International Journal for Computational Civil and Structural Engineering, 14(1) 36-48 (2018)

DOI:10.22337/2587-9618-2018-14-1-36-48
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Abstract: The extended plate theory of [LN. Vekua — A.A. Amosov type is constructed on the background of the
dimensional reduction approach and the Lagrangian variational formalism of analytical dynamics. The proposed
theory allows one to obtain the hierarchy of refined plate models of different orders and to satisfy the boundary
conditions on plates’ faces exactly by introducing the corresponding constraint equations into the Lagrangian
model of two-dimensional continuum. The normal wave dispersion in an elastic layer is considered, the
convergence of the two-dimensional solutions to the exact one is studied for the locking phase frequencies, the
dimensionless stress distributions across the thickness of a layer are shown.
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O MPUMEHEHUU PACIIMPEHHBIX TEOPUH IVIACTUH
N.H. BEKYA - AL A. AMOCOBA
K 3AJAYAM O JUCIIEPCHUU BOJIH

C.U. ’Kasoponok
Wucturyt npuknagHoit Mmexanuku Poccuiickoil Akanemun Hayk, r. Mocksa, POCCHU
MOCKOBCKU# aBUAIIMOHHBIN WHCTHTYT (HAIMOHAIBHBIN UCCIICIOBATEIbCKIIA yHUBEpCHUTET), T. MockBa, POCCUA

AnHotauusi: Pacmmpennas teopust mimactmH W.H. Bekya — A.A. AMocoBa moctpoeHa Ha 0aze Merona
MPOCTPAHCTBEHHON pEAYKIWH 33Jadll MEXaHWKH JedopMHpyeMoro TBepaoro Terna wu Jlarpamxesa
BapHaIlMOHHOTO (hopMaTu3Ma AHANUTHYECKOW IMHAMUKN KOHTHHYAIBHBIX cHcTeM. IlpemnmoxxkeHHas oOrmas
TEOpHs TMO3BOJIIET IONYYUTh HEPAPXUUECKYIO CHUCTEMY MOJENeH IUTACTHH PA3IUYHBIX IMOPSAKOB H IPUTOM
TOYHO YJOBJIECTBOPUTH KPACBBIM YCIOBHSM Ha JIMIEBBIX IMMOBEPXHOCTSAX, BBOJS COOTBETCTBYIOIINE KPACBBIM
YCJIOBHMSM ypaBHEHHMs cBsizeil B JlarpamkeBy (hopMyJIMpOBKY MOJIENIM JIByMEPHOI'O KOHTHHYyyma. Paccmorpena
3a/1aya 0 JUCTIEPCUU HOPMAaJbHBIX BOJH B YIIPYIOM CJIO€, U3Y4Y€Ha CXOJAMMOCTh MOCJIE0BATEILHOCTH PEIICHHIA
JIBYMEPHBIX 3aJlad K TOYHOMY PEUICHHIO TPEXMEPHOM 3aJaud TEOPUU YIPYrOCTH II0 4YacTOTaM 3allUupaHus
PaCTPOCTPAHSIOIIUXCS MO, TPUBEACHBI Oe3pa3MEpHBIC PACIPEICICHUS] KOMIIOHCHTOB TCH30pa HANPSIKCHUS,
COOTBETCTBYIOLIUEC COOCTBEHHBLIM (I)yHKHI/IHM, 110 TOJIIIUHE CJI041.

KiroueBble ciioBa: HUCPAPXNUICCKHUEC MOACIN IIJIACTUH, PEAYKIUA HpOCTpaHCTBeHHOﬁ Pa3sMEpHOCTH,
AHAJIMTUYCCKAad TUHAMUKA KOHTUHYYMaA, J'[arpacheBLI CHCTEMBI CO CBA3IMH, cIoi pryFPIﬁ,
HOpMaJIbHBIX BOJIH JUCICPCUA

INTRODUCTION

An accurate and reliable modeling of high-
frequency and wave dynamics of various thin-
walled structures requires refined shell and plate
models [1] accounting for higher-order degrees
of freedom and of transverse normal strains [2]
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besides the translation and rotation of mid-
surface’s points and the transverse shear.
Indeed, essentially three-dimensional stress and
strain states were found even in homogeneous
isotropic plates [3, 4] and conical shells [5];
such a strain state with boundary layers
appearing near the faces could be properly
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described by at least fourth-order polynomial
approximation of displacement field [3] even
for a thin plate. Thus, various traditional models
of shear-deformable shells and plates fail in the
case of high-frequency dynamics while the
refined models based on special function
expansions [4] or power series expansions [5]
may be quite efficient. Moreover three-
dimensional field distributions should be
accounted for laminated structures [2, 6, 7] due
to the effects of anisotropy and weak transverse
stiffness. The detail survey of refined theories
for laminated structures is presented in [8] by
Carrera who proposed the “Carrera Unified
Formulation” of refined shell models [7].

Another topical problem that needs for higher
order shell and plate modeling consists in the
modeling of dynamics of functionally graded
structures with high heterogeneity across their
thickness [9]. The known exact solutions
obtained for such structures primarily in statics
(e. g. see [10]) could be useful as appropriate
reference solutions. It has to be noted that only a
few exact solutions were obtained for free
vibration problems for graded plates [11]. Thus,
reliable approximate models are strictly
required; the higher-order shear theories
accounting for the transverse normal strain were
used [12, 13], including non-polynomial based
ones [14]. On the other hand, the proper choice
of assumption-based plate model for reliable
modeling of high frequency dynamics could
become too complex. Thus, the power series
expansion [5, 15, 16], generalized Fourier
expansions [17], or sampling surfaces approach
[18] resulting in full hierarches of two-
dimensional models may be efficient
alternatives in mechanics of heterogeneous thin-
walled structures. Let us also note that the
hierarchical approach could be very useful for
wave dispersion problems where the use of
different plate theories should be well-founded
[19]. Such an approach based on the use of
Legendre polynomials as expansion functions
was developed in [20, 21]. This method results
in the classical spectral problem statement; it
has shown its reliability and simplicity and was
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further used for Lamb wave dispersion problem
in graded plates [22], moreover its state-space
formalism was developed recently [23]. Thus,
the hierarchical modeling could be also efficient
in such problems for heterogeneous thin-walled
structures as boundary resonances [24] or edge
waves analysis [25-27] where three-dimensional
elasticity solutions or higher-order asymptotic
approximations may become too complex.

On the other hand, the general dimensional
reduction approach based on the generalized
Fourier series results in the one of most general
shell theories proposed by I.N. Vekua [28]. Its
efficiency in various transient dynamics
problems for shells was shown, for instance, in
[29]. The further development of the
hierarchical theory of shells of Vekua type was
proposed by A.A. Amosov [30]; in particular
the exact dependency of the metrics on the
normal coordinate was taken into account. The
Amosov’s formalism [31] is based on the
Galerkin method and on the tensor algebra of
linear operators in Hilbert spaces; such a
formulation make it possible, among other
things, to use powerful computer algebra
systems to construct higher-order models of
shells of variable thickness and curvature and
allows one the automation level close to the
finite element modeling. Several other versions
of the Vekua’s approach were also proposed
recently (e. g. see [32-34]).

The Amosov’s shell theory results in the set of
various models of two-dimensional Lagrangian
systems in terms of the analytical dynamics of
continua. Indeed, the continuum system can be
defined on a two-dimensional manifold within a
set of field variables and the Lagrangian
density; the type of a theory depends on the
definition of the field variables. In particular,
the use of expansion factors of the three-
dimensional displacement field with respect to
the orthogonal function system of normal
coordinate as field variables leads to the
classical higher-order shell theory [28-34]. As
well Legendre polynomials as trigonometric
expansion functions could be used under the
same formalism; in other word the theory [31]
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secures the covariance of  the governing
equations with respect to the expansion system.
The further development consists in the
biorthogonal expansion of the displacement
vector; it allows the introduction of finite
element, or finite layer discretization similar to
[18] into the unified formulation of the shell
theory of A.A. Amosov’s type [35].

The higher-order plate models obtained in terms of
the variational formalism [35] were validated on
the background of the well-known Rayleigh-Lamb
problem of wave dispersion in a plane elastic layer
[36]. The satisfying convergence of approximate
solutions given by plate models to the exact one
[36] was shown for phase frequencies [37, 39] and
for normal waveforms [38-42].

It must be noted nevertheless that the so-called
“elementary” theory [42] allows one to satisfy
the boundary conditions on the faces of a plate
only approximately as a result of the
convergence of a sequence of two-dimensional
solutions [31, 43], therefore the reflection
condition on the face of a layer cannot be
secured for all computed wave forms. This
drawback can be eliminated in “extended”
higher-order theories; the earliest one was based
on the use of series residuals as supplementary
variables [28]. The analytical dynamics
formalism offer another possibility. Indeed, the
boundary conditions shifted from the faces onto
the base surface become constraint equations for
the Lagrangian system [44, 45]. Thus, the
dynamic equations can be derived by means of
the Lagrange multipliers method [44, 45] that
allows one to obtain asymptotically consistent
low-order models [46, 47]. On the other hand,
the spectral problem of the wave dispersion is
can be solved using the approach [48]; the use
of this method and the accuracy of extended
higher-order plate models is shown below.

1. BASICS OF THE EXTENDED PLATE
THEORY OF N-TH ORDER

Let us consider a plate as a three-dimensional
body of thickness 2/, bounded by faces S, and
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, and let its two-dimensional

model be defined on the manifold S,
corresponding to the mid-plane and furnished
by the curvilinear coordinates

a lateral surface S,

g eD . cl’ a=12
[35, 46, 49]. A Lagrangian continuum system
on S can be defined within the configuration

manifold Q,, the set of field variables u",
u{" being the biorthogonal expansion factors
for the displacement u with respect to the
system p, (§), p™(C) 35, 46],

(m))] S(m)

(p(k)’p (k) ?

(tci Q)z(u r +u§) )p(k)(q),k=0,N;
)= (1, 0") = [, (18°.0) P (€) ..

here (e[-1,1] denotes the dimensionless

normal coordinate. The surface Lagrangian
densitiy can be written as follows [49]:

[S(u ugk),u(” ug IVl

k) - (k) i (k
+u( )213 )+Fk)u.( ) _

Il
=
L
T3
—_—
Q

/-\
\_/
Q "\

while the contour density is represented as

Loy (u((f), ugk)) = qg(k)u((f) + qg(k)u((xk). (1.2)

(m) (14 apyd 33y8 a3y3 af3
Here pgys Diys Comy s Clmy > Clomy > Cliomy»
Citl, Con ... are linear operators [31,35,43]:
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pEkm)) = (pp(k),p(m))l ; D((SI;)) =<% P(n)sp(k)) ;

ap3 _ -1 y(W) «a;m ~3 1 ()w3ﬁ3y
Climy =hDCim - Gy =h™ DA

333 _ 7 -17(h) 3333,
Ckm) - h D(k\)c(17r;1)’

ot =(CP pyys Py ).+

The following constraint equations follow from
the boundary conditions on S, [44-46]:

ioaf v7 k B3 7 k

Ci(E)VBui )+ Cf(’z)vﬁug )+

_'_hle(.k) (Ci3a u(m) + Ci33)u§m) ) _ qi;
Clﬁj C13JB |C . p (+1)

(1.3)

Thus, the plate model is defined as a two-
dimensional continuum within the field

variables u, u{ the Lagrangian densities

(1.1), (1.2) and the constraints (1.3). The
appropriate equations of dynamics could be
obtained as generalized Lagrange equations of
the second kind [44, 45] by means of Lagrange
multiplier method. They coinside with the
“elementary” theory [35] if the constraints (1.3)
are neglected:

maoe o _ap _ p-1py(m) a3 a .,
o) iy = V0 () =h Dy S+ Fipys (1.4

The problem statement is closed by the
boundary conditions (1.5) on the contour 0S

ap ® — 0
(c(k)v qB(k))S . 0;
( (1.5)
3 —0
(cs(k)vB )8u3 . 0;
and the initial conditions (1.6):
u((lk) _ Uék); ugk) _ U}(k);
=ty t=t, (16)
il =W =,
1=t

t=t,
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2. STATEMENT OF THE WAVE
DISPERSION PROBLEM FOR THE
EXTENDED PLATE THEORY

Let us consider hence a plane isotropic layer:

C&%S = G(km) Lkaaﬁayf’ + u(ao‘yamS +a®a™ )J
C3333 = G(km) (7\' + 2“)’ C’((;chn[?;3 = G(km)uaaﬁ;

aB33 _ o,
Clomy = Gma™s Gy = (Pu«)’l’(m))
Let the wave propagate along the axis Ox; of

the Cartesian frame and let us introduce the
following dimensionless variables:

§= xlh"l; €= xzh"';

..(1 k) -1, --(k)
Uy =ty h™; &,

t=tc,h;

1.
(pcz ot (1.7)

=pp”
is the shear wave velocity. As a result, we

obtain the following dimensionless dynamic
equations for the Nth order theory:

yqﬂ_B@wI+DW>wm5

[ (B*

—
=
=
—_
=2
=

is the bulk wave velocity. The dimensionless
constraint equations corresponding to (1.3) can
be written as

(B
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the sign “+” corresponds to the upper face and
the “—* to the lower one; therefore we have two
pairs of constraint equations on both faces.

Let us consider normal waves, i. €.

ul) =g exp|i(kE—o1)], (1.10)
K =kh
is the dimensionless wavenumber and
o=Qh/c,
is the dimensionless phase frequency.

Substituting (1.10) into (1.8) we obtain the
spectral problem (1.11) for the linear operator
A given by (1.12) (see [37-42]):

(A-o')-U=0, U=(U<'"> U(’">), (1.11)

o3 1)

(), -
(), {20 0
(45)), = x| 2(1-28") Df;) D) |

(44), =l 409700t

The linear constraints (1.9) can be hence
formulated for the images U* as follows:

BS
B-U=0, B=
BA 4x

(2N+2) (1.13)
B,=1(B,+B_), B,=%(B,-B.);
ix(B ) S(i)pi B—ZD(\nk)pi
B.= ( . +( )£ (k) ((k)r) +(k) (1.14)
Dy Py () Py
Here the symmetry conditions for the

constraints are taken into account. Considering
hence for (1.13), (1.14), we obtain the solution
of the constrained stationary values problem for
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two quadratic forms A and I accordingly to
[48]:
U'-A-U/U-U=0, B-U=0. (1.15)

Following [48], let us introduce the QZ
decomposition for the constraint matrix (1.13)

T ooT S 0
Q"-B"-Z-= , (1.16)
00 (2N+2)x4

As a result, we obtain the following operator
accounting for the constraints (1.13):

A.=Q"-A-Q,
(B
A21

and the stationary values for (1.15) can be found
from the unconstrained problem:

(1.17)

12

>

22 j(2N+2)><(2N+2)

(A,-01)-V=0, V=Q"-U. (L18)

The spectrum of the system consists in two
subspectra S and A4 corresponding to the
longitudinal and bending waves in the layer:

S:k,m={2n,N +2n};
A:k,m={2n—-1,N+2n-2},
nel0,[L(N-DJUZ.

The waveforms can be defined hence in terms
of the Nth order plate theory as follows [37]:

u, (€)=U."py) (6).
a=12, k=0..N-1, n=1...N;
=Q| V" V™|, me[l,2N-2]nZ

(1.19)
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3. CONVERGENCY ANALYSIS

stationary values of the problem (1.15), or the
eigenvalues for the spectral problem (1.18) at

Accordingly to [37-42], let us use Legendre 1« — 0, are presented below in the Table 1 and
polynomials as expansion functions p,,(§). Table 2 for longitudinal and bending waves

The locking phase frequencies computed as

respectively.

Table 1. Convergence of dimensionless locking frequencies of longitudinal waves to the Rayleigh-
Lamb problem solution.

n
N 1 2 3 4 5 6 7 8 9 10
2 0.00| - - - - - - - - -
3 000 1.89| - - - - - - - -
4 000 1.89] 197 - - - - - - -
5 000 191] 198 5.68| - - - - - -
6 0.00| 191] 2.00| 4.03| 5.68| - - - - -
7 0.00| 191| 2.00| 4.03| 574 | 9.83 - - - -
8 000 191] 2.00| 4.02| 573 | 637| 982| -— - -
9 0.00| 191] 2.00| 4.02| 572 | 637| 9.64|14.67| - -
10 000 191] 2.00| 4.00| 572| 6.11| 9.13| 9.64 | 14.67 -
11 0.00| 191] 2.00| 4.00| 572 | 6.11 | 9.13 | 9.51|13.73 | 20.40
12 000 191] 2.00| 4.00| 572| 6.00] 835| 9521240 13.73
13 000 191] 2.00| 4.00| 5.72| 6.00| 835| 9.53]12.40 | 13.32
14 000 191] 2.00| 4.00| 572| 6.00| 8.00| 9.53|10.84 | 13.32
15 0.00| 1.91] 2.00| 4.00| 5.72| 6.00 | 8.00| 9.53|10.84 | 13.34
16 000 191] 2.00| 4.00| 572| 6.00] 8.00] 9.53|10.05]13.34
Ex.| 0.00] 191 | 2.00] 4.00] 572] 6.00| 8.00| 9.53]10.00| 12.00

Table 2. Convergence of dimensionless locking frequencies of bending waves to the Rayleigh-Lamb
problem solution.

n
N 1 2 3 4 5 6 7 8 9 10
2 0.00| - - - - - - - - -
3 0.00| 099 - - - - - - - -
4 0.00| 099 3.77| - - - - - - -
5 0.00| 1.00]| 298| 3.77| - - - - - -
6 0.00| 1.00[ 298| 382| 7.68| -— - - - -
7 0.00| 1.00] 3.00| 381 | 5.16| 7.68| - - - -
8 0.00| 1.00] 3.00| 381 | 5.16| 7.67|12.14| -— - -
9 0.00| 1.00[ 3.00| 381 | 5.06| 7.67| 7.70|12.14| - -
10 0.00| 1.00] 3.00| 381 | 5.06| 7.62| 7.70 | 11.65|17.41 -
11 0.00| 1.00| 3.00| 381 | 500| 7.20| 7.62|10.70 | 11.65|17.41
12 0.00| 1.00| 3.00| 3.81| 5.00| 7.20| 7.62]10.70 | 11.41 | 15.92
13 0.00| 1.00[ 3.00| 381 | 500| 7.00| 7.62| 9.56|11.41 | 14.21
14 0.00[ 1.00] 3.00| 3.81| 5.00] 7.00| 7.62| 9.56|11.42] 14.21
15 0.00| 1.00| 3.00| 3.81| 5.00| 7.00| 7.62] 9.00| 1142 12.19
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n
N 1 2 3 4 5 6 7 8 9 10
16 0.00| 1.00| 3.00| 3.81| 5.00| 7.00| 7.62] 9.00|11.41|12.19
Ex.| 0.00| 1.00| 3.00| 3.81] 5.00| 7.00| 7.62| 9.00 | 11.00 | 11.43

o)
(a)

The approximate solutions given by the
extended plate theories converge to the exact
solutions of the three-dimensional Rayleigh-
Lamb problem [36] at the orders shown in the
Table 3 (the convergence is estimated by the
relative error computed at k¥ — 0 as follows:

(0, — 0, )/®,, <0,05.

Table 3. The approximate solutions by the
extended plate theories at various
orders.

n|2]3]4]5]6]7]8]9

Longitudinal modes

N|3|3]4]6]6]10][10]16

Bending modes

N|3|5]5]9]11][9]15]12

Let us compute the stress profiles corresponding
to the approximate wave forms obtained from
the plate theory of Nth order:

o 2(0)

(b)
Figure 1. Normal waveforms of longitudinal waves. exact solution [36] (solid line),
plate theory of 15" order (dots).

Oj3 (C) = Lﬁ((‘mvf;UI"’" +ixU;" J P (Q)’

o (0) =[x 2) U8B ] ).

The normalized stress forms corresponding to
longitudinal waves are shown on the Figure 1.

It can be seen that for all stress profiles the
homogeneous boundary condition on the faces
of the layer are satisfied exactly.

CONCLUSIONS

The solution of the wave dispersion problem for
the plane elastic layer is obtained on the
background of the extended plate theory of N
order. This theory allows the exact satisfaction
of the boundary conditions on the faces of the
layer, thus, the wave reflection condition on the
faces is secured. The convergence of the
approximate locking phase frequencies to the
exact ones following from the solution of the
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three-dimensional Rayleigh-Lamb problem is
shown.
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