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Abstract: The paper is devoted to the analysis of the nonlocal damping consideration influence on the results of
computer modeling of nonlinear systems subjected to periodic deterministic and stochastic stationary loads
forced vibrations The shallow arc dynamic behavior is examined. The Galerkin method is used for the problem
solving.
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Abstract: Craresi IOCBSILCHAa aHAIW3y BIMSHUS y4éTa HEJIOKAJIBHOIO JeMII(UPOBAHUS Ha PE3YJIbTaThl
KOMITBIOTEPHOTO ~ MOJCJIMPOBAHMS  BBIHY)KJCHHBIX KOJIEOAHMH HEIMHEHHOW CHUCTEMBI 110 ACHCTBHEM
JIETEpPMUHUPOBAHHOM NMEPHOANYECKON M CTOXaCTUYECKOH CTAallMOHapHON Harpy3ku. J[nHamMuueckoe MOBEAEHUE
CHCTEMBI HCCIeJyeTcs Ha IMpHMepe IoJorod apku. st pemieHust 3agadu MCHosb3yercst MeTon byOHoBa-
lanépkuna.

KiroueBble c10Ba: KOMIIBIOTEPHOE MOJIEITMPOBAHNE, KOJICOAHNS HETMHEHHBIX CHCTEM,
HenokajgbHoe Aemmnuposanue, Mmeton byoHoBa-I"anépkuna, JeTepMIHNPOBAHHAS TIEPHOINYECKast HArpy3Ka,
CTOXacTHYECKas CTAI[MOHAPHAs Harpy3Ka.

1. INTRODUCTION

The engineering structures are subjected to
various external dynamic loads such as seismic
loads, wind loads, transport loads, pedestrian
loads, etc. It is important to take the vibration
energy dissipation into account for the
structures design process. The damping model
choice is highly correlated to the precision of
calculations especially for the structures that are
made of modern composite materials. Using the
damping models that are closer to reality allows
to decrease the risks for such structures

Damping in the certain point of the structure
with longitudinal coordinate x;,, obviously
depends not only on local value of motion

velocity at this point v(x;), but also on the
values of motion velocity in the neighboring
points. The more distance between the two
points the lower influence one of them on
another [2].

The modern structures often  contain
geometrically nonlinear elements. Moreover,
under external impacts the certain linear
elements may change the shape and acquire
some nonlinear features. In this research the
problem of nonlinear system forced vibrations
modeling consider nonlocal damping solved. As
an example of the nonlinear system the shallow
arc is used. Nonlocal damping modal is
assumed consider the time hysteresis effect that
was proposed in paper [2].
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Shallow arc dynamic process has some specific
features such as deflection leap under some
loads. [TU] To determine the load range that
allows to fully analyze all dynamic regimes of
shallow arc the static loading is used.

The numerical solution of the problem and
study of the shallow arc vibrations modeling
consider nonlocal damping results are given in
the paper. Shallow arc motion is modelled under
the periodic deterministic and stationary
stochastic transverse load.

2. PROBLEM STATEMENT

To describe the damping process the Kelvin-
Voigt material model is commonly used in
engineering practice:

o = Ee + yE¢, (1)
where o, € - normal stress and axial strain, € —
rate of strain change, E — Young modulus, y —
damping ratio.

In the paper the dot
derivative.

Consider nonlocal
transforms to [2]:

indicates the time

damping equation (1)

o(x,t) = E[e(x, 1)
1

+ [ cx

— oo, £)de]

2

Here C,(|x — 0]) — the kernel function, which
characterize the nonlocal. The C,(|x—0])
function responds to normalization requirement,
that is:

oo

J C,(|x — 6)d6 = 1

— 00

3)

In the paper the exponential kernel function is
used:
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Here p is the parameter that characterize the
influence distance of the nonlocal damping
model , x, 0 are the longitudinal coordinate.
The equilibrium equation for the elementary
shallow arc piece is:

’M(x,t)  9*w(xt)
ox2 mz (atZ)
0°w(t, x 1 (5)
_NPTET_+ﬂ
—q(x,b).

Here w(x,t) —arc deflection, m — linear mass,
q(x,t) — transverse distributed load, R — radius
of arc curvature, N — longitudinal internal force.
Neglecting the longitudinal vibrations of arc the
longitudinal force could be determined as:
N(t,x) = EAe°(x, 1), (6)
where A —arc cross section area , a €°(x,t) —
longitudinal axial strain, which is determined as:

©(x 1) = ou(t, x) [aw(t X)
0x 2 (7)
w(t, x)
R )
where u(t, x) — arc axis displacement
The moment expression is:
M(x,t) = EI Pt
b= ot?
1
Y j Cy(Ix (8)
0
3w(o,t
— GI) ( )atde
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where EI — arc bending stiffness.

Substitute the second derivative of the moment
expression to the left part of the equation (5),
and obtain the expression regarding the
deflection function w(9, t):

0%w(x, t) N El|0*w(x, t)
ot? m| oJx*

° )

Solution of this equation should respond to the
boundary conditions for x=0 and x=I.

Function w(x,t) is searched as eigenvalues of
arc vibrations:

wix®) = ) KOV (10)

Here f;(t) — generalized displacements, a V;(x)
— base functions.

To obtain the generalized displacements f;(7)
the Galerkin method is used. The resulting
system of the integral-differential equations:
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EI : 0
*”aagﬁﬁﬁ”“ﬁﬁlﬂm
—6))V; (x)dx dx

N{ (v 1
_EOO ;ﬁ(f)l—zVi”(Z)Vj(z)dz

1 1
+ E,[O V}(Z)dZ)

n
1
= m—ajzo: Vi(x)q(x, t)dx

(11)

where

k]fl = mu)]-Z/EI,

wj — shallow arc vibrations frequency,

aj = f; VZ (x)dx.

3. NUMERICAL EXAMPLES

The arc has the following parameters: span
length 5 m, radius of curvature 10 m, stiffness
37,5 t/m?, both ends are fixed. Then the
boundary conditions for the both ends are:

6W_

=22 =0 (12)

w

base functions are [8]:

V;(x) = (shk;l — sink;])(chk;x
— cosk;x)
— (chk;l
— cosk;1) (shk;x
— sink;x)

(13)

k; calculates as the i root of the characteristic
equation ch(kx)cos(kx) = 1.
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To make the calculation process simpler let's get rid
of the second derivative in the third member of the
equation (11) using the partial integration. Then the
expression (11) will transform to:

4-

k4 j (T)

lw
\;H kiZf VII(Z)f —ul|z— y'VH(Y)i

( f Z f(O 5 Ly Vi(2)dz

ajwim
1 q(@!*
RJ Vj(z)dz ) ]k‘l"EIfO Vi(z)dz.

Here z and y — dimensionless coordinates —

z=x/l,y =0/l,

T — dimensionless time

'f' (o +=

(14)

4
Elk7 /m

T=wt,w: = 2e = ywq ,

w4, — arc minimum eigen frequency.

The f;(t) values are obtained after solving the
system of equation, and arc deflections — after using
expression (10).

3.1. Shallow arc deformation under the static
load.

Shallow arc dynamics has specific features.
Under the certain loads and geometry the
shallow arc deflection leaps. [9], This
phenomenon could be dangerous for the whole
structure.

For the further research let's determine the
external load that will cause the deflection leap.

2
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Figure I. Static deflection curvature for the
shallow arc.
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In fig. 1 three values of the arc deflection ¢
correspond to the one value of parameter gq*
which characterize the external load. The
deflection increases continuously till the point A
on the curvature and then leaps to the point B.
This happens when the load value is 119 t.

3.2. Shallow arc vibrations under the periodic
load.

To study the influence of nonlocal damping on
the results of shallow arc vibrations modeling
consider it's dynamics under the periodic
deterministic and stochastic load.

All the necessary programs for solving the of
system of equations (14) and determining the
deflections and motion velocities in any point of
the arc were developed in MATLAB. The arc is
vibrating under the load q = A - sin(wt). Here A
— 1s the load amplitude, w — the load frequency,

. . w
which is assumed —

For illustrative purposes the system vibrations is
presented as the phase diagrams. In dynamics
arc vibrates next to one (fig 2a) or two (fig 2b)
points of equilibrium depending on absence or
presence of the deflection leap in statics
correspondingly.
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Figure 2. Shallow arc vibrations under the
periodic load (phase diagrams)
a) from -620 to -380 t, b) amnaumyooui 350 t.

International Journal for Computational Civil and Structural Engineering



MonenupoBanue KoseOaHUH HETMHEHHBIX CHCTEM C YUYETOM HEJIOKAJIBHOTO JeMI(UPOBAHHS

For the computer modeling results comparison
two histograms of arc deflections in the middle
point are obtained considering and not
considering nonlocal damping. (Fig. 3).
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Figure 3. Histograms of deflections for the load
amplitude A=465t.

The deflections amplitude decreases when the
local model is used. The interesting case is arc
vibrations under the load that has an amplitude
140 t (fig. 4). In this case the local model gives
a resulting histogram with just one maximum
which corresponds to the vibrations next to one
point of equilibrium. However the model gives
two points of equilibrium when the nonlocal
model is used. Hence the regime of shallow arc
dynamics totally changes.
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Figure 4. Histograms of deflections for the load
amplitude A=140t.

3.3. Shallow arc vibration under the stationary
stochastic load.

Let's consider the influence of nonlocal
damping on the arc vibration process under the
stochastic distributed loads. The load is the
random stationary process with the zero
mathematical expectation and spectral density:

Volume 14, Issue 1, 2018

2062 - §(8% + 02)
[(w? — 02 — 82)2 + 482 - 02|  (15)

S(w) =

Here 62 — variance of random process, & and 0
parameters, that characterize the correlation
scale and latent frequency of the stochastic load.
The method of the canonic expansion [4] is used
for modeling the random stationary process. For
this purpose the random is presented as:

n
q(t) = Z(Ukcoswkt + Vi coswyt) (16)
k=0

Here Uy, Vi — uncorrelated normally distributed
random values with the zero mathematical
expectation and equal variances for each pair of
random values with equal indices k. To
calculate these variances the w-axis section 2L
long is selected. The origin is in the middle of
the selected section. When |w| > L the spectral
density could be assumed zero. The whole
selected section is devided by the equal parts
Aw long. Then the variance of the random
values Uy, Vi is calculated by the formula:

The random stationary load is Gaussian and
permanent along the arc in each moment The
correlation function for the load obtained using
400 realizations of the random process is
presented on the fig. 5 The solid line is for the
theoretical correlation function which was
calculated by the formula:

K(t; — 1,) = o?e 8-l [cose(r1

—Ty) + gsine(r1 - 12)] (18)
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The dash line is corresponded to the correlation
function that was obtained using the numerical
modeling data.
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Figure 5. The Correlation Function
for the Random Stationary Load.

To compare the local and nonlocal model the
arc vibrations modeling results are presented as
histograms (fig. 6) 400 realizations of the
random process were modelled. The cross
section of the procsee is the step #7700 because
at this point the process is already stable.
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Figure 6. Histograms (Arc Vibrations Modeling
Results).
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The resulting histogram is bimodal. To analyze
the obtained data the histogram was stratified

(fig. 7)
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Figure 7. Stratification of the shallow arc
deflection histogram a) left part, b) right part.

The both parts were assumed normal. This
assumption was verified by Pearson fitting
criterion. For the significance level 0,05 for the
left part x2 = 5,02 < x2 = 7,81, and for the
right part - X = 4,98 < x.2 = 9,49, hence the
both parts could be treated like if they were
normally distributed.

The histograms were obtained to compare the results
for the local and nonlocal model. The arc deflection

amplitude is less when the local model is used (fig.
8).
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Figure 8. Histograms of arc deflections for the
stochastic stationary load.
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The confidence intervals are presented in table 1.

4. DISCUSSION

In this paper the nonlocal damping consideration
influence on the results of computer modeling of
nonlinear systems subjected to periodic deterministic
and stochastic stationary loads. The computer model
of the arc is developed. Computer modeling consider
nonlocal damping in comparison to local model
gives increase of shallow arc deflection. In some
load cases nonlocal model shows total change of the
shallow arc dynamic behavior.
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Table 1. The shallow arc deflection confident intervals.

Intervals® limits , m
Confidence interval
Nonlocal model Local model
from 0,3609 from 0,4848 from ~0,2036 from 0,4741
rom 0, rom 0, rom 0,
68,27% (from =6 t0 ) | g 0288 00,8901 t00.0342 to 0,8083
from—0,5270 | from 0,2821 | from —0,5312 | from 0,3069
93:45% (from =20 t0 20) | 40 1373 to 1,0928 t0 0,1314 t0 0,9755
from —0,6931 | from 0,0794 | from —0,6969 | from 0, 1398
99.73% (from =36 t0 30) | " )0 3034 to 1,2955 t0 0,2971 to 1,1427
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