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APPLICATION OF RIGID LINKS
IN STRUCTURAL DESIGN MODEL S

Sergey Yu. Fialko
Cracow University of Technolog¥racow POLAND

Abstract: A special finite element modelling rigid links is proposed for the linear staticbuckling analysis.
Unlike the classical approach based on the theorems of rigidKinelyatics, the proposed approach preserves
the similarity between the adjacency graph for a sparse matrixharatljacency graph for nodes of the finite
element model, which allows applying sparse direct solvers more effgctidesides, the proposed approach
allows significantly reducing the number of nonzero entries in the &ttiffness matrix in comparison with
the classical one, which greatly reduces the duration of the solutionbue&ling problems of structures
containing rigid bodies, this approach gives correct results. Several examplestlatadts efficiency.
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INPUMEHEHHUE KECTKHX BCTABOK
B PACUHETHBIX MOJAEJAX KOHCTPYKIIUHU

C.1I0. Duanko

KpakoBckuii nonurexunueckuid yausepeuteT uM. Tageyma Kocrromko, r. Kpakos, IIOJIBIIIA

AHHoTanusi: B Hacrosime#l cratbe mpearaeTcs CHeIUalN3UPOBAaHHBIA MOAXOA K MOJAEIMPOBAHHUIO JKECTKHX
BCTaBOK B paMKaX MeTo/a KOHEYHHIX 31eMeHToB (MKD) npu pemieHnn TUHEHHBIX CTaTHYECKUX 3a/a4 U 3a/ad
aHaju3a YCTOMYMBOCTH KOHCTPYKLUHMWA. B oTiHMuYMe OT M3BECTHOIO KJIACCHYECKOTO IMOJX0Ja, OCHOBAHHOTO Ha
TeopeMax KHHEMaTHUKH TBEPAOTO Tejla, MpeIaraéMbIi MOIX01 COXPAHIET CXOJACTBO MEXAY rpad)oM CMEXHOCTH
JUIA Pa3pekKeHHOW MAaTpHIbl M IpadoM CMEKHOCTH IS Y3JI0B KOHEYHOIIEMEHTHOM MOJEIH, YTO IMO3BOJISET
6onee 2pPeKTHBHO MPUMEHATH HPSMBIE pemIaTeld A pa3peKeHHbIX MaTpui. Kpome Toro, mpeasmaraemslit
MOJXO0JT TIO3BOJIAET 3HAYMTEIHHO YMEHBIINTH KOJMYECTBO HEHYJIEBBIX 3amrcei B (haKTOPH30BAHHON MaTpHIle
JKECTKOCTH 110 CPaBHEHHIO C COOTBETCTBYIOIIMM KJIACCHYECKMM, YTO 3HAYMTENBLHO COKpamiaer o0beM
BBIYHMCIINTEIBHOW PadOTHl M COOTBETCTBEHHO BpeMs cuera. [ 3ajay pacuera KOHCTPYKLHMH, COAEpIKaIIUX
abcomroTHO TBepable (HenedopMupyemble) Tena, Ha YCTOMYMBOCTB IpEJlaracMblii IMOJIXOJ TaKXKe MO3BOJISET
HOJIyYUTh KOPPEKTHbIE Pe3ysbTaThl. HeCKOJIbKO MPHUMEPOB JEMOHCTPUPYIOT 3(P(EKTUBHOCTH IpeIaraeMoro
HOJX0Ja.

KiroueBble ¢Ji0Ba: METO/I KOHEYHBIX DJIEMEHTOB, a0COJIIOTHO TBEP/IbIC TEJNA, )KECTKHE BCTABKH,
aHallu3 YCTOMYMBOCTH KOHCTPYKIIMN, MHOTO3TaXHBIE 3aHUs

1. INTRODUCTION Let several nodes:SS, ..., S be connected by
rigid links with a node M. The node M is a

Rigid links are widely used in structural desigmaster node, and the nodes iSe [1, n] are

models. A rigid link usually refers to aslave nodes (Fig. 1).

kinematic relationship between the selectethen on the basis of the theorem of rigid body

nodes of the finite element model, whéme kinematics

stiffness values of the structural elements

connecting them are considered to be many (ug Uy +0y XPy_g _

times larger than those of other elements due to LG J :L 0 J iclLn], ()

a number of considerations s M
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where u,,,ug are vectors of translationala rigid body is not formed, and an incomplete

displacements of the nodes M, rBspectively, Ibinding tal;téiplac;?. " ¢ riaid link
0, ,0. are vectors of rotation ang| isa N Many software, the use of rigia links
M TSI 9'%us, leads to the fact that the slave nodes with the

radius-vector connecting the node M with $ound degrees of freedom obtain numbers of the

node & corresponding equations of the master node.
Let us consider an example presented in Fig. 2.
S1 The equilibrium equation of a finite element
QO with rigid links imposed on its nodes is
transformed as follows:
Sz QIK Q. =Qlr. . 2)
O
where
M I'Igld link K Kij Kip Kiq
K — Ki Kj Ky Ky
S3 ) K pi K pi K pp K pq
in KQ] KCIP KCICI
Cim, 0O O
0 0o |
Q= Cow, 0 O
Sn 0 Cuu O
U,
Figure 1. Model of a rigid body consisting U
of s system of rigid links. M is a master nod: ge=| ="} d.=QJ .
S is a slave node. L{p
U
q
Thus, displacements and rotation angles of all _
nodes § i € [1, n], are expressed through the U, '3
respective displacements and rotation angles of 5 —lu ' . R,
the node M. 9e = M Te ﬁp :
A set of nodes MU S, i € [1, n] and a set of U, -
rigid links {M, Si} i € [1, n], each of which R
connects the node M to a nodg Se [1, n],
Kmn — Dblock of the stiffness matrix

form a rigid body.
In some cases, the binding of the nogéo3he corresponding to the nodes m, n,
node M does not take place for all degrees df! =(u,, 0,), RlL.=(F, M_), Um, Om —
freedom, but only for some of them. Theasectors of the translational displacements and
displacements of unbound degrees of freedofdtation angles in the node ik, M_ — total

of all slave nodes are independent variables, apfce and total moment in the node m,

all displacements of bound degrees of freedom

are expressed through the displacements and

rotation angles of the master node. In this case,
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i .
J
Figure 2. Four-node shell finite element with imposed rigid links.M> are master nodes.
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Figure 3. Design model of a plane frame with rigid columns. Dashed line shows the buckling mode.

Kd.=T., (3)
C _[' FMmJ
o1 ) where T,=Q]r, — the result of the parallel
0 P, —p, transfer of the forces from the slave nodes to the
F, =|-p 0 o respective master nodes. Let's call this approach
M ? OX method "A".
Py ~Px Typical examples of the use of rigid links are

given in Fig. 3- 6. Fig. 3 shows a design model
Px, Py, pz — components of a vector connectin®f a plane frame with infinitely rigid columns.

the master node M with the slave node m. It turned out that many of the FEA software
In the result of the transformation the expressiaolve the buckling problem for systems with
(2) becomes rigid links incorrecty 1. We shall return to this

problem later.
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fragment of plate

rigid link
fragment of plate

rigid link

Wiransversal beam

Figure 4. Attachment of bearing slabs of the bridge span to the transverse beam at the |t
of two spans.

rigid link

Figure 5. Connection of columns with floor slabs. Rigid links form a rigid body in order to prevent
an unrestricted increase of bending moments and transverse forces in the slab with the mesh
refinement.

Fig. 4 shows a fragment of the span structure Bfg. 5 shows a fragment of the connection of
the bridge. A detailed modeling of some jointsolumns with floor slabs where the columns are
and connections often turns out to benodeled by bars and the slabsby flat shell
unnecessary. However, in order to create faite elements.
design model that adequately reflects th@/hen the Kirchhoff- Love theory of thin shells
behavior of the structure, it is necessary ts used, bending moments tend to infinity at the
impose a series of rigid links on the nodes. point of application of the concentrated foree
column reaction directed along its axis.
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Figure 6. Imposed rigid links make the floor slab of a high-rise building rigid in its plane,
however, the bending stiffness value remains finite.

In order to justify this fact, simply select avalue. Implementation of such a design model is
circular plate in the vicinity of the columio- achieved by imposing links rigid only in the
slab junction point and apply the knowrplane of the floor slab (Fig. 6).

solution of the problem of a circular plateA peculiarity of this problem is a large number
subjected to a concentrated force applied at $ rigid links meeting in each master node. At
center 2. It is known that for such a problem thine same time, the binding of distant nodes takes
radial bending moment in the center of the plagdace. When the “A” method is used, it leads to

has a logarithmic singularity. a significant increasa the number ohonzero

It follows that in the process of mesh refinemerentries in the factored stiffness matrix, despite
there is an unlimitedncrease in the values ofthe fact that the number of equations decreases
bending moments in the shell in a colubten- when the rigid links are imposed.

slab junction point 1.In order to study the Even when the dimension of the problem is
stress-strain state in the vicinity of this pointrelatively small, the duration of the solution
you should separately consider this joint usingiacreases significantly. The following example
3D model for both the column and the slilis confirms this.

impossible to solve this problem within the thirThe drawback of the “A” method is also the
shell theory. Therefore in order to avoidack of similarity between the adjacency graph
singularity in the solution, various approache®r nodes of the finite element model and the
are used. adjacency graph for a sparse matrix.

One of them lies in imposing rigid links on theMany finite element solvers use this similarity,
adjacent nodes, the colunmslab joint being which enables to reorder the adjacency graph
the master nodelhus, a rigid body is formed, for nodes, and then to use the fact that each
the size of which according to the Saintnode of the finite element model contains a
Venant’s principle is about two cross-sectional group of equations which forms a dense
heights and the area adjacent to a singular poisubmatrix in the sparse matrix 3, 4, 5. The
Is excluded from the stress analysis. It should lbeordering of the nodal adjacency graph is
noted that when the Mindlin-Reissner sheltarried out several times faster than that of the
theory is used, this peculiarity remains. adjacency graph for the sparse matrix, and when
The seismic codes in many cases suggest usmgoarser graph is used, the number of fill-in
design models with floor slabs rigid in theirusually turns out to be somewhsnaller, than
plane, their bending stiffness having a finitén the case of a more detailed graph 7.
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Figure 7. Rlink finite element modelling a rigid link.

Moreover, the initial division of the sparsebecause the imposition of rigid links comes
matrix into dense submatrices enables wown to simply adding the appropriate finite
optimize the procedure of their combining intelements to the design model.

larger blocks, which simplifies the use of high-

performance procedures for dense matrices and

improves their performance 2.LINEAR STATICS

It should also be noted that the implementation

of the "A" method is rather difficult, because th&ig. 7 shows the proposed RIink finite element
load and displacement vectors, as well as timodellingarigid link.

stiffness matrix of the finite element have to b&he element has two nodedM (master) and S
converted in accordance with the expressiorislave), connected by a rigid link. The

(1) - (3) in different program modules usuallyntermediate nodé& with the same coordinates
developed by different programmers. as the node S is entered.

This paper proposes a two-node finite eIemeEDtisplacements of nodeS,S are combined for

which models a rigid link and preserves th bound d f freed Th it

similarity between the nodal adjacency grap € bound degrees ot ireedom. € penatty

and the adjacency graph for the sparse matf| ction method is applied for this purpose. The
Isplacements of all nodes are represented in the

which enables to apply thabove-mentioned .
high-performance finite element solvers to suc‘%k)bal coordinate system OXYZ. The vectors of

models without any changesThis approach, ©t@ forges _and total momentg,, My, K, Ms
which we will call the “B” method, is much are applied in the nodes M and S respectively.
easier to implement than the "A" method
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The principle of virtual works is used to obtain . . | Fe
the stiffness matrix of the Rlink finite element; Us=C Uy, Cx= o 1)
50, -0,) (0, -Us)- 205 R, - d0IR =0, 0 poopy ©)
(4) F,\,g =|—P; 0 Px |
py — Px 0
where
where p, ,p,,p, — projections of the vectop
Vx onto the axes of the global coordinate system.
Yy Substitute (5) into (4):
r- 72
= ) - -\ - -
Ve s(c, U, -0, r(c U, -Us)-
7oy ~U} R, ~ IR =0
7/Rz
U; =(us 03)1 Ul-{ll =(UM GM) or
R =(F, M) R =(F, ™ - - o
R=(F M) Ri=(F, M) &d7(c re, G, -CT.rig-R, )+
u,,0,,Us,0, — vectors of displacements and +5U;(—FCM§UM +FUs—§s)=0-

rotation angles in the nodes M and S _ _
respectively, v,,v, ¥, Vaxs Yrys Yr: — PENAItY Taking into account the independence of

FAt T T F.
parameters for displacements in the direction@rationssuy, ,sUs we obtain:

OX, OY, OZ and rotation angles relative to the

axes OX, QY, OZ. If the given degree of CThﬂérCMéﬁm_cLérUS_ﬁaM:o
freedom is not related to the displacements or “rc 0. +T0.-R ~0
rotations of the node M, the corresponding MS =M s s
penalty parameter is equal to zero. o _ _
The matrixI is diagonal and is presented for then the equilibrium equation of the Rlink
spatial design model with 6 degrees of freedof{ement is as follows:

in a node— 3 displacements and 3 rotation

angles. The first term in (4) represents the Kde=r., (6)
virtual work of the elastic links with the rigidity

2-y on the difference of the displacements of thehere

nodesS and S, wherey takes the values of one

of the diagonal elements of the matrik CTNSFCNS —CTNSF
depending on the degree of freedom this Ke= _IcC . r I
displacement corresponds to. The greater the MS (7)
value ofy, the less the difference between the UM |§M
displacements (rotations) of the nodgsndS. 9e = u, fe = R,

The remaining terms in (4) represent the virtual

vl\\//lo::u;)fsthe external forces applied to the nOdeasnd Ke is the stiffness matrix of the RIlink

- : element.
Let us eliminate the displacemendg from (4)
using the relations (1):
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Figure 8. Buckling of the Rlink element.

the deformed state in comparison with the initial
3. BUCKLING one can be neglected.

_ N o The position of the nodeM’,S,S defines the
According to the Euler stability criterion theyefiected state of the Rlink element. The vectors
possibility of the existence of the deflecteqy iq) forces and moments applied at the nodes

equilibrium state of the Rlink element is lookeg, s move to the nodes ‘M’ during buckling

for, "?‘F‘d the load does not change upon t du,,,u.,ug are the respective displacements
transition to the deflected state. The minimum S

value of the load parameter, at which thef the nodesM,S,S at buckling. Since the
existence of an adjacent equilibrium statmitial buckling is considered, the vectors of
becomes possible for the first time, is callegbtal forces and momentsk,,M,,,F;, M,
critical. _remain the same as in the pre-buckling state.

The buckling of the Riink element is shown "Mrhe values of total moments change in the result

Fig. 8. _ . ~of the parallel transfer of the total force vectors
The points M,S,S correspond to the initial E,.E from thepoints M, S to M, S

state. The vectors of total forces and total
momentsF, ,M,,,F,, M, applied to the nodes ML =M, +u, < F, (8)
M, S, are obtained from the solution oétbre- M. = M-+ U x E ©)
buckling problem. It is assumed that the S s TsTUsT

displacements and the rotation angles are so A

small in comparison with the geometricSince each link connecting the poilgsand S
dimensions of the structure that the difference gforks independently of the others, it follows
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from the condition of their equilibrium that the ( =
o oW =-6(u,, © - - |-
vectors of total forces and momerfs, M, can v AN, Uy, xE,

be transferred to the nod®. Then (9) takes the E
form —5(UM +0, xp BM)[ S If]
xFg

M'S:M3+uéxlfs. (10) o
=—du,,| Fy +Fs |-

In the case of partial binding for unbound
degrees of freedom, it follows from the solution ~ - -
of the static problem that the corresponding&m[MM +Mg+px FSJ_
forces or moments in the nodes M, S are equal -0

to zero. Therefore, expressions (8) - (10) remaingy (UM < E, )_&M (uéx 'Es)
in force.

Applying the principle of virtual works and

accepting the deflections during buckling as thﬁere we use

virtual displacements, we obtain:

(15)

5(9M Xﬁ)lfs :(&)M Xﬁ)ﬁs =

8(0.-0.) (0. -0, )-8UT R, —8UIR. =0, . 5 .
( ° S) ( > S) e =7 (11):_(ﬁxégM)FS:(IBXFS)$M:&M(ﬁXFS)

(16)

where the first term is the work of internailhe first two termsof (15) are the equilibrium
forces of the RIink element on virtual®quations in the pre-buckling state, therefore
displacements during buckling and the two lagfey are identically equal to zero. The remaining
terms are the work of external forces. terms of the expression (15) will be as follows:
Let -

W ==, (u, xE, )-

- - \T - I
) - G - - 17
éH 6(US US) (LQJSQUS)’ L (12) _&M[EuéXFS_lstuéj' ( )

W =-30,R, ~aU[R;, °

wherell in the potential energy accumulated irptPstitute (1) into (17):
the elastic links, W is the change in the potential -
of the external forces. It follows from the oW =-8,, (UM x Fy )—
previous section that

—

_&M[%(UM +0,, X,B)X Fs—
SIT=38q.K 4. , (13)

1 -
E E —=Fsx(u,, +0,, xp)|= 18
— BM{@ ]_S(Ué G{FJ Fox(uy +0,7) (19)
M Ms
@9 m[ (F Fﬂ
=0
Substituting (1), (8), (10) into (14), we derive: h
_&M[%(ﬂMxﬁxﬁs+6M xlfsxﬁ)}
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Calculating the double cross product, we obtaimroblems of structural mechanics. For example,
the tension-compression stiffness of a plane

0, xpxFR=Q0, , (19) frame element is several orders of magnitude

= . 7 greater thatts bending stiffness.

Ou xFsxp=220, , (20) Therefore, the penalty parameter (stiffness of
links between the nodeS and S) should be
taken separately for each degree of freedom. In
addition, if the stiffness values are too large, it
can lead to the ill-conditioning of the global

-pFd-pFs p,FS p,Fs stiffness matrix and the loss of accuracy.
- pF —pFX-pF? pFe The following algorithm is used for the optimal
! y . y choice of penalty parameters. First, the diagonal
pFs pFs ~pFs=pFs DiagRL of the stiffness matrix is obtained for a
(21) model that does not contain any Rlink elements.
Then, the equation number egn_M is defined for
Finally, each degree of freedom dof of the node M, and
the corresponding element on the main diagonal
1 T is D_M[dof] = DiagRL[egn_M], where doE
SWZ_SOME(QJFQ )BMJ (22) [X, v, z, RX, RY, RZ] are the degrees of
freedom corresponding to the translational
- - isplacements and the rotation angles of the
(Sll;k;slmgt'(nl%)(lv‘:’é gl:r)]tiir(lza into (12), and theﬂode M. Th(_e same is done for the no_de S:
D_SJ[dof] = DiagRL[eqn_S], where eqgn_S is the
equation number corresponding to the degree of
freedom dof in the node S. We accepis =
) _ _ GAM'max{D M[dof], D _S[dof]}, where GAM
Where Ge — geometric stiffness matrix of thec [100 = 10000]. If there is no binding for the
Rlink element: degree of freedom dof, the correspondyag =

where

6qe[(Ke _)\'Ge)qe] O’ (23)

0 0 00 u,, 0.

0 1(Q+QT) 00 0, This algorithm enables to flexibly determine the
G, = 2 v Oe= : penalty parameters for each degree of freedom.

0 0 0 Us We will provide the solution of the model

0 0 00 05 problem shown in Fig. 9.

(24) Here, EI =02 MNia=1m/|l=9m, M=
0.001 MNm. The exact solution of this problem
It is assumed that all loads applied to this: w,=0.0475 m, ¢, =0.005, where w,, ¢,
structure increase in proportion to the parametgre the vertical displacement and the rotation
A, and A =1 for the given load value. angle in the point A. Table 1 provides the value
In the case of a rigid body, shown in Fig. 1of w,,¢,, obtained by the finite element
stiffness matrices (geometric stiffness matriceglethod using the Rlink element and
are generated for the respective Rlink elementg.onyentional element of the plane frame with

the large finite stiffnes€l' modelling a rigid

body.
4. PENALTY PARAMETERS

A wide scatter of the stiffness values for
different degrees of freedom is typical for the
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EI El— '\:')
I A
L a - l |

Figure 9. Model problem.

Table 1. Values of the vertical displacemeptand the rotation anglea in the point A.

Rlink element Plane frame element
with the large finite stiffneskl'

GAM Wa, M 0A Err, % | EI'VEI Wa, M QA Err,

%
10 | 4.750000-102 | 5.125000-102 | 2.5 10 | 6.775000-10% | 9.500000-10° | 90
100 | 4.750000-102 [ 5.012500-10°| 0.25 | 100 | 4.952500-10% | 5.450000-10°3 9
1000 | 4.750000-102 | 5.001250-103 | 0.025| 1000 | 4.770250-102 | 5.045000-10° | 0.9
10000[ 4.7500001072 | 5.000125-10° | <0.01 | 10000 | 4.752020-10% | 5.004500-10° | 0.09

2.4/3.4 GHz, RAM DDR3 8 GB, OS Windows

7 (64 bit) Professional, SP1. A sparse direct

|W vy | | solver 8 parallelized by us on the basis of

Err =100 max |——=2, : multithreading is used. The values of the

‘ Wa ‘ ‘ maximum displacements for both methods are
given in Table 3. METIS reordering 7 is used.

When the Rlink element is used, the error is lestere u, v, w are displacements along the axes

than 1% even if GAM = 100, and when GAM =0X, QY, OZ respectively. When the method

1000, it is less than 0.1%. Wharrigid bodyis «B» is used, the stiffness values are summed for

modeled by a plane frame element with theall Rlink elements meeting in the master node.

large finite stiffness, in order to achieve an erran order to limit the increase of the respective

of less than 0.1%, it is necessary to increase tbeefficients in the global stiffness matrix, the

stiffnress by 4 orders of magnitude impenalty parameter for all rigid links which make

comparison with the stiffness of finite elementsp each rigid body is corrected as follows:

connected to this rig body.

Thus, the proposed approach enslite obtain  GAM =

sufficient accuracy for engineering calculations (GamMax- GamMin)-exp(— N

at rather small values of the penalty parameters _

which provides insignificant deterioration of+GamMin

conditioning of a global stiffness matrix when

using Rlink elements.

The following model problem is given in thewhere Negs is the number of Rlink elements

Figure 10. which make up this rigid body, and the

Table 2 compares the number of nonzero entriegrameters GamMax, GamMin are taken as
in the factored stiffness matrix given inGamMax = 10 000, GamMin = 100 by default.

megabytes (MB), and the duration of factorindhus, the GAM value always lies between
for methods "A" and "B". GamMax, GamMin, and when the number of
The problem is solved on a computer with a 4igid links is small, GAM is close in value to

core processor Intel® Core™ i7-27600QM CPU GamMax which provides a high accuracy of the

The Err column provides

|(PA _(T)A
‘ (O

/400)+

legs

(25)
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The floor slab with rigid links

Figure 10. Design model of a multistory building (94 362 nodes, 91 811 finite elemen
Half of each floor slab is modelled by a rigid body.

Table 2. Comparison of efficiencyméthods «A» and «B».

Modeling Number Size of the factored | Duration of factoring
of rigid links of equations stiffness matrix, MB S
Method«A» 467 292 2 154 195
Method«B» 563 256 1304 13

Table 3.Maximum displacements u, v, w, obtained by methods «A» and «B».

Modeling of rigid links max{u}, m max{v}, m max{w}, m
Method «A» 3.29553010% 7.439050-107° 6.451711-10°
Method«B» 3.295534-10 7.439049-107° 6.451719-10°

approximation of a rigid body, and when then the factored stiffness matrix which led to a

number of rigid links is large, the GAM valuereduction of the duration of factoring performed

approaches GamMin, reducing the probabilitgn 4 threads by 15 times.

of the accuracy loss of the solution dueilte The results given in this section were obtained
conditioning of the stiffness matrix. with the help of the research software developed
The values of maximum displacements obtainday the author.

by using two different models of rigid links

differ from the 6th significant digit. Therefore,

we can assume that the results of these tBONUMERICAL RESULTS

calculations are practically the same. However,

the «B» method provided approximately a two- This section describes typical problems of
fold decrease in the number of nonzero entrissructural mechanics containing rigid links.
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Fragment of foundation plate

head of pile

it
Vi
\.‘\'l e
ke e av rigid link
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@l
@'hg

Q.\-': Er‘\l R Y »
Figure 11. Design model of a multistory building (4 805 610 equations) and a fragment
of the foundation plate.

The main attention is paid to the accuracy of tiferces), their scaling by a diagonal of the

numerical solution estimated as follows: stiffness matrix is carried out.
. . . 11 Example 1A design model of a multistory building
err=|b; —KX;| / HbiHZ’ K =D *KD 2, taken from the SCAD Sdftollection is considered.
1 1 The dimension of the problem is 885610
X = D75>A<i, Ai = D7bi i e [1 nrhs], equations. The RIlink elements are used in the

(26) junctions of the pile heads with the foundation plate
to avoid the transfer of concentrated forces to the

where bi, xi, K, D are respectively the right- foundation plate (Fig. 11).
hand side vector, the solution vector, thBARFES 56 was used to solve a system of

stiffness matrix of a system of linear algebrailln€ar algebraic equations with a sparse stiffness

finite-element equations, the diagonal of thidatrix K. Despite the fact that the dimension of

stiffness matrix, i is the right-hand side numbefN€ design model is large, the accuracy of the

nrhs is the number of right-hand sides, err is tR@IUtion, shown in Tablé, turned out to be high.

error measure. When determiniﬂ\gz, the dot

product of the right-hand side vectarand the  sScAD Soft (www.scadsoft.com) Software Company,

residual vecto®. —KX. is calculated. Since thedeveloper of the SCAD finite element modeling software
' ' ite, which is used for structural analysis and design, is

s
cpmponent_s of _these vectors are values Q(lirtified according to building regulations of the CIS
different dimension (forces and moments ofountries, and is one of the most popular software

applications of the industry in the area.
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Table 4. Error of the solution of the system of linear algebraic equations
for the design model given the example 1.

Load case 1 2 3 4 5 6 7 8

err 2.2107 | 5.3-108 | 3.2-108 | 3.6:107 | 3.6-107 | 3.0-107 | 2.0-10" | 2.6:10”’

clamped

Figure 13. Displacements of the structure. Finite element MITC4.

Example 2.Two plates connected by rigid linkszero rows and columns on the degrees of
are considered (Fig. 12). The displacements fseedom corresponding to the drilling rotation.
this structure under the action @toncentrated The approach applied in 13, which lies in
force P acting in the plane of the plates amdding a small fictitious rigidity used when
analyzed. The flat shell finite element MITC4here is a difference between the average
12, as well as the quadrilateral finite element Q#étation angle of the finite element relative to
[11], are used. the normal and the rotation angle in the current
The peculiarity of this problem is the fact thahode, leads to the fact that the structure shown
the finite element MITC4 does not havean Fig. 12 is close t@a geometrically unstable
stiffness preventing the rotation relative to thene (Fig. 13).

normal to the middle surface (drilling rotation).

Therefore, the global stiffness matrix contains
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log N
Figure 14. Dependence of the displacement v, m on the number of mesh points N.

—0— MITCA+Rlink

Figure 15.“Rigid link” connects a master node (indicated by a red dot) with a slave node
in all degrees of freedom. “Rigid link x” binds only the displacement u along the OX axis,
and the arrow is directed to the slave node.

When the finite elements Q4 11 are used (theionsidered problem should be treated with
bending stress-strain state is given in 9, and tbaution.

membrane stress-strain state is given in 10), t&-curve in Fig. 14 shows this. Here v is the
finite rigidities are on the "drilling rotation" displacement of the node in which the force is
degrees of freedom, therefore, the conditionirgpplied in the direction oits action, N is the

of the global stiffness matrix is much bettemumber of mesh points. The design models with
than in the MITC4 element. The experience afieshes 5x5, 50x50, 200200 and 500%500 are
using the Q4 element in Robot 14, and in theonsidered. Beginning with a meslox50 an
author’s research software has shown that thatensive increase of displacement is observed.
solution accuracy is satisfactory when coarsEhe results obtained for the case when the Rlink
meshes are used in the model problems testifigite element was use@B» method) coincide

the torsion of a column connected to a floowith the results of the «A» method up to 4
slab, and bending of a deep beam under tbignificant digits at GAM = 10000.

action of concentrated bending moments in tHa order to use the MITC4 elements, we must
corners 10. However, at an unlimited refinememhodify the design model. One possible solution
of the mesh, the above stiffness values tend i®shown in Figure 15he rigid links “rigid link
zero 1 therefore, the results obtained for thé€, binding only the translational displacements
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The floor slab without rigid links

The floor slab with rigid links

Figure 16. Design model of a high-rise building (1 275 162 equations) and a fragment of a floor
slab. Rigid links are used for modeling floor slabs as a rigid body in the plane of the slab.

u in the direction of the OX axis, are added iAn undisputed advantage of the second design
addition to the previously used rigid links “rigid model is the convergence of the numerical
link” connecting plates in all degrees of freedom. solution. When the meshes are coarse, both
The master nodes are indicated by red dots. models give similar results.

The “rigid link x” elements bind displacentsn

u of two consecutive nodes. Thus, “rigid Example 3 The design model of a high-rise
angle” is formed in each master node, whichbuilding (Fig. 16) taken from the SCAD Soft
involves the tension-compression and sheaollection is considered. The dimension of the
stiffness when this node is subjected to torsigeroblem is 1 275 162 equations.

relative to the normal. This building was erected in Moscow, so it was
The curve MITC4+Rlink presents the behavionecessary to perform its strength analysis
of such model in Fig. 14. Unlike the previousiccording to the requirements of the Moscow
design model which used the Q4 elementarban construction design code MGSN 4.19-05,
displacement values v of the given design modehich prescribes a seismic analysis for a 5- and
do not diverge with the mesh refinement. 6-point earthquake. The floor slabs are
Thus, the advantage of the first model that usesnsidered as rigid bodies in theplane and
Q4 elements is the absencgadditional “rigid their bending stiffness sssumed to be finitén

link X” elements and a good conditionality of the accordance with tlse requirements, the design
system of linear algebraic equatiofdowever, model involves rigid links (Fig. 13), which
this design model enables to obtain acceptabiestrict only horizontal translational
results only on coarse meshes. The numeriaibplacements.

solution diverges when the mesh is refined.
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Table 5. Error of the solution of the system of linear algebraic equations
by PARFES5, 6 and multifrontal method BSMFM 3, 4.

Load case Error at the solution Error at the solution
by PARFES by BSMFM
1 9.819427e-007 5.839926e-009
2 1.340733e-006 3.692731e-009
3 1.125980e-005 1.818273e-008
4 8.232009e-006 2.611328e-008
5 9.872282e-006 1.815249e-008
6 7.377167e-006 3.395874e-008
7 3.511916e-007 7.428898e-010
8 2.993076e-007 2.887699e-010
9 3.884085e-006 4.464822e-008
10 4.262448e-006 4.017364e-008
A A

spring

Figure 17. Hinged rigid rod under the action of an axial compressive force.

Multiple rigid links are interseetd in the same stiffness matrix entirely, and the assembly and
master node, so the stiffness in the master nodecomposition are performed simultaneously
Is accumulated during assembling when &he METIS reordering 7 is used for both
method “B” is applied. The strategy for PARFES and BSMFM methods. The default
selecting the penalty parameter GAMs ivalues of GamMax and GamMin (10 000 and
described in Section 4, expression (25), and 190) are applied.

applied here. The solution error for the first ten

load cases is given in Table 5. It should be not&kample 4 A rigid rod of the length, inclined
that the multifrontal method BSMFM 3, 4 hago the OY axisat an angleo and to the XOY
proved to be more resistant to ill-conditioninglaneat an anglep, is considered. The rod has a
than PARFES 5, 6 for the considered problenspherical hinge support prohibiting translational
It is probably due to the fact that thedisplacements, in whickachelastic spring of
multifrontal method does not assemble atiffnessk works at the rotation angles of the rod
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spring

Figure 18. Transition of a rod to the deflected state during buckling.

at its deviation from the equilibrium position.
The axial compressive force P is appliedthe
free end.

Figure 18 presents a drawing of a plane passiffge following values are acceptdd= 1 m,h =
through the axis of the rod in the pre-buckling 5 m E = 200000000 kN/f | = 8.3333-10°®
state and the axis of the rod in the deflectgd* The corresponding exact value of the
state caused by buckling. critical forceis Per = 3333.32 kN.

Equilibrium condition of the rod in the deflectedy, the finite element model, the collar beam is
state ko —4,Plp=0, from whereit follows divided into 10 finite elements of the plane
that the parameter of the critical force idrame, and the columns are modellby the
A, =Pl/Kk. Acceptingl = 1 m,a = 60°, B = Rlink glements an@Pe =_3333._31_. If the collar
45°, k=1 MN-m, P = 1 MN, we obtain Acr = 1. beam is modedld by a single finite element of

The rotation of the rodn the angles o and p 1€ Plane frame, the, = 3332.15 kN.
does not affect the value of the critical force,
however, it leads to the fact that the maix
does not contain any zero entries. It enables %

perform the testingh the most general form.

When using the finite element method, the rigi he proposed method .Of modeling rigid Iink_s
rod is modelled by the Rlink element and thBaS provepl to be effective for solving the static
springs are modeled by the elastic suppor@f‘d buckllng'problemg of structures the design
working only at the rotation angles. Since thnodels of which contain rigid bodies (14,)15

problem is spatial, we have obtained two
mutually orthogonal buckling modes with
multiple values of the critical force paramete1'°‘CKNOWLEDGNIENTS

Aer1 = Aer2 = 1, which correspond to the above . .
e(;’;ct S(C)rilz,ltion. P The preparation of this work was supported by

SCAD Soft IT company.

Example 5.The problem shown in Fig. 3 is
considered. The exact value of the critical force
is 1

P =
Ih

CONCLUSION
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