), pp.
221-251.

34. E�&� G", R��%� L"=", V�A6�!@#�&� G"
Vibrations suppression of fractionally 
damped plates using multiple optimal 
dynamic vibration. // International Journal 
of Computer Mathematics, 2019, DOI: 
10.1080/00207160.2019.1594792.

35. G� ��@#�6�� ?" Nonlinear vibration 
analysis of viscoelastic plates with 
fractional damping. Master Thesis, 

University of Ontario, Institute of 
Technology, 2017. 

36. D6�<@@!�G"�L", p�;;�;�@#��p", N�7�;&�
G" Nonlinear vibration of fractional 
viscoelastic plate: primary, subharmonic, 
and superharmonic response. // 
International Journal of Non-Linear 
Mechanics, 2018, Vol. 99, pp. 154-164.

37. H�$@# B@ � >"8", M�� &B�;6%& � N"="
Nonlinear vibrations of viscoelastic plates 
of fractional derivative type: An AEM 
solution. // The Open Mechanics Journal,
2010, Vol. 4(8), pp. 8-20.

38. p@  6&!B��!&� E", O@#!6 &�!� (",
R����!I;@# �� ?" Dynamic analysis of a 
plate on the generalized foundation with 
fractional damping subjected to random 
excitation. // Mathematical Problems in 
Engineering, 2018, ID 3908371.

39. G�%��� 8", ?��!@ D"(" Nonlinear random
vibrations of plates endowed with fractional 
derivative elements. // Probabilistic 
Engineering Mechanics, 2018, Vol. 54, pp.
2-8.

40. >S�I@#<� =#S�� D"L", G&S�;&!@#� 9"p",
G@!S�!@#� E":", 9��$&� )�@#� N"H",
X@�Q@� D" Chaotic vibrations of nonlinear 
viscoelastic plate with fractional derivative 
model and subjected to parametric and 
external excitations. // Mechanics Research 
Communications, 2019, Vol. 97, pp. 8-15.

41. K&�6SB��D", K6S�!;@S B&�L" Steady-state 
non-linear vibrations of plates using Zener 
material model with fractional derivative. // 
Computational Mechanics, 2017, Vol. 60,
pp. 333-354.

42. (����� D"J� L�A� G"9" Fractional order 
derivative model of viscoelastic layer for 
active damping of geometrically nonlinear 
vibrations of smart composite plates. // 
CMC, 2015, Vol. 49-50(1), pp. 47-80.

43. L@  &B�&!� O#"E", ?�&�&B@7�� G":",
?�'�6I%@7�� ="E" Forced vibrations of a 
nonlinear oscillator with weak fractional 
damping. // Journal of Mechanics of
Materials and Structures, 2009, Vol. 4(9),
pp. 1619-1636.



Analysis of Forced Vibrations of Nonlinear Plates in a Viscoelastic Medium Under the Conditions of the Different 
Combinational Internal Resonances 

Volume 15, Issue 3, 2019 145 

44. ?�&�&B@7��G":", L@  &B�&!�O#"E", M�!;#�
:" Interaction of internal and external 
resonances during force driven vibrations of 
a nonlinear thin plate embedded into a 
fractional derivative medium. // Procedia 
Engineering, 2017, Vol. 199, pp. 832-837.

45. ?�&�&B@7�� G":", M�!;#� :":" Chislennyj 
analiz vynuzhdennyh kolebanij nelinejnyh 
plastinok v vjazkouprugoj srede pri nalichii 
vnutrennego rezonansa odin k odnomu
[Force driven nonlinear vibrations of a thin 
plate in one-to-one internal resonance in a 
fractional viscoelastic medium]. // News of 
higher educational institutions. 
Construction, 2018, 12, pp. 9-22.

46. ?�<B@�?"8", M&%$� �E"E", G��&'�67 )"*"
fractional integrals and derivatives. theory 
and applications. Gordon and Breach 
Science Publishers, Amsterdam, 1993.

47. M�!;#� :":"J� ?�&�&B@7�� G":"J� L@  &B�&!�
O#"E"� Chislennyj analiz vynuzhdennyh 
kolebanij nelinejnyh plastinok v 
vjazkouprugoj srede pri nalichii 
vnutrennego rezonansa 1:1:2 [Numerical
analysis of forced nonlinear vibrations of
plates in a viscoelastic medium at the 
presence of the 1:1:2 internal resonance]. // 
Proceedings of the Х All-Russian 
Conference on Mechanics of Deformable 
Solids, Samara, 18-22 September 2017,
Vol. 2, pp. 10-12.

48. ?�&�&B@7�� G":"J� M�!;#� :":"�
Modelirovanie vynuzhdennyh kolebanij 
nelinejnyh plastinok v vjazkouprugoj srede 
pri nalichii vnutrennego rezonansa 1:1:1
[Modelling of forced vibrations of
nonlinear plates in a viscoelastic medium at
the 1:1:1 internal resonance]. // Proceedings
of the International Conference on Actual 
Problems of Applied Mathematics, 
Informatics, and Mechanics, Voronezh, 17–
19 December, 2018. Voronezh, Publishing 
House “Research Publications”, 2019, pp.
1295-1300.

�
�
�

wlbw�m�ubf�hkfyh��
�
1. E<�$&%&� G" Nonlinear vibrations of 

rectangular plates with different boundary 
conditions: theory and experiments. // 
Computers & Structures, 2004, 82, pp.
2587-2605.

2. E<�$&%&� G" Nonlinear Vibrations and 
Stability of Shells and Plates. Cambridge 
University Press, London, 2008, 391 pages.

3. H�6 %�7 BA�*"(", E<�$&%&�G", K6I��!;�G"
Physically and geometrically non-linear 
vibrations of thin rectangular plates. //
International Journal of Non-Linear 
Mechanics, 2014, Vol. 58, pp. 30-40.

4. E<�$&%&� G" Nonlinear vibrations of 
viscoelastic rectangular plates. // Journal of 
Sound and Vibration, 2016, Vol. 362, pp.
142–156.

5. E<�$&%&� G" Nonlinear damping in 
nonlinear vibrations of rectangular plates: 
Derivation from viscoelasticity and 
experimental validation. // Journal of the 
Mechanics and Physics of Solids, 2018,
Vol. 118, pp. 275–292.

6. E<�$&%&� G" Nonlinear damping in large-
amplitude vibrations: modelling and 
experiments. // Nonlinear Dynamics, 2018,
Vol. 93(1), pp. 5–18.

7. L@  &B�&!� O#"� E", ?�&�&B@7�� G":" Thin 
bodies embedded in fractional derivative 
viscoelastic medium. // Dynamic response,
In: Encyclopedia of Continuum Mechanics,
edited by H. Altenbach, A. Ochsner,
Springer, Berlin, Heidelberg, 2019.

8. 9%@#I�� L"X", D6!C&6!� N" Dynamics of 
Structures. McGraw-Hill, New York, 1975.

9. p6;�&�� M"L", ?&<@!@7&'� N"(" Structural 
analogies on systems of deformable bodies 
coupled with non-linear layers. //
International Journal of Non-Linear 
Mechanics, 2015, Vol. 73, pp. 18-24.

10. L&$6&�@� D", D6�A�� G" Nonlinear free 
vibration of isotropic plates with internal 
resonance // International Journal of Non-
Linear Mechanics, 2000, Vol. 35, pp. 263-
278.



Marina V. Shitikova, Vladimir V. Kandu 

International Journal for Computational Civil and Structural Engineering146 

11. >�AQ6�� E"p. Nonlinear interaction: 
Analytical, computational, and 
experimental methods. New York, Wiley, 
2000.

12. 9��!I� ?"*", H�5�5�E"M", M�@# I�&%%� 9"G"
Non-linear vibrations and chaos in 
harmonically excited rectangular plates 
with one-to-one internal resonance. // 
Nonlinear Dynamics, 1993, Vol. 4(5), pp 
433-460.

13. E!%� �8", P%$6A%&�)" Nonlinear vibrations 
of a simply supported rectangular metallic 
plate subjected to transverse harmonic 
excitation in the presence of a one-to-one 
internal resonance. // Nonlinear Dynamics,
2002, Vol. 30(1), pp. 1-28.

14. p�@� O"�", V��!I� X", N&� �"K" Nonlinear 
dynamic response of functionally graded 
rectangular plates under different internal 
resonances. // Mathematical Problems in 
Engineering, 2010, Vol. 33, Article ID 
738648.

15. L@  &B�&!� O#"E", ?�&�&B@7�� G":" Free 
damped non-linear vibrations of a 
viscoelastic plate under the two-to-one 
internal resonance. // Materials Science 
Forum, 2003, Vols. 440-441, pp. 29-36.

16. L@  &B�&!� O#"E"J� ?�&�&B@7�� G":"J�
)7 5�!!&B@7��P"*" Free damped vibrations 
of a nonlinear rectangular thin plate under
the conditions of internal combinational 
resonance. // Nonlinear Acoustics at the 
Beginning of the 21st Century, Proceedings 
of the 16th International Symposium on 
Nonlinear Acoustics (O.V. Rudenko and 
O.A. Sapozhnikov, eds.), August 19-23,
2002, Moscow, Russia, Vol. 2, pp. 693-696.

17. L@  &B�&!�O#"E", ?�&�&B@7��G":"�Analysis 
of free non-linear vibrations of a 
viscoelastic plate under the conditions of 
different internal resonances. // 
International Journal of Non-Linear 
Mechanics, 2006, Vol. 2, pp. 313-325.

18. L@  &B�&!�O#"E", ?�&�&B@7��G":"J >I6!C&�
N"9%" A new approach for studying 
nonlinear dynamic response of a thin plate 
with internal resonance in a fractional 

viscoelastic medium. // Shock and 
Vibration, 2015, Article ID 795606.

19. L@  &B�&!�O#"E", ?�&�&B@7��G":"J >I6!C&�
N"9%" Phenomenological analysis of the 
additive combinational internal resonance 
in nonlinear vibrations of fractionally 
damped thin plates. // WSEAS Transactions 
on Applied and Theoretical Mechanics,
2015, Vol. 10, pp. 260-276.

20. L@  &B�&!�O#"E", ?�&�&B@7��G":", >I6!C&�
N"9%. Fractional calculus application in 
problems of non-linear vibrations of thin
plates with combinational internal 
resonances. // Procedia Engineering, 2016, 
Vol. 144, pp. 849-858.

21. X&���E"E", 8@�6%&B�8"?" Oscillations of an 
elastic pendulum as an example of the 
oscillations of two parametrically coupled 
linear systems. // Journal Technical 
Physics, 1933, Vol. 3(2-3), pp. 294-307.

22. L@  &B�&!� O#"E", ?�&�&B@7�� G":"�
Applications of fractional calculus to 
dynamic problems of linear and nonlinear 
hereditary mechanics of solids. // Applied 
Mechanics Reviews, 1997, Vol. 50, pp. 15-
67.

23. E$;6%28��QQ��� E"G", p@# !6�� 8"X" 
Ambient vibration tests of suspension 
bridge. // Journal of the Engineering 
Mechanics Division, 1978, Vol. 104(5), pp. 
983-999.

24. E$;6%28��QQ��� E"G", ?'�!%�!� L"p"
Ambient vibration studies of Golden Gate 
bridge: I. Suspended structure. // ASCE
Journal of Engineering Mechanics, 1985,
Vol. 111, pp. 463-482.

25. L@  &B�&!� O#"E", ?�&�&B@7�� G":"
Application of fractional calculus for 
analysis of nonlinear damped vibrations of 
suspension bridges. // Journal of 
Engineering Mechanics, 1998, Vol. 124, 
pp. 1029-1036.

26. L@  &B�&!� O#"E", ?�&�&B@7�� G":"�
Application of fractional calculus for
dynamic problems of solid mechanics: 
novel trends and recent results. // Applied 



Analysis of Forced Vibrations of Nonlinear Plates in a Viscoelastic Medium Under the Conditions of the Different 
Combinational Internal Resonances 

Volume 15, Issue 3, 2019 147 

Mechanics Reviews, 2010, Vol. 63, Article 
ID 01081. 

27. L@  &B�&!� O#"E", ?�&�&B@7�� G":"�
Fractional calculus in structural mechanics, 
In: Handbook of Fractional Calculus with 
Applications. Vol 7: Applications in 
Engineering, Life and Social Sciences, Part 
A, edited by D. Baleanu, A.M. Lopes (De 
Gruyter, Berlin, 2019), pp. 159-192.

28. (?�67�!@7&') p6;�&� M" Partial fractional 
differential equations of creeping and 
vibrations of plate and their solutions (First 
part). // Journal of Mechanical Behavior of 
Materials, 2005, Vol. 16, Issue 4-5, pp.
305-314.

29. *!I<�!� (", ?#C;�%!&� BA� N" Response of 
viscoelastic plate to impact. // ASME 
Journal of Vibration and Acoustics, 2008,
Vol. 131(7), pp. 763-767.

30. L@  &B�&!�O#"E", ?�&�&B@7��G":" Analysis 
of damped vibrations of linear viscoelastic 
plates with damping modeled with 
fractional derivatives. // Signal Processing,
2006, Vol. 86(10), pp. 2703-2711.

31. (?�67�!@7&') p6;�&�� M" Dynamics of 
coupled systems. // Nonlinear Analysis: 
Hybrid Systems, 2008, Vol. 2, pp. 310-334.

32. L@  &B�&!�O#"E", ?�&�&B@7��G":", =�#!I�
D"=" Application of the fractional derivative 
Kelvin–Voigt model for the analysis of 
impact response of a Kirchhoff-Love plate.
// WSEAS Transactions on Mathematics,
2016, Vol. 15, pp. 498-501.

33. p&%�@!� p"p" Implications and constraints 
of time-independent Poisson ratios in linear 
isotropic and anisotropic viscoelasticity. //
Journal of Elasticity, 2001, Vol. 63(3), pp.
221-251.

34. E�&� G", R��%� L"=", V�A6�!@#�&� G"
Vibrations suppression of fractionally 
damped plates using multiple optimal 
dynamic vibration. // International Journal 
of Computer Mathematics, 2019, DOI: 
10.1080/00207160.2019.1594792.

35. G� ��@#�6�� ?" Nonlinear vibration 
analysis of viscoelastic plates with 
fractional damping. Master Thesis, 

University of Ontario, Institute of 
Technology, 2017. 

36. D6�<@@!�G"�L", p�;;�;�@#��p", N�7�;&�
G" Nonlinear vibration of fractional 
viscoelastic plate: primary, subharmonic, 
and superharmonic response. // 
International Journal of Non-Linear 
Mechanics, 2018, Vol. 99, pp. 154-164.

37. H�$@# B@ � >"8", M�� &B�;6%& � N"="
Nonlinear vibrations of viscoelastic plates 
of fractional derivative type: An AEM 
solution. // The Open Mechanics Journal,
2010, Vol. 4(8), pp. 8-20.

38. p@  6&!B��!&� E", O@#!6 &�!� (",
R����!I;@# �� ?" Dynamic analysis of a 
plate on the generalized foundation with 
fractional damping subjected to random 
excitation. // Mathematical Problems in 
Engineering, 2018, ID 3908371.

39. G�%��� 8", ?��!@ D"(" Nonlinear random
vibrations of plates endowed with fractional 
derivative elements. // Probabilistic 
Engineering Mechanics, 2018, Vol. 54, pp.
2-8.

40. >S�I@#<� =#S�� D"L", G&S�;&!@#� 9"p",
G@!S�!@#� E":", 9��$&� )�@#� N"H",
X@�Q@� D" Chaotic vibrations of nonlinear 
viscoelastic plate with fractional derivative 
model and subjected to parametric and 
external excitations. // Mechanics Research 
Communications, 2019, Vol. 97, pp. 8-15.

41. K&�6SB��D", K6S�!;@S B&�L" Steady-state 
non-linear vibrations of plates using Zener 
material model with fractional derivative. // 
Computational Mechanics, 2017, Vol. 60,
pp. 333-354.

42. (����� D"J� L�A� G"9" Fractional order 
derivative model of viscoelastic layer for 
active damping of geometrically nonlinear 
vibrations of smart composite plates. // 
CMC, 2015, Vol. 49-50(1), pp. 47-80.

43. L@  &B�&!� O#"E", ?�&�&B@7�� G":",
?�'�6I%@7�� ="E" Forced vibrations of a 
nonlinear oscillator with weak fractional 
damping. // Journal of Mechanics of
Materials and Structures, 2009, Vol. 4(9),
pp. 1619-1636.



Marina V. Shitikova, Vladimir V. Kandu 

International Journal for Computational Civil and Structural Engineering148 

44. ?�&�&B@7��G":", L@  &B�&!�O#"E", M�!;#�
:" Interaction of internal and external 
resonances during force driven vibrations of 
a nonlinear thin plate embedded into a 
fractional derivative medium. // Procedia 
Engineering, 2017, Vol. 199, pp. 832-837.

45. ������j	��"}"J�m	����}"}"�Численный 
анализ вынужденных колебаний 
нелинейных пластинок в вязкоупругой 
среде при наличии внутреннего 
резонанса один к одному. // Известия 
высших учебных заведений. 
Строительство, 2018, №12(720), с. 9-22. 

46. ?�<B@�?"8", M&%$� �E"E", G��&'�67 )"*"
fractional integrals and derivatives. theory 
and applications. Gordon and Breach 
Science Publishers, Amsterdam, 1993.

47. m	����}"}"J�������j	��"}"J�h��������
�"k"� Численный анализ вынужденных 
колебаний нелинейных пластинок в 
вязкоупругой среде при наличии 
внутреннего резонанса 1:1:2. // Сборник 
материалов всероссийской конференции 
по механике деформируемого твердого 
тела, 2017, с. 10-12. 

48. ������j	� �"}"J� m	���� }"}"�
Моделирование вынужденных 
колебаний нелинейных пластинок в 
вязкоупругой среде при наличии 
внутреннего резонанса 1:1:1. // Сборник
трудов Международной научной 
конференции «Актуальные проблемы 
прикладной математики, информатики и 
механики», 2018, с. 1295-1300.

 Marina V. Shitikova, Advisor of the Russian Academy of 
Architecture and Construction Sciences, Prof., Dr.Sc., 
Research Center on Dynamics of Solids and Structures; 
Voronezh State Technical University; 20-letiya 
Oktyabrya 84, Voronezh, 394006, Russia; 
phone +7 (473) 271-42-20; fax +7 (473) 277-39-92; 
E-mail: mvs@vgasu.vrn.ru. 

Vladimir V. Kandu, Ph.D. student; Junior Researcher; 
Research Center on Dynamics of Solids and Structures;
Voronezh State Technical University; 20-letiya 
Oktyabrya 84, Voronezh, 394006, Russia; 
phone +7 (473) 271-42-20; fax +7 (473) 277-39-92; 
E-mail: kandu8vladimir@gmail.com. 

Шитикова Марина Вячеславовна, советник РААСН,
профессор, доктор физико-математических наук;
руководитель международного научного центра по 
фундаментальным исследованиям в области 
естественных и строительных наук имени 
Заслуженного деятеля науки РФ, профессора 
Россихина Ю.А.; Воронежский государственный
технический университет; 394006, Россия, г.
Воронеж, ул. 20 лет Октября, д. 84; 
E-mail: mvs@vgasu.vrn.ru 

Владимир В. Канду аспирант, младший научный 
сотрудник международного научного центра по 
фундаментальным исследованиям в области 
естественных и строительных наук имени 
Заслуженного деятеля науки РФ, профессора 
Россихина Ю.А.; Воронежский государственный
технический университет; 394006, Россия, г.
Воронеж, ул. 20 лет Октября, д. 84; 
E-mail: kandu8vladimir@gmail.com


