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Abstract: Non-linear damped vibrations of a cylindrical shell subjected to the additive type combinational 

internal resonance are investigated numerically using two different numerical methods. The damping features of 

the surrounding medium are described by the fractional derivative Kelvin-Voigt model involving the Riemann-

Liouville fractional derivatives. Within the first method, the generalized displacements of a coupled set of 

nonlinear ordinary differential are estimated using numerical solution of nonlinear multi-term fractional 

differential equations by the procedure based on the reduction of the problem to a system of fractional 

differential equations. According to the second method, the amplitudes and phases of nonlinear vibrations are 

estimated from the governing nonlinear differential equations describing amplitude-and-phase modulations for 

the case of the additive combinational internal resonance. A good agreement in results is declared. 

 
Keywords: cylindrical shell, free nonlinear damped vibrations, additive combinational internal resonance, 

method of multiple time scales, multi-term fractional differential equations 

 

 

ЧИСЛЕННЫЙ АНАЛИЗ НЕЛИНЕЙНЫХ КОЛЕБАНИЙ 

ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С ДРОБНЫМ 

ДЕМПФИРОВАНИЕМ ПРИ АДДИТИВНОМ 

КОМБИНАЦИОННОМ ВНУТРЕННЕМ РЕЗОНАНСЕ 
 

Б. Айармах 1 ,2, М.В. Шитикова 1  
1 Воронежский государственный технический университет, г. Воронеж, РОССИЯ  
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Аннотация: Рассматриваются нелинейные затухающие колебания цилиндрической оболочки при 

аддитивном комбинационном внутреннем резонансе. Для решения соответствующих задач применяются 

два различных численных метода. Демпфирующие особенности окружающей среды описываются с 

помощью дробной производной модели Кельвина-Фойгта, включающей дробные производные Римана-

Лиувилля. В рамках первого метода обобщенные смещения связного набора нелинейных обыкновенных 

дифференциалов оцениваются на основе численного решения нелинейных многочленных уравнений с 

дробными производными по методике, предусматривающей сведение исходной задачи к системе 

уравнений с дробными производными. Согласно второму методу, амплитуды и фазы нелинейных 

колебаний оцениваются из определяющих нелинейных дифференциальных уравнений, описывающих 

амплитудно-фазовые модуляции для случая аддитивного комбинационного внутреннего резонанса. 

Отмечена хорошая согласованность полученных результатов. 
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1. INTRODUCTION 

 

In mechanical nonlinear vibrations, the 

phenomena of internal resonance and energy 

exchange are quite often what requires the 

thorough studies, since in the case of low 

damping it could result in long-time vibrations 

accompanied by the two-sided or one-sided 

energy interchange between coupled modes [1]. 

It will suffice to mention the state-of-the-art 

articles [1,2] and the monograph [3] involving 

the extensive review of literature in the field of 

internal resonances in different mechanical 

systems. Different types of the internal 

resonance: one-to-one, two-to-one, three-to-one, 

as well as a variety of combinational 

resonances, when three and more natural modes 

interact, have been discussed. The enumerated 

internal resonances were investigated in various 

mechanical systems with multiple degree-of-

freedom, as well as in strings, beams, plates, 

and shells. 

It has been emphasized by many researchers [4-

13] that the phenomenon of internal resonances 

can be very critical especially for circular 

cylindrical shells. Thus, the nonlinear vibrations 

of infinitely long circular cylindrical shells 

under the conditions of the two-to-one internal 

resonance were studied in [6] via the method of 

multiple time scales using the simple plane 

strain theory of shells. Parametrically excited 

vibrations of infinitely long cylindrical shells 

and nonlinear forced vibrations of a simply 

supported, circular cylindrical shell filled with 

an incompressible, inviscid, quiescent and dense 

fluid were investigated in [4,5,7] using 

Donnell’s nonlinear shallow-shell theory. The 

flexural deformation is usually expanded by 

using the linear shell eigenmodes, in so doing 

the flexural response involves several nodal 

diameters and one or two longitudinal half-

waves. Internal resonances of different types 

have been analyzed in [8-13].  

The extensive review of studies on shallow 

shells nonlinear vibrations could be found in the 

state-of-the-art articles [14-16]. In spite of the 

fact that many studies have been carried out on 

large amplitude vibrations of circular cylindrical 

shells and many different approaches to the 

problem have been used, we agree with 

Breslavsky and Amabili [10] that this research 

area is still far from being well understood.  

In recent years much attention is given to 

damping features of mechanical systems 

subjected to the conditions of different internal 

resonances. Damping properties of nonlinear 

systems are described mainly by the first-order 

time-derivative of a generalized displacement 

[3]. However, as it has been shown by 

Rossikhin and Shitikova [17], who analyzed 

free damped vibrations of suspension combined 

system under the conditions of the one-to-one 

internal resonance, for good fit of the theoretical 

investigations with the experimental results it is 

better to describe the damping features of 

nonlinear mechanical systems in terms of 

fractional time-derivatives of the generalized 

displacements [18].  

During the last decade, fractional calculus 

entered the mainstream of engineering analysis. 

And it has been widely applied to structural 

dynamics problems both in discrete and 

continuous equations. The history of the 

fractional calculus applications in mechanics 

could be found in the retrospective paper by 

Rossikhin [19], while a comprehensive review 

of the fractional calculus models in different 

dynamic problems of solids and structures is 

presented in the state-of-the-art article [18], 

wherein the results obtained in the field 

critically estimated in the light of the present 

view of the place and role of the fractional 

calculus in engineering problems and practice.   

It has been suggested in 2011 to examine the 

nonlinear dynamic response of a thin cylindrical 

shell vibrating in a fractionally damped medium 

[20], when the dynamic behavior of the shell is 

described by a set of three coupled nonlinear 

differential equations with due account for the 

fact that the shell is being under the conditions 

of the internal resonance resulting in the 

interaction of modes corresponding to the 

mutually orthogonal displacements. The 
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displacement functions are determined in terms 

of eigenfunctions of linear vibrations.  

A new procedure resulting in decoupling linear 

parts of equations has been proposed in 

Rossikhin and Shitikova [21] with the further 

utilization of the method of multiple scales for 

solving nonlinear governing equations of 

motion, in so doing the amplitude functions are 

expanded into power series in terms of the small 

parameter and depend on different time scales. 

It is shown that the phenomenon of the internal 

resonance between vibrational subsystems of 

the cylindrical shell under consideration can be 

very critical, since in the circular cylindrical 

shell of such a type the two-to-one [21], one-to-

one, three-to-one [22] internal resonances, as 

well as combinational internal resonances [23] 

could occur, which are governed by the order of 

smallness of viscosity. All possible cases of the 

internal resonance have been recently revealed 

in [22], which belong to the resonances of the 

constructive type, since all of them depend on 

the geometrical dimensions of the shell under 

consideration and its mechanical characteristics, 

that is why such resonances could not be 

ignored and eliminated for a particularly 

designed shell. It has been shown that the 

energy exchange could occur between two or 

three subsystems at a time: normal vibrations of 

the shell, its torsional vibrations and shear 

vibrations along the shell axis. Such an energy 

exchange, if it takes place for a rather long time, 

could result in crack formation in the shell, and 

finally to its failure. The energy exchange has 

been illustrated pictorially by the phase 

portraits, wherein the phase trajectories of the 

phase fluid motion are depicted. 

In the present paper, we are going to verify 

parameter values of the cylindrical shell model 

[20-23], resulting in the nonlinear vibrations of 

a fractionally damped cylindrical shell under the 

conditions of combinational internal resonance, 

and to study such phenomenon using two 

different numerical methods [24]. In the first 

method, the generalized displacements of a 

coupled set of nonlinear ordinary differential 

equations of the second order are estimated 

using numerical solution of nonlinear multi-

term fractional differential equations by the 

procedure based on the reducing of the problem 

to a system of fractional differential equations 

[25-28]. According to the second method, the 

amplitudes and phases of nonlinear vibrations 

are estimated from the governing nonlinear 

differential equations describing amplitude-and-

phase modulations for the case of the 

combinational internal resonance [23] using the 

Runge-Kutta fourth order method. 
 

 

2. PROBLEM FORMULATION  
AND GOVERNING EQUATIONS 

 

Let us examine the dynamic response of a free 

supported non-linear elastic circular cylindrical 

shell of radius R and length l, vibrations of 

which in the cylindrical system of coordinates 

described by the Donnell–Mushtari–Vlasov 

equations with respect to the three 

displacements [12] considering that damping 

features of the surrounding medium are 

described by the time-differential operator of 

the fractional order [20]: 
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where x-axis is directed along the axis of the 

cylinder, φ is the polar angle in the plane 

perpendicular to the x-axis,  

 

( , , )u u x t , ( , , )v v x t , and ( , , )w w x t  

 

are the displacements of points located in the 

shell's middle surface in three mutually 

orthogonal directions , ,x r  with r as the polar 

radius, h is the thickness, ρ is the density, E and 

σ are the elastic modulus and Poisson's ratio, 

respectively, t is the time, æ1, æ2, æ3 are the 

damping coefficients, and  
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The initial conditions 
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where 0( , )iV x   (i=1,2,3) are the corresponding 

initial velocities, and ε is a small value,  should 

be added to Eqs. (1)-(3). Hereafter over dots 

denote time-derivatives. 

The boundary conditions for the simply 

supported shell (the Navier-type conditions for 

the edges free supported in the x-direction) have 

the form [12]:  
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.    (6) 

 

From relationships (5) it follows that free 

vibrations are excited by the weak disturbance 

from the equilibrium position.        

It has been proposed in [20] to rewrite Eqs. (1)-

(5) in the nondimensioned form  in terms of the 

following dimensionless parameters: 

 

* * *

* *

2

= , = , = ,

= , = .
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u v w
u v w

l l l

x t E
x t

l l  

 

 

Dropping hereafter the asterisks for the ease of 

presentation, let us admit the solution of the 

Navier type for Eqs. (1)-(3) in the form  

 

1 1
1 1

( , , ) ( ) ( , )mn mn
m n

u x t x t x  
 

 

   ; 

2 2
1 1

( , , ) ( ) ( , )mn mn
m n

v x t x t x  
 

 

   ;    (7) 

3 3
1 1

( , , ) ( ) ( , )mn mn
m n

w x t x t x  
 

 

   , 

 

where ( )jmnx t  and ( , )jmn x   (j=1,2,3) are, 

respectively, the generalized displacements and 

eigenfunctions satisfying the boundary 

conditions (6), and m and n are integers. 
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Distinct to the traditional modeling the viscous 

resistance forces via first order time-derivatives 

[16], in the present research we adopt the 

fractional order time-derivative  

 

( / )d dt 
, 

 

what, as it had been shown in [17,18], allows 

one to obtain the damping coefficients 

dependent on the natural frequency of 

vibrations. It has been demonstrated in [29] on 

the example of the Golden Gate suspension 

bridge that such an approach for modeling the 

damped non-linear vibrations provides the good 

agreement between the theoretical results and 

the experimental data through the appropriate 

choice of the fractional parameter (the order of 

the fractional derivative) and the viscosity 

coefficient.  

It was shown in Samko et al. [30] (see Chapter 

2, Paragraph 5, point 70) that the fractional order 

of the operator of differentiation  

 

( / )d dt 
 

 

is equal to the Marsho fractional derivative, 

which, in its turn, equal to the Riemann–

Liouville derivative D

 . 

It has been noted in [17,18] that a fractional 

derivative is the immediate extension of an 

ordinary derivative. In fact, when γ →1 the 

fractional derivative goes over into the ordinary 

time-derivative of the first order, and the 

mathematical model of the viscoelastic shell 

under consideration transforms into the 

conventional Kelvin–Voigt model, wherein the 

elastic element behaves non-lineally, but the 

viscous element behaves linearly. When  

 

γ →0, 

 

the fractional derivative  

D f

 tends to ( )f t . 

 

To put it otherwise, the introduction of the new 

fractional parameter along with the parameters 

æi allows one to change not only the magnitude 

of viscosity at the cost of an increase or 

decrease in the parameters æi, but also the 

character of viscosity at the sacrifice of 

variations in the fractional parameter γ. 

Now substituting the proposed solution (7) in 

nondimensioned Eqs. (1)-(3), multiplying then 

each equation by the corresponding function 

( , )jmn x  , integrating over x and φ, and using 

the orthogonality conditions for linear modes 

within the domains of  
 

0 1x   and 0 2   , 

 

we are led to a coupled set of nonlinear ordinary 

differential equations of the second order in 

( )
imn

x t . However, a new procedure has been 

proposed in [21] for decoupling the linear parts 

of nonlinear differential equations.   

Thus, the system is reduced to the following 

form: 
 

2

1 1 1 1
1

3

1

Ω

;

mn mn mn
mn

I

imn imn
i

æ D X X

F

X

L


  

 



          (8) 

2

2 2 2 2 2

3

1

;

mn mn mn mn

II

imn imn
i

X æ D X X

F L



  

 



       (9) 

2

3 3 3 3 2

3

1

,

mn mn mn mn

III

imn imn
i

X æ D X X

F L




  





    (10) 

 

where
γ γ( / )D d dt , and  Xi (i=1,2,3) are new 

generalized displacements which are connected 

with ( )
imn

x t   via eigenvectors I

imnL , II

imnL , III

imnL   

 

1 2 3( )
I II III

imn mn imn mn imn mn imnx t X X XL L L    

 

of the matrix mn

ijS  with the corresponding 

eigenvalues Ω1mn, Ω2mn, and Ω3mn, the elements 

of which are the following:  
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where  

 

1 /l R   and 2 /h l   

 

are the parameters defining the dimensions of 

the shell.  

From Eqs. (8)-(10) it is seen that their left-hand 

side parts are linear and independent of each 

other, while they are coupled only by non-linear 

terms imnF  in their right-hand sides.  

It is known [3, 31] that during nonstationary 

excitation of thin bodies not all possible modes 

of vibration would be excited. Moreover, the 

modes which are strongly coupled by any of the 

so-called internal resonance conditions are 

initiated and dominate in the process of 

vibration, resulting in the energy transfer from 

one subsystem to another between the coupled 

modes, in so doing the types of modes to be 

excited are dependent of the character of the 

external excitation. It was emphasized in [31] 

that in the presence of damping, all modes that 

are not directly or indirectly excited by an 

internal resonance decay with time.  

Assume hereafter that the vibration process 

occurs in such a way that only three natural 

modes corresponding to the complex 

generalized displacements  

 

1 21s sX , 
1 22l lX , and 

1 23k kX  

 

are excited and dominate over other natural 

modes. In this case, the right parts of Eqs. (8)-

(10) are significantly simplified. 

According to [20], the approximate solution of 

these three nonlinear equations (wherein the low 

indices s1s2, l1l2 and k1k2 are omitted for the ease 

of presentation) for small but finite amplitudes 

weakly varying with time could be represented 

by a uniform expansion in terms of different 

time scales: 

 
2

1 0 1 2 0 1( , ,...) ( , ,...) ...i i iX X T T X T T     

(12) 

 

where 1, 2,3i  ,   is a small dimensionless 

parameter of the same order of magnitude as the 

amplitudes,  

 
2

nT t  (n =0,1,2,…) 

 

are new independent variables, among them:  

 

0T t  

 

is a fast scale characterizing motions with the 

natural frequencies, and  

 

1T t  

 

is a slow scale characterizing the modulation of 

the amplitudes and phases of the modes with 

nonlinearity. 

      Applying the method of multiple scales 

directly to the governing partial-differential 

equations by substituting (12) in them and 

considering that the first and second time-

derivatives, as well as the fractional order time-

derivative are defined in terms of new time 

scales, respectively, as follows:  

 

0 1 ...,
d

D D
dt

     

2
2

0 0 12
2 ...

d
D D D

dt
   

(13) 
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where /n nD T   , and 0D , 1

0D  , 2

0D  … are 

the Riemann-Liouville fractional derivatives in 

time t [17,18], after separating the terms at the 

same powers of  , we could obtain the 

equations corresponding to different orders of  ε 

[21]. 

It should be noted that the expansion of the 

fractional order operator of differentiation (14) 

for the first time was suggested in 1998 by 

Rossikhin and Shitikova [17], and nowadays it 

is used by the researchers worldwide when 

solving the nonlinear dynamic problems with 

fractional order damping.  

The case of the order of ε has been considered 

in detail in [21], wherein all types of the internal 

resonance, which could occur on this step, have 

been detected and classified: (1) the two-to-one 

internal resonance, when one natural frequency 

is twice the other natural frequency, (2) the one-

to-one-to-two or one-to-two-to-two internal 

resonance, and (3) the combinational resonances 

of the additive-difference type of the first order, 

among them, the case of 2 1 3Ω Ω Ω  , which we 

are going to study below numerically. 

Utilizing the procedure described in [22] and 

considering that the fractional order damping 

coefficients have the form of  
 

i i iæ  , 

 

where i  is the relaxation time of the i-th 

generalized displacement and i  is a finite 

value, the following six first-order nonlinear 

ordinary-differential equations  governing the 

modulation of the amplitudes and phases of the 

three interacting modes in case of combinational 

additive internal resonance 2 1 3Ω Ω Ω   have 

been obtained:  

 
2 2 1

1 1 1 1 23 1 2 3

.
       Ω s( i) nIa s a a a a a 

   ;   (15) 

2 2 1
   2 2 2 2 13 1 2 3

. Ω sin (  ) IIa s a a a a a   ;    (16) 

2 2 1

3 3 3 3 12 1 2  3 

.
   ( sin) Ω IIIa s a a a a a 

   ;   (17) 

23 2 3
1 1

1 1

1
      

2

1
cos 0

2 Ω

Ia a a

a
     ;    (18) 

13 1 3
2 2

2 2

1 1
      

2 2
cos 0

Ω

IIa a a

a
     ;  (19) 

12 1 2
3 3

3 3

1 1
      

2 2
cos 0

Ω

IIIa a a

a
     ;  (20) 

 

where ai and φi (i=1,2,3) are the amplitudes and 

phases, respectively,  

 

1 32 ( )       

 

is the phase difference, an over dot denotes the 

differentiation with respect to T1,  

 
1Ω sini i i is    ,   

1Ω cosi i i i

     1,2,3i  , 

1

2
  , 

 

and 
I II III

23 13 12 ,  , a a a are constant coefficients 

defined by the coupled modes of vibrations 

[22].  

 

 

3. NUMERICAL METHOD OF SOLUTION 

 
3.1. Defining the shell parameters that satisfy 

the condition of the combinational internal 
resonance 2 1 3Ω Ω Ω   

 
Before proceeding to numerical investigations, 

let us find the shell parameters which could 

satisfy the condition of the additive 

combinational internal resonance  

 

2 1 3Ω Ω Ω  . 
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Table 1. Part of shell parameters which satisfy the resonance condition 2 1 3Ω Ω Ω  . 

Ω1 m1 n1 Ω2 m2 n2 Ω3 m3 n3 σ β1 β2 

30.4137 5 3 44.412 4 5 13.9983 3 1 0.33 8.37 0.004 

27.0251 5 2 43.1784 3 4 16.1531 3 1 0.33 10.23 0.004 

19.8875 5 1 44.6532 4 4 24.7656 3 2 0.33 10.42 5 10-5 

18.9932 5 1 48.9931 4 5 29.9997 2 3 0.33 9.30 0.005 

17.1999 5 1 33.883 3 5 16.6832 3 2 0.33 6.40 0.002 

16.4713 3 3 23.0467 2 5 6.57529 1 1 0.33 4.36 0.004 

15.7683 4 1 41.7693 1 5 26.0007 1 3 0.33 8.17 0.005 

 

For this purpose we should use the properties of 

the symmetric matrix 
mn

ijS  (11) possessing three 

real eigenvalues  i mn (i =1,2,3) which are in 

the correspondence with three mutually 

orthogonal eigenvectors  Li mn . 

We search for values 
1 11Ω m n , 

2 22Ω m n
, and 

3 33Ω m n

corresponding to the fixed shell’s parameters  σ, 

β1 and β2, which could satisfy the additive 

combinational resonance 2 1 3Ω Ω Ω   (here 

subindices mini are omitted for the ease of 

presentation), resulting in coupling of these 

particular three modes of vibration. Some 

results are shown in Table 1, from which it is 

evident that the situation of such a 

combinational resonance could be realized 

rather often in real shells used as parts of 

different civil engineering structures. 

 

 

3.2. Numerical solution of general multi-term 
linear equations  

 

Using the numerical method proposed in [25]-

[28], the procedure based on the reduction of the 

problem to a set of fractional differential 

equations to estimate numerically the solution 

of Eqs. (8-10) is as follows: 

 

 

let 

 

1 1Y X ,                         (21) 

2 1 1Y D X D Y
 

  , 

3 1 1Y DX DY  , 

1 1 3X DDX DY  . 

 

First substitute these equalities in equation (8), 

resulting in   

 
3 2

1   3 1 2 1 1
1

I
mn i mn

i
F LDY æ Y Y


     ,       (22) 

4 2Y X , 

5 2 4Y D X D Y
 

  , 

6 2 4Y DX DY  , 

2 2 6X DDX DY  ; 

 

then in equation (9), resulting in  

                                                    
3 2

2   6 2 5 2 4
1

II
mn i mn

i
F LDY æ Y Y


     ,   (23) 

7 3Y X , 

8 3 7Y D X D Y
 

  , 

9 3 7Y DX DY  , 
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3 3 9X DDX DY  , 

 

and finally in equation (10), resulting in  

                                                     
3 2

3   9 3 8 3 7
1

II
mn i mn

i
F LDY æ Y Y


     .                                       

(24) 

      Thus, the governing set of nine equations in 

nine unknown values Yi  in the matrix form 

could be written as 

 

1

2

3

4

5

6

7

8

9

2

3
3

1    1 2
1

0 0 0 0 0 0 0 0

0 0   0 0 0    0 0 0

0 0 0 0 0 0 0 0

0  0 0 0 0 0  0 0

0  0 0 0 0    0  0 0 *

0  0 0 0 0 0  0 0

0  0 0 0 0 0 0 0

0  0 0   0 0 0   0 0

0  0 0 0 0 0 0 0

I
mn i mn

i
F L

D Y

D Y

D Y

YD

YD

D Y

YD

YD

YD

Y

Y

æ Y












  



   
   
   
   
   
   
   
   
   
   

     

2

1 1

5

6
3 2

2    2 5 2 4
1

8

9
3 2

3    3 8 3 7
1

II
mn i mn

i

III
mn i mn

i

F L

F L

Y

Y

Y

æ Y Y

Y

Y

æ Y Y











   

   

 
 
 
 
 
 
 
 
 
 
 
 
  

 

(25) 

 

Two different types of discretization of 

derivatives in (25) could be utilized [25-28]. For 

the first order of differentiation, the trapezoidal 

rule is usually used: 

 

1 1

1
( )

2

yields

i i i iDY f Y Y h f f      .      (26) 

 

So in our problem, the discrete derivatives (D) 

will take the form 

 

1 1

1 1
( )

2 2
i i i iY hf Y h f    .              (27) 

To discretize the fractional derivative, the 

Diethelm’s method could be used [25]: 

 

0
, 

0
 

1
 ( )
 

i

k i i k
k

i

Y
Y

D Y
 




 



           (28) 

 

where  

 

( ) ( )i ih
 
     

 

and  , 0k


 ,…., ,   k i


  [25, 26]  are the convolution 

weights derived from the fact that the fractional 

operator defined in terms of a convolution 

integral. We will use the weights of the 

quadrature formula [25] 

 

, 0

1 1 1

1 1

 

 

  

( ) (1 )

1                                         for  0

2 ( 1) ( 1) for  1, 2,., 1

( 1) ( 1) for 

kf j

k

k k k k j

k k k k j

 

  

  

   





  

  



  

 

 

 


   
   

 

(29) 

 

Discretization of the equation 

 

1 2D Y Y


                           (30) 

 

results in the following relationships (note    ): 

 

10
,  1  2

0
  ( )

1 i

k i i k
k

i

Y
Y Y




 



  

;        (31) 

1 0
 ,  1 0,  1  2 

1
  ) (

i

k i i ki i i i
k

Y
Y Y Y   





  

;  (32) 

 

Let  

 

1

1 0
,  1  1  1 

i

k i i k i
k

Y
Y s


 

   , 

 

so we have 
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0,  1  1  1 2 (   )i i i i iY s Y 
   ,         (33) 

1  0,  1  2  i i i i is Y Y     .           (34) 

 

By the trapezoidal rule we can represent 

 

3 1
 DY Y  

 

in a discrete form as  

 

1  1  1 3     3   1  ( )
2

i i i i

h
Y Y Y Y    .           (35) 

 

So rearranging the terms 

 

1  3     1  1 3   1 2  1   
2 2

i i i i i

h h
Y Y Y Y s      ,        (36) 

 

and utilizing the trapezoidal rule, we can 

discretize  

 
3 2

3 1 2 1 1
1

1   
j

IF Lmn j mn
DY æ Y Y


    ;     (37) 

 
3

3     3   1 1     1     1  

1

2

1 2  2  1 1 1  1  1 .

 
2

( ) ( )

 

                

I

i i mn i mn i j mn

j

i i i i

h
Y Y

æ Y Y Y Y

F F L 



 





 

   


  





 

(38) 

 

Rearranging the terms, we have 

 

 

2
)3     1 2  1 1  3   1

3  1

3
2  1     1     1 1 2  1 1  1  1

1

(  
2

2

i i i i

i

IF F L æ Y Ymn i mn i i ij mn
j

h
Y æ Y Y Y

h

s 



 
        

 

   

 



 
 
 

 

(39) 

 

Repeating these steps (as we have done in Eqs. 

(30)-(39)) for all other values (Y4-Y9), and 

arranging them in a matrix form, we obtain (40). 

Then it is quite straightforward to solve (40) 

(Figure 1). 

 

 

0, 

2

1
1 1 

2 

0, 

2

0

2

3
3

2

2

, 

0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0

2

2 2

2

2 2

2

0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0
2

1
2

i i

i

i i

i
i

h

h h
æ Y

Y

h

h h
æ

h

h h
æ

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





















1  1

2  1

   
3  3  1

4  14 

5  15 

6  16 

7  1
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8  1
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9  1
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i

i i

i i

ii

ii

ii

i
i

i
i

i
i

s

s
Y s

Y s

sY
sY
sY
sY
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         (40) 

Figure 1. Formula (40). 
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3.3. Numerical solution of the governing 
equations for the combinational additive 
internal resonance using the Runge-
Kutta fourth order method 
 

To utilize the Runge-Kutta fourth order method 

to estimate numerically the solution of 

equations (15)-(20), we first rewrite these 

equations as follows: 

 

1

1 1 23 2  3  1 1 
1

( Ω sin )
2

Ia a a a s a   ;       (41) 

1

2 2 13 1 3  2 2   
1

(Ω sin )
2

IIa a a a s a  ;        (42) 

1

3 3 12 1  2 3 3   
1

( Ω sin )
2

IIIa a a a s a   ;       (43) 

23 2 3
1 1

1 1

    
1 1

  cos
Ω2 2

Ia a a

a
    ;           (44) 

13 1 3
2 2

2 2

      
1 1

cos
Ω2 2

IIa a a

a
    ;          (45) 

12 1 2
3 3

3 3

      
1 1

cos
Ω2 2

IIIa a a

a
    .         (46) 

 

 

4. NUMERICAL RESULTS 

 

4.1. Method 1: multi-step fractional 
differential equations. 

The numerical solution using the multi step 

method of equation (40) has been carried out at 

the dimensionless parameters presented in Table 

1 (for the case presented in the first line), and 

the results are presented in Fig. 1 for different 

magnitudes of the fractional parameter. 

 

4.2. Method 2: the analysis of the amplitudes 
and phases using multiple time scales 

 

Variation of the fractional parameter γ from 0 to 

1  allows one to investigate vibrations of 

cylindrical shells in surrounding media with 

different viscous properties, including the  pure 

elastic case at 0   and conventional Kelvin-

Voigt model at 1  .  

The dynamic behavior of a cylindrical shell in a 

viscous medium at γ = 0.02, 025, 0.5, and 0.98, 

which is found by using the first and second 

methods,  is shown in Figures 2 and 3, 

respectively, for the parameters taken from 

Table 1, which correspond to the combinational 

internal resonance at 2 1Ω Ω Ω3  . 

The behavior of amplitudes of vibrations reveals 

the exchange of energy between the generalized 

displacements of the system under the 

considered case of the combinational internal 

resonance.  

 

 
CONCLUSION 

 

Free damped vibrations of a shallow nonlinear 

thin cylindrical shell in a fractional derivative 

viscoelastic medium are investigated 

numerically by two different methods based on 

the new approach proposed in [20-23].  

The numerical solutions of the damped 

vibrations of the nonlinear cylindrical shell 

subjected to the conditions of the internal 

resonance have been estimated, and good 

agreement between the two methods has been 

achieved. Within the first method, the 

generalized displacements of a coupled set of 

nonlinear ordinary differential equations of the 

second order are calculated using the numerical 

solution of nonlinear multi-term fractional 

differential equations by the procedure based on 

the reducing the problem to a system of 

fractional differential equations. According to 

the second method, the amplitudes and phases 

of nonlinear vibrations are estimated from the 

governing nonlinear differential equations 

describing amplitude-and-phase modulations for 

the case of the combinational internal 

resonance. 

It has been shown that, as in [22], the 

phenomenon of the internal resonance could be 

very critical, since in a circular cylindrical shell 

the internal additive and difference 

combinational resonances are always present. 

The effect of viscosity on the energy exchange 

mechanism is analyzed.  
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γ =0.02  

X1 X2 X3 

 
  

γ =0.25 
 

X1 X2 X3 

 

  

γ =0.5 
 

X1 X2 X3 

   
γ =0.98 ≈ 1 

 

X1 X2 X3 

   

Figure 2. The time-dependence of the generalized displacements at different magnitudes of the 

fractional parameter. 
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