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Abstract: Motivated by the previously developed multilevel aggregation method for solving structural analysis 
problems a novel two-level aggregation approach for efficient iterative solution of Principal Component 
Analysis (PCA) problems is proposed. The course aggregation model of the original covariance matrix is used in 
the iterative solution of the eigenvalue problem by a power iterations method. The method is tested on several 
data sets consisting of large number of text documents. 
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ПРИМЕНЕНИЕ ИТЕРАЦИОННОГО АГРЕГИРОВАНИЯ 
В МЕТОДЕ ГЛАВНЫХ КОМПОНЕНТ 

 
В.Е. Булгаков 

SemanticPro, г. Бостон, США 
 

Аннотация. Предлагаемый метод мотивирован разработанным ранее итерационным подходом 
многоуровневого агрегирования для решения задач расчёта строительных конструкций. При решении 
задач методом главных компонент применяется метод степенных итераций на основе  агрегированной 
модели исходной ковариантной матрицы. Метод проверен при тестировании ряда массивов данных, 
каждый из которых включает большое количество текстовых документов.  
 

Ключевые слова: метод главных компонент, кластерный анализ, итерационный степенной метод,  
метод агрегирования, проблема собственных значений 

 
 
1. INTRODUCTION 
 
This work was envisioned as application of the 
multilevel aggregation method [1] developed by 
the author back in 90s to PCA problems. 
Multilevel aggregation method was an extension 
of well-known multigrid methods [2] from 
boundary value problems to general structural 
analysis problems which brought it to the class 
of algebraic multigrid methods. The idea of the 
aggregation method was to use some naturally 
constructed course model of the original finite 
element approximation of a structure which 
provides a fast convergence for iterative 
methods for solving large algebraic systems of 
equations. One of applications of this method 
was an iterative solution of large eigenvalue 

problems arising in structural natural vibration 
and buckling analyses [3]. In these problems a 
sought set of lowest vibration modes can be 
thought of as principal components of structure 
behavior. An obvious similarity with PCA was a 
turning point to start looking for a proper way to 
create an aggregation model for data matrix 
approximation and use it for efficient solution of 
PCA problems. 
In this study PCA [4] is applied to and the 
method is tested on text analysis problems. A 
tested data set consists of documents each of 
which produces an N-dimensional vector stored 
as a column of a data matrix which values are 
term frequencies. Our raw data comes in the 
form of text files from data sets such as medical 
abstracts and news groups. The purpose of PCA 
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is to iteratively compute a set of highest 
eigenvalues and corresponding eigenvectors of 
the covariance matrix. Covariance matrix is 
never formed explicitly. The main operation is 
multiplication of large sparse data matrix or its 
transpose by a vector. The course aggregation 
model of the original covariance matrix is used in 
the iterative solution of the eigenvalue problem. 
Original covariance matrix and its approximation 
of small size assumes similarity of leading 
eigenvalues and eigenvectors. This fact allows 
fast convergence of subspace iterations at 
minimal additional computational cost. 
For numerical experiments we use R language 
which is rich of linear algebra, statistical and 
graphical packages. 
 
 
2. PCA PROBLEM FORMULATION 
 
PCA in multivariate statistics is widely used as 
an effective way to perform unsupervised 
dimension reduction. The essence of this 
method lies in using Singular Value 
Decomposition (SVD) which provides the best 
low rank approximation to original data 
according to Eckart-Young theorem [5]. Let n 
data points in m dimensional space be contained 
in the data matrix which is assumed already 
centered around the origin for computational 
stability 
 

(x1, x2,…, xn) = X                   (1) 
 

Then covariance matrix is 
 

A = XXT                           (2) 
 

Let (λk, φk) be an eigenpair of A, where 
eigenvectors φk  define principal directions. 

 
 

3. AGGREGATION MODEL 
 

In order to create an aggregation model we 
divide the entire set of data vectors xi into n0 
clusters using some similarity criteria where     

n0 << n. We will explain later how we do 
clustering. We assume that all vectors within the 
cluster are similar and a single representative of 
a cluster is an average of all vectors xi where      
i  clusterk  or for clusterk  we have 

 


k

i
k

k
clusteri

x
dim

x 10
                  (3) 

Transformation of matrix X to X0 is done using 
matrix R which we call aggregator 

 
X0 = XR                              (4) 

 

where R[i, k] = if  i  clusterk  then 
kdim

1
 else 0.   

 
X0 is of size (m, n0).  
 
Approximation A0 of covariance matrix A is 
 

A0 = X0X0
T = XRRTXT                   (5) 

 
Formally matrix A0 is of the same size as A but 
has a much lower rank. We do not need to use 
form (5) for computations. For matrix vector 
multiplication we rather use sparse matrix X0 
which according to (3) is constructed by simple 
averaging of vectors inside a cluster and 
 

A0v = X0X0
T                          (6) 

 
Therefore A0v requires O(mn0) operations which 
is much lower than O(mn) operations required 
for Av. We also expect and this is confirmed by 
numerical experiments that convergence of 
iterative methods for solving partial eigenvalue 
problem for A0 is faster than that for A. 
There are quite a few clustering techniques 
known as computationally efficient. Besides 
since we need clustering as an auxiliary 
procedure we do not need highly accurate 
clustering results. In this study we use K-means 
clustering algorithm [6] which became very 
popular in data mining, unsupervised 
classification, etc. and which converges quickly 
to a local optimum.  
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Our experience says that the aggregated 
problem with a small number of clusters 
provides a good resemblance of the original and 
approximated covariance matrices in terms of 
first (highest) eigenvalues which is important 
for the iterative method described below.  
In Figure 1 this resemblance is demonstrated 
where we show distribution of first 10 
eigenvalues of both matrices where the data 
matrix X was obtained by processing 2014 
documents of ”Cardiovascular Diseases 
Abstracts” corpus. Matrix X0 was obtained by 
K-means method with 10 clusters. 
 

 
Figure 1. Distribution of 10 first eigenvalues  
of the original and approximate covariance 

matrices for 16058 by 2014 data matrix and 10 
clusters. 

 
 

4. ITERATIVE METHOD 
 
We use power iteration method [7] for for 
solving auxiliary aggregated eigenvalue 
problem and a modified power method for 
solving the original eigenvalue problem. This 
method is also known as subspace iteration 
when used to simultaneously iterate a set of 
eigenvectors. One iteration of the power 
algorithm consists of the following steps: 

 

for i = 1 to l :    
k
ik

i

Au
Au

u  11k
i

~  

11
1

 k
lu,...,u k = orthonorm )( 11

1
 k

lu,...,u ~~k
 

 

with approximation of eigenvalues          (7) 
   k

i
k
i

k
i

k
ik

i u,u
u,Auλ   

 
which starts with a set of l initial 
approximations of first eigenvectors  
 

(u0
1, u0

2, …, u0
l) = U0. 

 
The key property of the power method is that if 
approximation u0

i is spanned by matrix A 
eigenvectors subspace, then after k 
multiplications of matrix A by this vector the 
linear combination of eigenvectors will be 
weighted by λi to the power k which gives boost 
to terms corresponding to highest eigenvalues: 
 

φλcuA i
k
i

k
i

k                     (8) 

 
In the method proposed for the first l principal 
directions of PCA we will need first k 
orthonormal eigenvectors of A0 q1, q2,…, qk 
where k >= l. These vectors can be obtained by 
algorithms (7). We will also need matrix Pi 

 
Pi = qi qT

i                            (9) 
 

Since  
 

qT
i qj = δi,j 

 
and   
 

PiPi = Pi, 
 
it is a projector to the subspace of i -th 
eigenvector of A0. We will modify method (7) 
using this projector in the following manner: 
 

for i = 1 to l : 
k
ik

i

Bu
Bu

u  11k
i

~   where 

Buk
i = Auk

i + αi * PiAPiuk
i   and  
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αi  => min 11   k
iuλuA ~~ k

i
k
i              (10) 
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 k
lu,...,u k = orthonorm )( 11

1
 k

lu,...,u ~~k                          

with approximation of eigenvalues   k
i

k
i

k
i

k
ik

i u,u
u,Auλ   

 
This approach can be thought of as ”help” to the 
power iteration method to converge on the 
subspace of eigenvectors of the aggregated 
problem. The intuition for that is similarity of 
first eigenvectors and eigenvalues of the 
original and aggregated problem if clustering is 
done properly. Let  
  iiφcu  
 
where φi are eigenvectors of the original 
covariance matrix A and Pk  be a projector on 
subspace of φk. Then 
 
Au + α Pk  APk u   kkki

k
i

ki
i φαλcφλc  1

 

(11) 
 
If α is chosen big then the second term of this 
expression dominates over the first term thus 
providing convergence for φk in one iteration 
step α can be derived from the condition stated 
in (10): 
   111   k

i
k

i uλuAu ~~~ k
i

k
i  

α => min  => dα
dΦ

= 0           (12) 

 
This equation leads to the quadratic equation for 
α. Omitting indexes and skipping details we 
arrive at the following expression for α 
           FuFu,λFuAu,λAFuAu,

FuAu,λFuu,AλAFuu,Aα 2

222

2
2


   

(13) 
where                       F = PAP. 
 

We note that as you can see from (12) α is 
chosen from the previous step to simplify 
computations. This can also be justified by the 
fact that eigenvalues converge faster than 
eigenvectors. Detailed algorithm discussion is 
out of scope of this paper. We just mention here 
that all operations with matrix A are reduced to 
the matrix vector multiplications of the sparse 
data matrix X or its transpose XT . 

 
 

5. NUMERICAL EXPERIMENTS 
 

For numerical experiments we used two data 
sets. The fist one is ”Cardiovascular Diseases 
Abstracts” which is a set where each abstract is 
an individual document. The data matrix X size 
is 16058 by 2014 where the first value is the 
total number of terms and the second one is the 
number of documents. We searched for 10 first 
eigenvalues of the covariance matrix  
 

A = XXT 
 
and used 10 clusters for constructing auxiliary 
aggregation problem  
 

A0 = X0XT
0. 

 
So the size of this problem is more than 201 
times lower than that for the original problem. 
The problem is solved using algorithm (10). 
Figure 2 shows changes of parameter _ for the 
first three eigenvectors. As expected the biggest 
contribution of projectors (9) is observed in first 
iterations to suppress errors caused by initial 
eigenvector guesses. After some number of 
iteration contribution of projectors is getting 
smaller while eigenvectors are getting more 
accurate. 
We measure convergence of eigenvalues 
through  
 

Error1 = 
F

F
k

k

k


 1
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Figure 2. α changes with iteration number.  

α1 (for eigenvector 1) - red, α2 (for eigenvector 
2) – green, α3 (for eigenvector 3) – blue. 

 
and convergence of eigenvectors by the residual 
matrix through  
 

Error2 = 
F

kkk UAU Λ  

 

where F  is a matrix Frobenius norm, Uk 
consists of orthonormal vectors  
 

k
lu,...,uk

1  

 

which are approximations of the eigenvectors 
and Λk

 is a diagonal matrix of approximations of 
eigenvalues. Errors graph is demonstrated in 
Figure 3. 

A good convergence rate of the iterative 
process is demonstrated. After 40 iterations we 
got Error1 = 0.00038 and Error2 = 0.0017. 

The second corpus was ”talk politics” set 
from the news groups. Size of this problem is 
13511 (terms) by 1171 (documents). We 
searched for 10 first eigenvalues of the 
covariance matrix and used 10 clusters again. 
The quality of the clustering aggregated model 
can be viewed by comparing eigenvalues of the 
original and aggregated covariance matrices. 
Figure 4 demonstrates a good resemblance of 
eigenvalues distribution.  
 

 
Figure 3. Eigenvalues and Eigenvectors 

convergence for ”Cardiovascular Diseases 
Abstracts” data set. Error1 – red, Error2 – 

green. 
 

 
Figure 4. Distribution of 10 first eigenvalues of 

the original and approximate covariance 
matrices for 13511 by 1171 data matrix and 10 

clusters. 
 
Convergence graph is demonstrated in Figure 5. 
After 40 iterations we got Error1 = 0.00044 and 
Error2 = 0.00049. 
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Figure 5. Eigenvalues and Eigenvectors 

convergence for ”News Group” corpus. Error1 
– red, Error2 – green. 
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