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RESTABILIZATION OF THE POSTCRITICAL
EQUILIBRIUM OF ELASTIC SYSTEMS

Gaik A. Manuylov, Sergey B. Kosytsyn, Maxim M. Begichev
Russian University of Transport (MIIT), Moscow, RUSSIA

Abstract: The application of the Appel-Vozlinsky theorem on the stability or instability conditions for
bifurcation points of conservative elastic systems with a symmetric bifurcation diagram to evaluate
restabilization possibility of structures under loads substantially larger than the first critical force. It is shown that
restabilization is possible if the first eigenvalue of the Hesse matrix is a continuous alternating function of the
load parameter, and the remaining eigenvalues are sign-definite quantities. The examples of the systems with
restabilization are given: a high Mises girder and an elastic system composed of compressible rods.
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O BOSMOKHOCTU PECTABUWIN3ALUU 3BAKPUTUYECKOTI'O
PABHOBECHUA HEKOTOPLIX YIIPYI'UX CUCTEM

I'.A. Manyiinos, C.b. Kocuyvin, M.M. bezuues
Poccwuiicknit yansepcuret tpancnopra (MUUT), r. Mocksa, POCCH A

AnHotanusi: PaccmarpuBaioTcss 0COOCHHOCTH NPUMEHEHHUs TeopeMbl Amrmelnsi-Bo3auHCKOro 00 yCIOBHUSIX
YCTOMYMBOCTH WIJIM HEYCTOWYMBOCTH TOUYEK OM(ypKalny KOHCEPBATHBHBIX YNPYIHX CHCTEM C CHMMETPHYHOMN
OudypKaMOHHON THArpaMMOii, K BOIIPOCaM BO3MOYKHOM pecTaOMIn3alluy IPU HArpy3Kax, CYIIEeCTBEHHO 00JIb-
KX TepBoil Kputuyeckoit. [loka3aHno, 4To pecrabuiM3alys BO3MOXHA, €CIM epBOe COOCTBEHHOE 3HAYCHHE
Mmarpuipl ['ecce ecTh HempepbiBHAS 3HAKONEpeMeHHas (DYHKIHUS OT mapaMeTpa Harpy3kd, a OCTajlbHbie COO0-
CTBEHHbIC 3HAYCHUS] — 3HAKOMOCTOSIHHBIC BENMYMHbBI. [[pUBEICHBI IIPHUMEPbI CUCTEM C pecTabUIIN3aIneii: BBICO-
Kas hepMa Mu3seca v ynpyro COWICHEHHAs! CUCTEMa, COCTABIICHHAS U3 COKUMACMBIX CTEPIKHCH.

KiaroueBble ciioBa: paBHOBECHUEC, peCTa6I/IJ'H/I3aHI/IH, TOYKa 6I/I(byp1<aunn, yCTOﬁ‘IHBOCTL

1. SYMMETRIC SYSTEMS, SYMMETRIC 1) Changing of the stability character of the
DIAGRAMS OF BIFURCATION AND basic equilibrium always is caused by reach-
APPEL — VOZLINSKY THEOREM ing of the first bifurcation point (at

Pip min=Prir1), and it not always occurs at

Appel-Vozlinsky theorem formulates stability reaching of high bifurcation points.

(or instability) conditions of bifurcation points 2) Stability character of “new” equilibrium

for so-called “entirely symmetric systems”. forms, branching out from the basic equilib-
Such systems include all elastic systems with rium in the bifurcation point, is determined
symmetric bifurcation diagram as it is shown in by stability or instability of this bifurcation
Figure 1. Usually, these systems have two plane point in accordance with V.T. Stability char-
(two directions) of symmetry (rods, plates, flat acter of “new” equilibriums branching out
and spatial frames or trusses, symmetric arches, from the basic one in the bifurcation point is
some symmetric shells and another structures). determined by stability or instability of this
Let us note two important moments: bifurcation point (W. T. Koiter [1]).
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Restabilization of the Postcritical Equilibrium of Elastic Systems

Figure 1. Bifurcation diagrams for scenarios “‘fold” and “butterfly”: a, c) standard “butterfly”
and “fold”; b, d) dual “butterfly” and “fold”; P* is critical load in the ultimate point.

Further, let us note that symmetric bifurcation
point appears if decomposition of full potential
energy to power series by bifurcation coordinate
corresponds to features of the failure type
“fold™:

V~q' +82q2 +é&49,
or standard “butterfly” type [2]:
Veq®+eq' veq +6,q9° +eq.

The stability of the “first” bifurcation points at
load P = Pgug1 is determined by positive branch-
es of these features (+q* and +q°). Negative
signs of branches (-q* and -q°) give instability
symmetric diagrams. Types of symmetric dia-
grams which presented in figures 1 (a) and 1(b)
corresponds to features of “fold” as well as fea-
ture of “butterfly” at some combination of man-
aging parameters (g; — &4 ). Here the distinctive

feature is existing of only two “new” postbifur-
cation half-branches of equilibrium states.
However, in the case of “butterfly” feature it is
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possible such combination of parameters, when
near bifurcation point an elastic system have not
two, but four “new” equilibrium states at some
range of load P values as it is shown in figures 1
(c) and 1 (d). In accordance with diagrams in
figure 1 the system has 4 “new” states of post-
critical equilibrium at the range of loads Pyir -
P*(that is until ultimate points will be reached).
There are only two (P < Pyis1, figure 1 ¢, and
P > Pyir1, figure 1 d) or none post critical equi-
libriums (figure 1 ¢ at P> P, and figure 1 d at
P <P") beyond the boundary of these “new”
postcritical equilibriums’ ranges.
Appel-Vozlinsky theorem [3-5] allows us to
predict a character of the closest bifurcation
point: stability of symmetric bifurcation point is
determined by stability single equilibrium half-
branch closing to it (from the side of load val-
ues, that smaller (P < Pyy) or larger (P > Puir)
than bifurcation load.

Presented in figures 1 (a) and 1 (c) single half-
branch, closing to bifurcation point, is sustaina-
ble branch of OC. Hence, the first bifurcation
point at load Pyifi is sustainable. Also growing
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“new” branches of postbifurcation equilibriums
are sustainable.

On the contrary, single half-branches of systems
with bifurcation diagrams by types presented in
figures 1 b and 1 d are unsustainable the basic
postbifurcation equilibriums (at P > Pyif1). Con-
sequently, bifurcation point is unsustainable as
well as new branching out equilibriums “fall-
ing” by load. Unsustainable equilibrium branch-
es are signed as “-*.

Let us note, that bifurcation diagrams P =P(q)
are intersection line for surfaces of equilibriums
near bifurcation curvature (dV/dg=0) and

plane POq (at null value of initial imperfection
parameter £1(&1= 0)). Possible variants of sym-
metric sustainable diagrams, that have simple
bifurcation points for systems with co-
dimension less or equal 4 (number of managing
parameters), are bounded by diagrams as it is
shown in figures 1 (a) — 1 (d). However, Appel-
Vozlinsky theorem also is acceptable to sym-
metric system with large (even) number of man-
aging parameters.

Let us note for system with two or in some cas-
es 4 managing parameters, that sufficient condi-
tion of simple symmetric bifurcation point sta-
bility (figures 1 a, 1 c) is singularity and stabil-
ity of under critical equilibrium.

Necessary stability condition is geometric sym-
metry of system and symmetry of acting loads.
However, this condition is not sufficient.

The sufficient instability condition for simple
symmetric bifurcation point is singularity and
instability of initial (basic) postbifurcation equi-
libriums’ half-branch (figurel b).

It should be noted, that V.I. Vozlinsky formu-
lated and proved theorem of stability (instabil-
ity) of symmetric bifurcation point in 1967 [3].
However, formulation of the same theorem can
be found in the paper of P. Appel [5], the origi-
nal of which appeared in 1932. There it was
written “... Stability character in the curvature
with vertical tangential is the same if it would
be in half-branch of “intersecting” curvature
that is not bounded by branches of the first ones
(that is singular).
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2. ENERGY MEANING
OF BIFURCATION POINTS AND
CHANGING STABILITY CHARACTER
OF THE BASIC EQUILIBRIUM STATE

In accordance with energy position the bifurca-
tion point of the basic equilibrium appears then
and only then, when there is orthogonal in ener-
gy aspect non-null addition component D.
Reaching of bifurcation point by load (or kine-
matic compression) proves that basic subcritical
stress-strain state exhausts possibilities to accu-
mulate growing energy of an elastic defor-
mation, caused by load rising, in the form, spec-
ified by initial (sub bifurcation) stress-strain
state.

System self-organizes to have possibility to con-
tinue loading. It switches on additional accumu-
lators to absorb new portions of potential energy
of elastic deformation. Such additional forms
are “new’’ equilibrium forms, that do not exist at
subcritical equilibrium but exist in non-null ad-
dition D, that have spoken before. If such addi-
tion is null (D = 0), then bifurcation loss of sta-
bility becomes impossible. This aspect is deter-
mined by form of the first null Eigen vector W,
calculated for subcritical equilibrium (P = P, —
0). If this vector is orthogonal to external load
vector [5]

then critical point is bifurcation point, the initial
stress-strain state of which is filled by new
components [6]. It principally allows to contin-
ue loading of the system.

If reduced scalar product is not equal to zero,
then loss of stability occurs at ultimate point.
For this point, the “null” eigen vector (WIO) of

subcritical equilibrium usually is similar to form
of such equilibrium [7]. Therefore, there is not
any postcritical addition of subcritical equilibri-
um at reaching ultimate point. Critical equilibri-
um is unsustainable and system searching for a
new sustainable equilibrium transforms to dy-
namic splash state.
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However, at bifurcation case or reaching of ul-
timate point a “new” initial postcritical equilib-
rium Wiposter 1S @ sum of subcritical equilibrium
Wiuer and “null” eigen vector, taken with scale
factor &:

0
Wnpe()icp + §VVI

H/nkp =

3. CHANGING OF STABILITY FORM
AT BIFURCATION POINT AND
RESTABILIZATION OF THE BASIC
EQUILIBRIUM

It is believed that at the reaching of the bifurca-
tion point there is always a change in the quality
of the equilibrium: the sustainable equilibrium
existing before bifurcation point reached be-
comes unsustainable after the bifurcation point
exceeds this value (at load P = Pyirt &). In gen-
eral, this is always true only for the first bifurca-
tion point (or for the first point on the "new"
postcritical equilibrium branch of the secondary
bifurcation). There are many systems for which,
when passing by the basic equilibrium of the
second, third, ..., m-th bifurcation point (m=2,3,
... m, ...), the instability property acquired by this
equilibrium as a result of the first bifurcation
point does not change after passing the higher
bifurcation points. In other words, the stability of
the basic equilibrium under load above the first
bifurcation is not restored. An example of a such
situation is an ordinary Eulerian rod (Figure 2),
for which the "new" compressed-curved forms
of equilibrium branching out in the second, third
and subsequent points of bifurcation-increasing
by load and unsustainable equilibrium. After loss
of stability at passing of the first bifurcation
point, further the basic linear equilibrium re-
mains unsustainable (Fig. 2) at all load values,
exceeding the first critical one (P > Pyif1). In the
figure 2, unsustainable branches of postcritical
equilibrium are marked with crosses; sustainable
forms are shown by solid lines.

Sustainable postbifurcation equilibrium is com-
pressed-curved equilibrium (at P > Pcrl) branch-
ing out at the first point of bifurcation. At "high-
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er" "curved" forms of "new" equilibriums that
branch out from the main linear equilibrium at
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all of these equilibriums may really exist and
can be observed, if we input additional cross
hinge supports at nodes (or equivalent points of
bend). Then the higher critical load Pxp2, Pxps,. ..,
Perm, acquire a certain "optimization" meaning.
For example, the second critical load of P is
the highest critical load for a double-hinged rod
with one intermediate support.

If this support is placed in the middle point of
the rod, it divides rod into two identical and
equal-sustainable parts, each of which does not
affect the stability margin of the neighbor one.
Equal-stability property gives

max P, = 4”2E%2 .

Strict energy proof of the instability of all
"higher" buckling forms of the compressed Eu-
lerian rod was given by E. Reyes [6]. He
showed that at the same norms (the same values
for all forms of the sinusoid amplitudes) the
values of the full potential energy for the first
form Vi and the higher forms of buckling Vo, ...,
V. form a steadily increasing sequence.

N<mn<rni<..<V,<..

All members of this sequence are greater than
the value of the first member Vi corresponding
to the potential energy of the stable first form of
the post-bifurcation equilibrium. Therefore, if
you compress the Euler rod by load, exceeding
the third critical load (for system with additional
hinge supports), and further remove the sup-
ports, the compressed-curved s-form will in-
stantly become unsustainable and "switch" on
the first sustainable post-critical form of Euler
elastics, corresponding to value of acting load.
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2
Wy = Asme

Figure 2. Sustainable (first) and unsustainable (all following) branches of the "new"
compressed-curved equilibriums that bifurcate from the basic linear equilibrium
of a Eulerian rod in the first and higher bifurcation points.

In accordance with the above, it should be note
that the "new" higher forms of post-bifurcation
equilibrium growing by load are not always
forms of sustainable equilibrium. The equilibri-
um curve should grow by load to achieve condi-
tion when it consists of points corresponding to
sustainable equilibrium. But this requirement is
only a necessary but not sufficient sign of the
stability of the mentioned above equilibriums.
An additional requirement is that the load-
increasing equilibriums have a minimum poten-
tial energy. Just considered the highest forms of
post-critical equilibrium of Euler rod are a good
"reverse" illustrations to this provisions. At the
same time, the "falling " (descending) branches
of equilibrium are always unsustainable.
Theorem 1. For systems with a symmetric bifur-
cation diagram, it is possible to restabilize the
basic equilibrium after passing an even number
of the bifurcation point (2nd, 4th, etc.) if:

a) at each point of bifurcation the basic equilib-
rium changes the nature of stability;

b) "new" equilibriums branching out from this
point of bifurcation (m=2,3,4...) are rising and
unsustainable (Fig. 3).

Without reducing the generality of reasoning, let
us consider a symmetric system with two degrees
of freedom, which has a bifurcation diagram, as
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it is shown in Figure 3, and the basic equilibrium
loses its stability when P > P6ud1 and it be-
comes unsustainable in the interval of loads Pyifi
< P < Puvin. These equilibriums under loads P <
Puin form a single half-branch suitable to the sec-
ond bifurcation point from the left. Therefore,
according to theorem Appel-Vozlisky, the sec-
ond bifurcation point "is not sustainable"; the
branching out at this point the "new" equilibri-
ums, increasing by the load, also are unsustaina-
ble. According to the condition, the change in the
nature of the stability of the basic equilibrium
after passing the second bifurcation point, this
equilibrium should become sustainable at P >
Pyip. This theorem has been proved.

Note that the nature of stability of "new" equi-
libriums branching out at the first bifurcation
point (at P = Pyif1) does not affect the conditions
of this theorem. But if we assume that the "new"
equilibriums branching out at the second bifur-
cation point (at P = Puip) form unsustainable
"falling" branches (Fig. 3), then the basic equi-
librium under load P > Py should also be un-
sustainable. But this provision contradicts the
condition of changing the nature of the stability
of the basic equilibrium in the bifurcation
points. Therefore, there is not restabilization in
this case.
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For conservative systems, the possibility of
restabilization of the basic equilibrium is deter-
mined by the behavior of the eigenvalues pnl(P),
u2(P),..., un(P) of the Hesse matrix of the total
potential energy as a function of the parameter
P. If the numbers are monotonically decreasing
functions of P

.....

and each function passes through zero (from
positive values to negative) to its point of bifur-
cation, then restabilization of the basic (initial)
equilibrium at loads greater than the first critical
(P>Pcr1=Puif1) is impossible (example - elastic
frame system).

If the degeneration of the Hessian matrix at the
bifurcation points is associated with zero pad-
ding only one function pl (P) (in this case it
must be alternating), and all other numbers are
positive functions (Fig. 4), then the basic equi-
librium can be restabilized in the intervals loads
of Poip < P < Pyigs, Poia < P < Ppips and so on.

_I_
i

I
i

Tl ---f2t+++3---4++ +

P
+++ |4 \ +\ i
- A h
- > B N

0 31

c)
Figure 3. An illustration of Theorem 1 on the conditions for re-stabilization.
~ TN w(P)
w®» e
1e(P)

N

0 P-n..m\/ P..

M dugd

Pl

Figure 4. The graph of changes in the eigenvalues of the matrix NE: - ul (P) periodic function.
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Figure 5. To the problem of the stability of straight-linear equilibrium of a system
of 2 compressible rods connected by an elastically-flexible hinge.
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Figure 6. Curves of the trajectories of eigenvalues ul (P) and u2 (P)
and the stability region of the rectilinear equilibrium of the system in Fig. 10.

4. SAMPLES OF SYSTEMS WITH
RESTABILIZATION

Let us consider a system with the re-
stabilization of the main equilibrium under
loads P> Pbif2 (Fig. 5). It consists of two com-
pressible rods connected by an elastic-flexible
hinge with a spring of rigidity ¢ = 1. The initial
lengths of the compressible rods are L = 1, the
relative longitudinal rigidity is K, the initial un-
buckled equilibrium is rectilinear and horizon-
tal. The stability of one such compressible rod
with an “elastic” hinge was studied in detail by
V.I. Theodosiev [8]. He constructed characteris-
tic graphs of post-critical equilibrium curves for
the state of the observing rod and investigated it
stability at various combinations of stiffness and
geometric parameters. T. Poston and I. Stewart
[2] investigated this system heuristically to
demonstrate some properties of the butterfly
failure. The system was considered in more de-
tail by M. Golubitsky and D. Schaeffer [9].
However, in their work, the curves of the post-
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critical (“broken”) equilibriums near the point
of the secondary bifurcation were constructed
inaccurately.

Our interest in this system is determined by the
desire to show the non-monotonic behavior of
the eigenvalue pl (P) of the Hesse matrix,
which allows us to obtain a re-stabilization of
the rectilinear equilibrium under loads of large
loads of the second bifurcation (P> Pyir2, as it is
shown Figure 6).

Let a is the angle of deflection of the rods from
the horizontal, X is the value of the current
length of the compressible rod, P is the com-
pressive load,

X = (%)cosa :

Potential energy of the system:

V(k,P,ot,X)=k(X —1)° +%a2 +2PX cosa

International Journal for Computational Civil and Structural Engineering
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Equilibrium equations:

a—V:05—2P)(sinoc:0
oo

o =2(ax—1)k—2Pcosa=0
oX

Hesse matrix (or the Jacobi matrix of the system
of equilibrium equations):

0°X o'V
2
H, - 82{ oaoX _
oV oW
oXoa oX*
_|1-2PXcosx —-2Psina
| —2Psina 2k

For the initial rectilinear equilibrium (a0 = 0),
this matrix takes the diagonal form:

0 2k

{1—2})}( 0}
H(x=0)=

Consequently, the eigenvalues of this matrix (or
stability coefficients) are

,ul(P)zl—ZPle—2P(1—§):

2
—1-2p+2,
k

1o (P) =2k = const

From these expressions it follows that only one
eigenvalue pl (P) depends on the load; the sec-
ond eigenvalue p2 (P) = 2k does not depend on
the load and is a constant number. The condi-
tions for the equality to zero of the first eigen-
value pl (P) = 0 determine the bifurcation
points of the basic (initial) rectilinear equilibri-
um of the system:

1
1(PY=0> Py, = (kK = 2k)
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The basic equilibrium is sustainable at loads
lower than the first critical one, as well as at
loads greater than the second critical one:

P < Py == (k=7 —2k),
2

P>P,, :l(k+\/k2 —2k)
2

(state of re-stabilization).

A square parabola describing the dependence of
pul (P) can have either two real roots (ie, two
bifurcation points) or none.

The last case occurs when k < 2. When k = 2,
the two points of the bifurcation merge into one
(Pvit @) = 1). Graphs of the functions pl (P) and
p2 (P) are shown in fig. 6.

Curves of "broken" equilibriums (initial sec-
tions) for some characteristic values of the com-
pressibility parameter K are given in Fig. 7.

The study of the bifurcation points of the basic
equilibrium shows that

k>2g
3

at symmetric points of the bifurcation, two
curves of “broken” equilibriums, that grow by
load, branch out (Fig. 7a). However, only one
branch is stable, branching out at P = Pgif1. The
equilibriums that are branched out at the second
point of the bifurcation Ppir, although growing,
but are unsustainable. If

k=2—,

then on the curve of the primary “broken” equi-
libriums at the point of the first bifurcation, the
curvature becomes zero, and further at

k<22
3

it becames negative. This means that at
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Figure 7. Sustainable state curves and areas of it stability for a two-rod system
with various combinations of its stiffness and geometrical parameters:

a) k>2§; b) 2<k<2§; o) k=2; 2) k<2.

k<2z
3

the number of equilibriums of the system at P *
<P <Pyir there is five equilibrium points (initial
and four “new” equilibriums) instead one (ini-
tial). In this case, the first point of the bifurca-
tion from a sustainable one transforms to an un-
sustainable one. Consequently, at the initial part
the post-bifurcation “broken” equilibriums are
also unsustainable (up to the achievement of the
lower ultimate point P * (Fig. 7b)).

At k value decreasing, the two points of the bi-
furcation approach to each other and at k = 2 it
converges into one point Puir 1 = Puir 2 = 1
(Fig. 7c). When k < 2, the original rectilinear
equilibrium 1is sustainable for all compressive
loads. Any bifurcation load values disappear
(“compressibility” win the aspire to loss of sta-
bility). “Broken” equilibria exist by themselves,
and do not intersect with straight-line equilibria
(Fig. 7c¢). At the same time, the branches of
these equilibria that are closest to the original
(o = 0) are the branches of unsustainable saddle
equilibria and form a “watershed” between the

106

sustainable basic rectilinear equilibrium and the
far equilibrium (but sustainable!) in the extreme
parts of the isolated branches.

Another example of a system having zones of
postcritical restoration is the “high” Mises truss
(Fig. 8) with an initial angle of inclination of the
rods oo > 67°,36 (Fig. 8, b). For the Mises truss
in the paper of V.I. Slivker and A.V. Perlmuther
[10] the Hesse matrix is calculated. This matrix
has the following eigenvalues:

B t1ga
Heugp(P) =2 1= 3 ,

(I+ tgza) 2 cosa)

1
g b
(I+ tgza) 2 cosay
o=o(P).

u*(P)=2/1-

International Journal for Computational Civil and Structural Engineering
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Stabilization area

P

Eigenvalue bifurcation trajectory
Hpif (P)

\ The plane of unstable
post-bifurcation equilibria

Figure 8. Equilibrium re-stabilization of the high Mises truss.

Here, the first number pwi(P) determines the
stiffness of the truss node against horizontal per-
turbations, the second number p*(P) determines
stiffness against vertical ones. The case, when
stiffness wir(P) becomes zero, corresponds to
the moment of the bifurcation of symmetric
equilibrium. The second number p*(P) equals to
zero at the limit point. The bifurcation loss of
stability of the Mises truss is possible only if the
truss is sufficiently high (00 > 67°,36). At this
value of oo, a double bifurcation point appears
on the equilibrium curve, which then at large ao
angles splits into two simple bifurcation points.
These points are on the ascending branch of
equilibria (i.e. before reaching the limit point) if
the initial tilt angle oo is in the range of 67 °, 36
<o <69 °, 22.

Until the load angle a > awif1, the both numbers
u(P)>0, u* (P)> 0 and the symmetrical equi-
librium of the truss is sustainable. When o =
abifl, the load is P = Pyifi and the eigenvalue ppir
(P) passes through zero from positive to nega-
tive values. Symmetrical form equilibrium be-
comes unsustainable. However, when o = oif
and, accordingly, the second critical load P =
Puif, the eigenvalue ppir (P) again passes through
zero (from negative values to positive values).
Since, in this case, the second eigenvalue u* (P)
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does not change its sign and remains positive,
(until to reaching the ultimate point), then at
loads P > Pyip, the both eigenvalues pwir (P) and
pn * (P) are positive, the Hesse matrix is posi-
tively defined, and the Mises truss is again sus-
tainable (at loads of Puir 2 <P <P*) (as it is
shown in Fig. 8). So, for a truss with an initial
angle oo = 68 °, 5 critical values of the tilt an-
gles of the rods are owin = 61°,903, awin =
47°.347. These values are determined by solv-
ing the equation cos’a - cosa + cosop = 0. The
corresponding bifurcation loads are calculated
by the formula

Poir = 2¢l (sinowir - cosao - tgawir), c = EA / 1.

For the critical load at the ultimate point is P * =
2cl - sin*o*, where the tilt angle o* is deter-
mined from the relation cos’o* = cosao. At o =
68°,5 this angle is a* = 44°,305.

The eigenvalue of the Hesse matrix is i at o =
47° > apirt (Wit (47°) = 0.1437; at 0. = 55 ° (owir =
47°,347 < a = 55° <apifi = 61°,9) eigenvalue is
negative (Wbir (55 ©) =-1.886); at a =47 ° (a* =
44°305 <47 ° < apip = 47°.347) it is again posi-
tive. The re-stabilization interval is determined
by the tilt angles 44°,305 < a <47°.347, since in
this range ppir (P) > 0 and p* (P) > 0. The ap-
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pearance of the re-stabilization zone and the
non-monotonous nature of the dependence of
the eigenvalue pwir under the load P is unex-
pected [10, p. 377]. In our opinion, the non-
monotonicity of the function pwir (P) is ex-
plained by the fact that there are three points of
critical equilibriums for trusses with initial an-
gles ao (67°.36 < 0 <69°.22) on the ascending
branch of symmetric equilibriums: two points of
bifurcation and one ultimate point. Meanwhile,
the Hesse matrix takes a second order, and,
therefore, there are only two continuous by load
P functions of eigenvalues pwir (P) and p*(P).
The function p*(P) within the ascending branch
is positive and zero padding at the ultimate
point (at P = P *). For existing of two bifurca-
tion points at loads 0 < P <P*, the continuous
function ppir (P) must two times “go over”
through zero values: the first time from plus to
minus, and the second time from minus to plus.
Therefore, it cannot be monotonous, as dis-
cussed in paragraph 3. And it explains the exist-
ence of a re-stabilization zone for such forms.
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