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Abstract: Numerical or semianalytical solution of problems of structural mechanics with immense number of
unknowns is time-consuming process. High-accuracy solution at all points of the model is not required normally,
it is necessary to find only the most accurate solution in some pre-known domains. The choice of these domains
is a priori data with respect to the structure being modelled. Designers usually choose domains with the so-called
edge effect (with the risk of significant stresses that could lead to destruction of structures) and regions which
are subject to specific operational requirements. Stress-strain state in such domains is important. Wavelets
provide effective and popular tool for local structural analysis. Operational and variational formulations of
problems of structural mechanics with the use of method of extended domain are presented. After discretization
and obtaining of governing equations, problems are transformed to a multilevel space by multilevel wavelet
transform. Discrete wavelet basis is used and corresponding direct and inverse algorithms of transformations are
performed. Due to special algorithms of averaging, reduction of the problems is provided. Wavelet-based
methods allows reducing the size of the problems and obtaining accurate results in selected domains
simultaneously. These are rather efficient methods for evaluation of local phenomenon in structures.

Keywords: numerical methods, semianalytical methods, local structural analysis, structural mechanics,
wavelet-based methods, reduction, operational formulations, variational formulation, boundary problem
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AHHoTanusi: UYncieHHOE ¥ TONyaHAJINTHYECKOE (YHCICHHO-aHAIUTHYECKOE) peIICHHE KpaeBbIX 3a/1ad
CTPOUTETHHOW MEXaHHKH, HEPEAKO XapaKTEePU3YIOUIMX OTPOMHBIM KOJMYECTBOM HEM3BECTHBIX, CONPSDKEHO C
OOJIBIIMM OOBEMOM BBIYHCIMTENBHOW PabOThl M 3HAYMTENILHBIMM BPEMEHHBIMHM 3arTpatamu. Kak mnpasuio,
OTCYTCTBYET HEOOXOJUMOCTh B 00ECHEYEHNH BBICOKOH TOYHOCTH PEIICHHS BO BCEX TOYKAaX COOTBETCTBYIOIICH
BBIYHMCIIUTEIILHOM MOJIENH, 3a4acTyl0 HMEETCsl HOTPEOHOCTh B HAXOXIEHHHM BBICOKOTOYHOTO pEIICHHS B
HEKOTOpOM Habope obiacTell (30H) KOHCTPYKLIMH, PAaclOiI0KEHHE KOTOPHIX, KaK MpPaBHIIO, 3apaHee M3BECTHO
(3TO CBOETO poOja anmpuopHas OIEHKa). PacyeTynku B 3TOM OTHOLICHWH TPAAWIMOHHO BHIOMPAIOT 30HBI Tak
Ha3bIBAEMOT0 KpaeBoro 3¢ ¢exra (MOTeHIUATLHO ONIACHBIE C TOUKU 3PEHHSI YPOBHS BOSHUKAIOIIUX HANPSHKEHHH,
CIOCOOHBIX TIOBJICYh DPAa3pyIICHHE KOHCTPYKIHMI), a TarkKe 30HBI, BHHUMAaHHE K KOTOPBIM OOYCIIOBIIEHO,
HaTIpuMep, pa3HOrO pPOAa TEXHOJOTHYECKOW crermudukod M T.4. Jnsd ykazaHHBIX oOjacTeil Ba)KHEHITHM
BOIIPOCOM SIBIISIETCS JIOCTOBEPHOE ONPENEIICHNE HANPSHKEHHO-1e(OPMUPOBAHHOTO COCTOsIHUS. BeiiBner-anamus
SIBISIETCST  MCKITFOUUTENBHO 3()(EKTUBHBIM HHCTPYMEHTApHEM IS IIOCTPOCHUSI JIOKANbHBIX PEHICHUH
COOTBETCTBYIOIINX KPAEBBIX 3a/ad CTPOUTENbHON MeXaHUKH. II0CTaHOBKa IMOCIEIHUX B CTaThe NMPHUBOIUTCS B
OTIEpaTOPHOM M BapHWAallMOHHOM BHIAX HA OCHOBE HCIIOJB30BAHMS METOJA PACIIMPEHHOW (CTaHIapTHOMN)
obmactu. Ilocie BBeNEHUS COOTBETCTBYIOIIEH ANNPOKCHMAILMM peaau3yeTcd Iepexol OT YKa3aHHbBIX
KOHTHUHYAQJIbHBIX IMOCTAHOBOK K IWCKPECTHBIM W JUCKPETHO-KOHTUHYAJIbHBIM. I[anee peaIu3yCeTCsa MpAMOC
BeliBNIeT-TIpeoOpa3oBaHne C NPUBICUYCHHEM JUCKPETHOTO BeliBieT-0asuca (3aMETHM, 4YTO MPEJIOKEHBI
cooTBeTCTBYIOIIME  3((EKTHBHbIE  AITOPUTMBI  NPSAMOrO M 0OOpaTHOro  BeWBJIET-TPeoOpa3oBaHus).
Pa3paboTanHble BeiiBleT-BEpCHH METOJIOB JIOKAJBHOTO pacueTa CTPOMTENBHBIX KOHCTPYKLHUH IO3BOJISIOT C
OJHOM CTOpPOHBI 3HAYUTEIBHO COKPAaTUTh BBIYMCIUTEIBHYIO pa3MEpPHOCTh pElIaeMbIX 3a1ad, a ¢ JpYyroi
CTOPOHBI OOECTICYNTHh BBICOKYIO TOYHOCTh IIOJNydaeMBIX pPE3YJIbTaTOB B BBHIOPAHHBIX 0OOJACTAX (30HAX)
CTPOUTETBHBIX KOHCTPYKIHNH.

KiroueBble cJ10Ba: YHCICHHBIC MCTOAbI, NOJTYaHAITIUTUYCCKHUE MCTOBI,
JIOKaJbHBIN pacyeT CTPOUTCIbHBIX KOHCprKHHﬁ, JIOKAJIbHBIC PCHICHHWS KPAaCBbIX 3a/1a4,
CTpOUTC/IbHAad MCXaHWKa, Bei/iBneT-peanmauHH, peayKkuus, onepaTopHbIi€ NOCTAHOBKHU 3aJ1a4,
BapuallMOHHBIC ITOCTAHOBKU 3aJa4, KpacBasd 3ajlada

1. BASIC FORMULAS OF FAST DIRECT Haar mesh functions are defined by formulas
AND INVERSE DISCRETE HAAR (N, is the number of Haar functions at level
TRANSFORMS AND AVERAGING p):

1.1. One-dimensional problems o
1.1.1. Algorithms of fast direct and inverse ¥ ()=
discrete Haar transforms. Let us consider the 1, 2" (j-D<i<2°(2j-1)
one-dimensional region _ a;l ~1, 2°2j-D<i<2P?j
0, i<2P(j-1) U i>2r?j,

i=12..,n 0<p<M;
where x is coordinate, a,b are lower and upper pi'()=ay, i=12..n; (2)
limits of interval. Let us divide o into (n-1) :{n/Zp”, O<p<M
equal parts, where n=2", M is the number of L p=M;
levels in the Haar basis [1-5]. Coordinates of V2Pt 0< p<M

a =
mesh nodes are P V2Y =V, p=M.

X, =a+({-h, i=12..,n;
h=(Mb-a)/(n-1). (1)

o={x:as<x<b},

@)

Let f(i) be arbitrary mesh function. Then we
have
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JOEDWRHAI0L

p=0 j=1
n

VP =2 @y i=120N,,
i=1
p=0,1,..,M,

(4)

where v?, j=12,..,N_ , p=0,1,..,M are

Haar expansion coefficients.
Algorithm of fast direct discrete Haar transform
is described below.

u$=1(j) i=12...n; a,=v2. (5
We have (forall p=0,1,..,M -1, j=12,..,N):

V) =ap (U, -ug); (6)
uPt=ul, +ul; o, =vV2a,;

Ay =n; v =y (7

where u’, j=12,.,N , p=01,..,M are

auxiliary quantities.
Algorithm of fast inverse Haar transform is
described below.

aMZ\/ﬁ; aM—lz\/ﬁ; u' =a, v, . (8)
We have (p=M -1, M -2,..,0, i=12,..,N):

i=li+n/21; z=(-n™,
uf =a;tzv) +ul™; ap_lzap/\/i. 9)

Thus,

f(i)=u?, i=12,...,n. (10)
1.1.2. Algorithm of averaging. In many cases it
IS not necessary to obtain global solution in the
domain. Local solution for several prescribed
subdomains is normally required. If we don’t
need to find a complete solution we can reduce
the number of unknowns without significant
loss of accuracy or with a small error in local
solutions. It is reasonable to eliminate unknown
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expansion coefficients of the basis functions
with supports substantially distant from the
considering area. Algorithm of averaging in
one-dimensional case is described below.

Let us assume that it is necessary to make
averaging at some level number q. For all

p=01,..,gand j=12,.,N,  wesuppose

(Dup)zj—l ~ (Dup)zj ~ (DJP)Zj—l!
Viia=Vvy, 1=L12,..,N 5, (11)
szj—l = (u2pj—l + uzpj)/Z;

(DUP),j, = (U —U5,) /(2" h) 5 (12)
Then formulas of averaging have the form

Vi =V =0T =120 N
B=1/(242). (13)

1.2. Two-dimensional problems.

1.2.1. Algorithms of fast direct and inverse
discrete Haar transforms. Let us consider the
two-dimensional rectangular domain

o={(X,%,):0=<x <I,0<x,<I,},

where x;,x, are coordinates; |I,l, are
dimensions along x,, x,. Let us divide « into
(n-1) equal parts along x, and into (n-1)
equal parts along x,, where n=2", M is the

number of levels in the Haar basis. We have the
following formulas for coordinates of mesh
nodes:

X, = (i, ~Dhy, i, =1,2,...,n;
Xy, = (i, ~Dh,, i, =1,2,...,n,
h =1, /(n-1); h,=1,/(n-1). (14)

Haar mesh functions

WST’SZvjlvjz (il’iz)’ p:112,-.., M ,

b J,=12,.,N_,s,s,=0,1

p H
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(except s, =s, =0) can be defined by formulas:

!//s?,sz,jl,jz (i1' |2) =
(_1) KkiS1+KyS, ,

2 1| 2°(j, - +—)<| A
1

—% r—]kLJ 1/ 1 kq ’

4=tk = |q§2p (Jq—E‘i‘?)

0, in other cases;

l//(;\,AO,l,l(iZUiz) = arxiﬂl ; (15)
N n/2" 0<p<M
P 1, p=M;
2P 0<p<M
a, =15y PN (1)
27 =n, p=M.

Let f(i,,i,) be an arbitrary mesh function.
Consequently we have

- M M
f (i1, )_V0011‘//0011+

M 1N p
+ ZZZ(VIO I 12%0 e (Il’IZ) +
p=0 j=1 j,=1
+Vop1 i ,2W01h i» (|1, '2) +V11 e le//ll Jide (Il' '2))1
17)
Where VlF,)O,jl,jz 1V0p’1 jido? 11]1 o ! Jl’ J2 " Np’

p=12, .., M are Haar expansion coefﬂments,

ZZf(nl, Wl ().

i=1i,=1

(18)

51 So. 01 b2

Algorithm of fast direct discrete Haar transform
is described below.

u?l,jz = f(jl’ jz)’ j1 =12, n, j2 =12..n

(19)
We have (for all p=0,1,...M -1,
jj,=01.,N,, s,5,=01  (except
s, =S, =0)):

2, =(-D* z,=(-1%; Apn = 2'ap; (20)

VE oy = @ Udj0g,0 + 24UZ) 550 + (21)
+ ZZUijl—l,Zj + 7,2 uzph 2,2)'
ujlez = u2p] a2j,-1 1 uzh 2,271 + (22)
+Ugj 125, HUZ) 25,0
ay =N, V(')\{IO,l,l =ay Ul'\,/i ' (23)

where u? ., i, 0, =12 ..,

are auxiliary quantities.
Algorithm of fast inverse Haar transform is
described below.

N,, p=12,.,M

m =N oy, =N, ull\,/i =ay V(’)\{lO,l,l' (24)
We have (p=M -1 M -2,...,0,i,,i,=12,..,N ).
iy =[G, +D /25, =[G, +D/2];
Zl :(_1)I1+1; ZZ — (_1)|2+l; ap_l — ap /2 :
(25)
ulpl =
=a. (zvle , T2 VOpl] N +zlzzvl"1J R
+1
+UE 2"
(26)
Thus,
f(ll’ 2) || ) I1:011! N, i2=0111 N

(27)

1.2.2. Algorithm of averaging. Let us assume
that it is necessary to make averaging at level q.

For all p=12..q, j J.=12,.,N,
s, S, =0,1 (except s, =s, =0) we suppose

(D,u p)2j1—1,2j2—1 =(D,u p)2j1—1,2j2 =

= (D p)2j1,2j2—l = (D p)2j1,2j2 ~ (28)
~ (DlJ p)Zjl—l,ij—l;

(D,u p)Zjl—l,ij—l =(D,u p)2j1—1,2j2 =

= (Dzu p)2j1,2j271 = (Dzu p)2j1,2j2 ~ (29)

~ (D2[I p)2j1—l,2j2—1;
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(D D+Up)2] A2j,-1 T (D D+Up)2h-1,2j2 =

=(D; Dfup)zj 2j,1 = =(D; D+Up)2j1,212 X (30)
z(D;DfU p)2j1—1,2j2—1'
Vo sp2i 1211 = Va5, 200211 = (31)
=Vsri $;,2j;-1,2], = 5? $,2J1,2jp !
2_(ul jz+uf+1l _|_up +1+uj+1j+l)/4;
(32)
D, u® =(u’ 1(2° h);
( . p)] A ( ]+1J2 )( . ) (33)
(D;u )J I _(uh ot ~ UG, Jz)/(2 h);
(Tliu:)h: _u§+1 iz UJE 12: (34)
(TZU )j1,12 _qul+1 uJ i
D,=05-T,)D;; D,=05-T/'D,. (35)

Final formulas of averaging have the form

leo 2117121271 = leo 2j1,2j,-1 — V1F,)o,2j171,212 =
10211212 = Bio 1p61j1,j21 b b =12, Np+1;
(36)
VOpl 2;1—1212—1 V(;jl 211 212—1 Vopl 2-12j, —
01211212 ﬁm 0111 i ? Jl’ Jz =12,.., Npﬂ;
37)
lelel—lez—l = lelzj1 2j2—1 = lel 2i-12j, —
11211212 ﬂll 11]1 i ? bl =12, Np+1;
(38)
Bro =0.25; Bos =0.25; B = 0.125. (39)

1.3. Three-dimensional problems.
This most cumbersome case is described in [6].

2. MULTILEVEL WAVELET-BASED
NUMERICAL METHOD OF LOCAL
STRUCTURAL ANALYSIS

2.1. Formulation of the problem

Effective qualitative multilevel analysis of local
and global stress-strain states of the structure is
normally required in various technical
problems. As is known, defects and failures are
mostly local in nature. However total load-
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carrying ability of the structure, associated with
the condition of limit equilibrium, is determined
by the global behavior of the considering
project. Therefore corresponding multilevel
approach is peculiarly relevant and apparently
preferable in all aspects for qualitative and
quantitative analysis of calculation data.
Wavelet analysis provides effective and popular
tool for such researches. After expansion of the
solution with the use of local wavelet basis
corresponding components are considered at
each level of the basis.
In accordance with the method of extended
domain [7], the domain Q, occupied by
considering  structure, is embordered by
extended one o of arbitrary shape, particularly
elementary. Operational formulation of the
problem in domain @ normally has the form
Lu=F, (40)
where L is the operator of boundary problem,
which takes into account the boundary
conditions; u is the unknown function; F is the
given right-side function.
Directly from operational formulation we have
variational formulation of the problem:
®(Uu)=0.5-(Lu,u) - (F,u), (41)
Solution of (41) is the critical point of (40).
(f,g) denotes dot product of functions f and

g.
Discrete formulation of the problem has the
form: )

a=f, (42)

where  A={a;;}; j1..., Is the difference

approximation of operator L;
U=[u, u, .. u, 1" is the unknown mesh
function; f=[f, f, f,, 1" is the given
right-side mesh function; n is dimension of
problem.

Various methods can be used to form the matrix
of the discrete operator. We recommend method
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of basis (local) variations. Its major peculiarities
include universality and computer orientation.
We can use the following formulas for linear
problems:

a,; =0E" +eV)-0E")-0E")+2(0)];

f.=05-[@E")-o(-")], (43)
g0 _1e® &0 | e®1 =12 .. .n.
(i) [ 1 -2 ng| ] gl (44)
e’ =0, 1=12,..n,
e® =12 ..,n_, are basis mesh vectors; 0 is

1 Hgl
the null function; &, ; is the Kronecker delta.

2.2. Haar-based formulation of the problem
Let us consider Haar-based formulation of the
problem:

®(U) =0.5- (AT,T) - (f,0) =
=0.5-(LQV,QV) —(f,QV) =
=0.5-(Q'LQV,V)—(Q" f,V),

(45)

where Q is transition matrix consisting from
Haar basis vectors, located in rows. Thus,

d(V)=05-(Q'LQV,V)—(Q"f,v), (46)
where V is vector of Haar expansion coefficients
of the vector . Corresponding operational

formulation of the problem has the form

Lv=f, L=QLQ; f=Q'f. 7
Further reduction of the problem is based on the

averaging algorithm specified above.

3. MULTILEVEL WAVELET-BASED
SEMIANALYTICAL METHOD OF
LOCAL STRUCTURAL ANALYSIS

The objects of the multilevel wavelet-based
semianalytical (discrete-continual) method are
structures with piecewise constancy of physical
and geometrical parameters in one dimension (it

is so-called “basic direction”). Special discrete-
continual design model is introduced. It
presupposes wavelet approximation of extended
domain along non-basic directions, while along
the basic direction problem remains continual.
Analytical solution is apparently preferable in
all aspects for qualitative analysis of calculation
data. It allows investigator to consider boundary
effects when some components of solution are
rapidly varying functions. Due to the abrupt
decrease inside of mesh elements in many cases
their rate of change can’t be adequately
considered by conventional numerical methods
while analytics enables study. Another feature
of the proposing method is the absence of
limitations on lengths  of  structures.
Semianalytical formulation are contemporary
mathematical models which currently becoming
available for computer realization. Resultant
multipoint boundary problem after reduction has
the form [8-10]

y' =AY+ f_kv XG(XE1XE+1)’

k=1..n -1
B, y(x; —0)+ B, y(x{ +0) =7, +7,,

k=2..n -1
B, y(x +0)+B, y(x; —0)=7, +7, .

(48)

where x; =x;,, k=1,...,n, are coordinates of
boundary points; A, k=1,2,..,n, -1 are
matrices of constant coefficients of order n;
B.,B¢, k=2,..,n, -1 and B,B, are
matrices of boundary conditions of order n at
point x.; 0,,0,, k=2,..,n,-1 and g, ,g,

n

are right-side vectors of boundary condltlons at

point xg; Y=Y(x)=[y,(x) y,(0) .. y,(0T
is the unknown vector function;
y@ =y¥(x) =dy/dx;
fo =) =[f.(x) f,(X).. T (X) 1,
k=12..,n -1

are right-side vector functions.
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Solution of considering multipoint boundary
problem of structural analysis is accentuated by
numerous factors. They include boundary
effects (stiff systems) and considerable number
of differential equations (several thousands).
Matrices of coefficients of a system normally
have eigenvalues of opposite signs and
corresponding Jordan matrices are not diagonal.
Method of solution of multipoint boundary
problems for systems of ordinary differential
equations with piecewise constant coefficients
in structural analysis has been developed. Not
only does it overcome all difficulties, but its
peculiarities  also  include  universality,
computer-oriented algorithm, computational
stability, optimal conditionality of resultant
systems and partial Jordan decomposition of
matrix of coefficient, eliminating necessity of
calculation of root vectors.

CONCLUSION

Currently, high-tech work is underway to
integrate  the developed numerical and
semianalytical methods and corresponding

algorithms of local structural analysis into the

STADY O software package [19,20].

It should be noted that STADYO is the

universal software package, which rovides

temperature fields, static, stability and dynamic
analysis (including response spectra and
accelerations definition) as well as fracture
mechanics and strength  analysis  and

optimization of arbitrary combined 2-D and 3-D

solid, shell, plate and beam mechanical systems

by the finite elements, superelement and other
modern numerical methods:

e STADYO-FIELD - stationary field
(thermoconduction, filtration, fluid flow,
etc) problems;

e STADYO-STAT -
stress-strain analysis;

e STADYO-EIG - solving the eigenvalue
problems (natural frequencies and modes,
loads and forms of buckling);

linear-elastic  static
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e STADYO-SEISM — “normative” spectral
analysis of seismic responce under
exitations, defined by acceleration spectra;

e STADYO-VIBR - evaluation of system
stationary vibration parameters;

e STADYO-SPEC - linear spectral (modern
superposition) dynamic analysis;

e STADYO-DYN — direct step-by-step
integration of dynamic equations;

e STADYO-NFIELD - solving the non-
stationary field problems;

e STADYO-FRAC - solving the linear
problems of fracture mechanics, including
intensivity ratio coefficients and J-integral
definitions;

e STADYO-NLIN - solving the nonlinear
static and dynamic problems of motion
equations (large displacement, plasticity
and viscoplasticity of metals, concrete and
ground, opening cracks and joints etc.);

e STADYO-WIND - object-oriented code
for 3D static and dynamic analysis of
typical wind units;

e STADYO-ASTRA - object-oriented cod for
3D static analysis of typical pipe elements
(elbows, tees, weld connections, etc);

e STADYO-INTER - object-oriented code
for 3D static and dynamic analysis of
combined “soilstructure” systems.
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