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NON-RIGID KINEMATIC EXCITATION  
FOR MULTIPLY-SUPPORTED SYSTEM  

WITH HOMOGENEOUS DAMPING 
 

Alexander G. Tyapin 
JSC “Atomenergoproject”, Moscow, RUSSIA 

 

Abstract: This paper continues the discussion of linear equations of motion. The author considers non-rigid kinematic 

excitation for multiply-supported system leading to the deformations in quasi-static response. It turns out that in the 

equation of motion written down for relative displacements (relative displacements are defined as absolute displace-

ments minus quasi-static response) the contribution of the internal damping to the load in some cases may be zero (like 

it was for rigid kinematical excitation). For this effect the system under consideration must have homogeneous damp-

ing. It is the often case, though not always. Zero contribution of the internal damping to the load is different in origin for 

rigid and non-rigid kinematic excitation: in the former case nodal loads in the quasi-static response are zero for each 

element; in the latter case nodal loads in elements are non-zero, but in each node they are balanced giving zero resulting 

nodal loads. Thus, damping in the quasi-static response does not impact relative motion, but impacts the resulting inter-

nal forces. The implementation of the Rayleigh damping model for the right-hand part of the equation leads to the error 

(like for rigid kinematic excitation), as damping in the Rayleigh model is not really “internal”: due to the participation 

of mass matrix it works on rigid displacements, which is impossible for internal damping.  
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НЕЖЕСТКОЕ КИНЕМАТИЧЕСКОЕ ВОЗДЕЙСТВИЕ  
ДЛЯ МНОГООПОРНОЙ СИСТЕМЫ  

С ОДНОРОДНЫМ ДЕМПФИРОВАНИЕМ 
 

А.Г. Тяпин 
АО «Атомэнергопроект», г. Москва, РОССИЯ 

 

Аннотация: В настоящей статье продолжается ранее начатое обсуждение вопросов вывода уравнений 

движения для линейных расчетов сооружений на динамические воздействия. Автор рассматривает «не-

жесткое» движение опор многоопорной системы, порождающее деформации уже в квазистатической ре-

акции. Оказывается, что в уравнениях движения, записанных в относительных перемещениях (относи-

тельные перемещения определяются как абсолютные перемещения за вычетом квазистатической реак-

ции), вклад матрицы внутреннего демпфирования в нагрузку может оказаться равным нулю даже для 

«нежесткого» смещения опор, - подобно тому, как это было показано ранее для «жесткого» смещения 

опор. Однако для этого рассматриваемая система должна быть однородной по демпфированию. Такая 

ситуация на практике встречается часто, хотя и не всегда. Между нулевым вкладом матрицы демпфиро-

вания в нагрузки в случаях «жесткого» и «нежесткого» движения опор для однородной по демпфирова-

нию системы есть принципиальная разница: в первом случае в квазистатической реакции соответствую-

щие узловые силы равны нулю в каждом элементе, а во втором случае в деформированных элементах 

появляются усилия, но в узлах их суммы равны нулю. Демпфирование, связанное с квазистатической ре-

акцией, не повлияет на относительные перемещения, но проявится при вычислении полных внутренних 

усилий. Использование модели демпфирования Рэлея для правой части уравнения движения, как и в слу-

чае «жесткого» кинематического возбуждения опор, приводит к ошибочным результатам, поскольку 

демпфирование в модели Рэлея благодаря участию матрицы масс работает на жестких смещениях систе-

мы, в отличие от внутреннего демпфирования.  
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Discussion about damping at forming of seismic 

loadings piques interest of civil engineers [1, 2]. 

There are some disagreements about internal 

damping at right part of movement equation, 

written in the relative displacement form for 

multi-supported system. At the same time, au-

thor wrote about case of “rigid” support move-

ment of multi-supports systems in the previous 

papers. It should be specified, that “rigid” 

movement of some points row is not equivalent 

of equal forward movement of such points, that 

can be considered as only partial case. “Rigid” 

movement of some points row means that one’s 

move as it “frozen” into absolutely rigid solid 

body. If this solid body rotates, then forward 

movement of some points of such body in local 

coordinate systems, linked with these points, 

differs in accordance with it coordinate. At the 

same time, such movement remains “rigid”. 

Principle feature of system behavior at “rigid” 

movement of supports is that quasi static re-

sponse to such movement is “rigid” too. In other 

words, at quasi static response not only support 

but all points of system move "rigidly". At the 

same time, there are not displacement in system, 

therefore internal forces, caused by system rigid 

and damping, don’t appear. This aspect does not 

depend on a type and homogeneous of internal 

damping as well as rigidity distribution in a sys-

tem. Consequently, dividing movement of linear 

system to translational motion of whole system 

with it supports and additional movement of 

each point relative to supports, it appears that 

right part of movement equation contains only 

inertia forces. There are not rigidities or damp-

ing components in the right part of equation. 

After the paper [2] publication, some authors 

proposed to observe alternative case, when sup-

ports movement is not “rigid”. In the paper [2], 

respective designations and equations are intro-

duced for such movement. 

Turning to terminology, as it seems to the au-

thor, the “translational motion” badly corre-

sponds to description of quasi static responses in 

similar system, since system responses includes 

displacements at “non-rigid” motion of sup-

ports. It already is not “translational motion”, as 

it is at “rigid” motion of supports. Therefore, let 

us to present absolute displacements U as sum 

of quasi static response R and relative displace-

ments X. Top index “+” means that it is ob-

served whole columns, including support dis-

placements; missing of this index means that it 

is observed reduced columns, which includes 

displacements of all points, excepting supports. 

Respectively, matrixes with such index and 

without it take different orders. Let us rewrite 

equation (10), taken from the paper [2], in the 

relative displacements form: 

 

         )()()( tXKtXCtXM   

              bsbbsb RCTCRMTM  )()(   (1) 

 

Here [M], [K] and [C] are block matrices of in-

ertia, stiffness and viscous damping, corre-

sponding to all system nodes, excepting sup-

ports; [Msb] and [Csb] are block matrices of iner-

tia and viscous damping, which link supports 

and non-support nodes; [Rb] is column of sup-

port displacements; [T] is matrix, linking quasi 

static response of non-support nodes with sup-

port displacement: 

 

][][][];[][][ 1

sbb KKTRTR           (2) 

 

Where [Ksb] is block matrix of stiffness, that 

links non-support nodes with support nodes. 

Thus, conclusion of previous paper [2] can be 

formulated in the following form: if matrices 

[C] and [Csb] describes internal damping cor-

rectly, hen at either rigid displacement of sup-

ports [Rb] the last member in the right part of (1) 

equals to zero. It is should be noted ones more 

time, that this conclusion doesn’t require homo-

geneous damping or another special links be-

tween damping and stiffness of a system. 

Current paper describes non-rigid displacement 

of supports [Rb]. Let us pay attention that sec-

ond formula from (2) leads to relationship 

 

0][][][  sbKTK .                (3) 
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Comparing the left part of (3) with first multi-

plier at the last addend in the right part of (1), 

we can conclude, if viscous damping matrix 

[C+] is proportional to stiffness matrix [K+] in 

partial case, then first multiplier at the last ad-

dend in the right part of (1) equals to zero. Re-

spectively, last addend in the right side of for-

mula (1) equals to zero at support motion or 

without it. It was paid attention by V.A. Se-

menov, speaking about proportionality between 

damping and stiffness. 

First of all, such proportionality between damp-

ing and stiffness may appears when material of 

system is homogeneous by damping properties, 

for example, physically homogeneous, when 

structure made of steel or reinforced concrete 

only and loadings don't exceed ultimate values. 

As it shows by experiments, damping of con-

struction material is not viscous, but plastic or 

hysteresis or material by Sorokin model. In fre-

quencies range, the real values of elastic modu-

lus are substituted by complex values, where 

imaginary parts of complex modulus don't de-

pend on the frequency and proportional to real 

parts. Homogeneous damping means in this 

case, that proportion coefficients between real 

and imaginary parts of complex modulus are the 

same for all materials of system. It is very fre-

quent situation, and conclusion about zero 

damping at right part of motion equation, writ-

ten in the form of relative displacements, stay 

actual. Remark about material work at non-

ultimate states is made, because effective modu-

lus and effective damping are changed at large 

deformations. Here large deformations are not 

connected with geometric non-linearity, since it 

is described by equivalent linear models [3, 4]. 

If all elements are loaded by the same loads, 

then at deformation closing to ultimate values 

the homogeneous damping remains actual. 

However, it may occur situations, when in the 

system ones’ structures are closer to ultimate 

state than other. In this case the effective damp-

ing may differs in different structures at the 

same material. 

Thus, in a system with homogeneous damping 

even at non-rigid motion of supports the last 

member of right part of motion equation (1) 

equals to zero. At first sight, such result is anal-

ogous to results, obtained before for rigid mo-

tion of supports [2], however these results have 

principle physical difference. Physical meaning 

of each addend in equation (1) is nodal forces. 

In accordance with assembling rules of stiffness 

and damping matrices in FEM for chosen node 

these nodal forces can be spread out to force 

sum, coming in the node from finite elements, 

linked with this node. The resultant nodal force, 

determined by stiffness matrix or damping ma-

trix may be null matrix by two reasons: 1) all 

members, determining by separate multipliers 

are equal to zero; 2) members are not null, but it 

sum equal to zero at special situation. 

At “rigid” motion of supports the first reason 

executes. Quasi static response is rigid for entire 

system as well as for each finite element, there-

fore nodal forces, linked with stiffness and in-

ternal damping at each element are equal to ze-

ro. Respectively, resultant nodal forces at arbi-

trary node are equal to zero.  

At “non-rigid” motion of supports the second 

reason exacts. Finite elements at quasi-static 

response are deformed, and internal forces ap-

pear, that leads to nonzero values of nodal forc-

es. This fact relates not only with stiffness, but 

damping. As result, integral nodal forces at right 

part of equation (1) for each node, as it is shown 

before, are equal to zero, but such result is 

reached by addition of nonzero members.  

Is it mean that damping, linked with quasi static 

response, disappears from system? No, it is. Let 

us remember, that equation (1) allows to deter-

minate just relative displacement, velocities and 

accelerations. It should be noted, that determi-

nation of "relative" internal forces linked not 

only with stiffness, but also damping member in 

the left part of equation (1). However, these 

“relative” internal forces must be added to forc-

es, caused by quasi static response, to determi-

nate resultant dynamic internal forces. At "rig-

id" motion of supports forces, caused by quasi 

static response, are equal to zero. And here 

stiffness and damping, working at quasi static 

displacements and velocities, are applied at qua-
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si static force calculation. Thus, part of damp-

ing, linked with quasi static response, influence 

to resultant forces in a system, though it occurs 

without “relative” part. 

Now let us to discuss some questions of compu-

tational practice. Physical hysteresis damping in 

material forcedly substitute by non-physical 

damping that is proportional to velocity, using 

Rayleigh model, to save traditional form of dif-

ferential motion equations:  

 

][][][   KMC                 (4) 

It was already written about approximate and 

non-physical aspect of such substitution. First 

member of right part of equation (4) describes 

not internal, but external damping and works 

even at rigid displacements, that is principally 

impossible at internal damping. This member is 

introduced into Rayleigh model just to approx-

imate restore constancy of modal factors of 

damping by frequency. Such constancy by fre-

quency is observed in experiments and appears 

as natural consequence of plastic damping na-

ture. This constancy disappears at introducing of 

viscous damping instead of plastic damping.  It 

is necessary to apply non-physical substitution 

to approximate restoration. 

In this case, appliance of Rayleigh model can be 

recognized as traditionally justified for damping 

matrix. But at right part of (1) in comparison 

with left part the modal factors of damping are 

unimportant. If we exclude non-physical first 

member of Rayleigh model from right part of 

the equation (1), then remaining second member 

that proportional to stiffness matrix in accord-

ance with relationship (3) leads to written before 

right result, that is to disappearance of damping 

from right part of motion equation, written in 

the form of relative displacements for system 

with homogeneous damping. 

In this case ultimate transformation, that was 

destructured by applying of full Rayleigh model 

(4), which is used at the right part of motion 

equation. Really, in accordance with physics, 

“rigid” motion of supports can be described as 

partial case of "non-rigid" motion. Respectively, 

equations of “non-rigid” motion of supports 

should be transformed to equations of "rigid" 

motion in this case. However non-physical first 

member of the relationship (4) at right part of 

(1) interrupts such transformation, because it 

does not disappear at “rigid” motion of sup-

ports. If we exclude this member from right part 

of the equation, ultimate transformation re-

stores. 

Let us discuss consequences of damping mem-

ber disappearing at right part of equation (1) in 

the case of system with homogeneous damping 

conditions. The right part of equation (1) is sim-

plified and takes the form: 

 

            )()()( tXKtXCtXM 
 

      bsb RMTM )(     (5) 

 

The form of this equation is like a traditional 

equation of “rigid” displacement of supports, 

that allows expect that traditional linear spectral 

approach is applicable in this case. But there are 

two reasons that can break up such expectations. 

At first, as it is shown before, quasi static re-

sponse at “non-rigid” displacements of supports 

makes a contribution to resultant internal forces. 

Thus, “relative” forces, calculated by equation 

(5) using analog of linear spectral method, 

should be added to "quasi static" forces, caused 

by stiffness as well as damping. There are sug-

gestions of such addition. For example, it is 

supposed to use approach connected with square 

root of the sum of squares (SRSS) as it is con-

tained in the codes of nuclear industry [3]. 

At second, at transformation of equation (5) to 

equations of the modal method, that is the basis 

of the linear spectral approach, the difficulties 

appear with right part of equation (1), and it left 

part stays traditional. At “rigid” motion of sup-

ports quasi static response R, determined by rela-

tion (2), is “rigid”. Contribution of each mode to 

resultant force at impact acting during chosen 

direction is determined by so called "involve-

ment factor" of this mode through reviewed di-

rection. Since there are six directions of “rigid” 

impact, then only six "involvement factors" are 

applied for each mode. Such coefficients are 
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generated by majority of computational programs 

as part of standard report at modal analysis. 

At “non-rigid” motion of supports mode in-

volvement factors, taken by quasi static re-

sponses, substitute involvement factors, taken 

by impact's directions, at right parts of modal 

motion equations. For example, if supports dis-

placements [Rbk] are correspond to initial seis-

mic impact through the k direction, then modal 

force qjk for j-th mode [φj] is described by ana-

log of involvement factor: 

 

      bksb

T

jk RMTMq )(][           (6) 

 

First two multipliers at right part of (6) are simi-

lar to multipliers at traditional involvement fac-

tor of j-th mode for arbitrary direction from six 

directions of “rigid” impact, however third mul-

tiplier differs from first ones. Additional prob-

lem is that “non-rigid” displacements of sup-

ports [Rbk] may depend on the frequency or 

wavelength, that is equivalent to first one. This 

aspect makes practical calculations of modal 

force more difficult. 

Codes of nuclear industry [1] contains a few 

techniques to calculate inertia forces of multi 

supported system by spectral method. All of 

these methods are approximate and it accuracy 

significantly depends on the static correlation of 

impact at different supports. 

Now let us refuse to suggestion about homoge-

neous damping and observe widely distributed 

partial situation when damping is heterogene-

ous. This situation occurs, when system with 

homogeneous damping supplemented by vis-

cous dampers. Typical sample is the reinforced 

concrete building, built on “foundation suspen-

sion” including “foundation dampers”. This ap-

proach is frequently applied into platform mod-

els of “structure – foundation” systems [5]. 

The first that should be noted is that quasi static 

response of such system is similar to system be-

fore additional dampers appearance. The second 

note is that the damping matrix of such system 

consists of matrix of homogeneous damping and 

matrices of additional dampers. Consequently 

"homogeneous" damping disappear from right 

part of the motion equation, as it was before, but 

damping members corresponding to additional 

dampers are saved at the right part. 

When “ground springs” are used together with 

ground dampers the viscous of ground dampers 

should be divided into two parts. The first part 

corresponds to “homogeneous damping” in 

structure and it is determined using β coefficient 

from equation (4), obtained for structure, fas-

tened to rigid ground spring. And remaining 

viscous of ground damper is additional and re-

mains at right part of the motion equation. 

Conclusions. Initial conclusion about dumping 

members’ disappearance from the right part of 

the motion equation is spread to “non-rigid” 

motion of supports at system with homogeneous 

damping from “rigid” motion of supports in 

multi supported systems. It is noted that damp-

ing, linked with quasi static response of system 

to “non-rigid” motion of supports, does not dis-

appear entirely in this case. It influence to 

results at calculation of internal forces. “Homo-

geneous” member disappears from the right part 

of the motion equation at using additional 

dampers in homogeneous system (for example 

at foundation suspension of platform models), 

but “additional” member remains there. 
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